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Abstract

Computed Tomography (CT) plays an important role in monitoring radiation-induced Pulmonary 

Fibrosis (PF), where accurate segmentation of the PF lesions is highly desired for diagnosis and 

treatment follow-up. However, the task is challenged by ambiguous boundary, irregular shape, 

various position and size of the lesions, as well as the difficulty in acquiring a large set of 

annotated volumetric images for training. To overcome these problems, we propose a novel 

convolutional neural network called PF-Net and incorporate it into a semi-supervised learning 

framework based on Iterative Confidence-based Refinement And Weighting of pseudo Labels 

(I-CRAWL). Our PF-Net combines 2D and 3D convolutions to deal with CT volumes with large 

inter-slice spacing, and uses multi-scale guided dense attention to segment complex PF lesions. 

For semi-supervised learning, our I-CRAWL employs pixel-level uncertainty-based confidence-

aware refinement to improve the accuracy of pseudo labels of unannotated images, and uses 

image-level uncertainty for confidence-based image weighting to suppress low-quality pseudo 

labels in an iterative training process. Extensive experiments with CT scans of Rhesus Macaques 

with radiation-induced PF showed that: 1) PF-Net achieved higher segmentation accuracy than 

existing 2D, 3D and 2.5D neural networks, and 2) I-CRAWL outperformed state-of-the-art semi-

supervised learning methods for the PF lesion segmentation task. Our method has a potential 

to improve the diagnosis of PF and clinical assessment of side effects of radiotherapy for lung 

cancers.
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I. INTRODUCTION

LUNG cancer is the leading cause of cancer deaths around the world. In 2018, the global 

number of new cases and deaths were 2.09 million and 1.76 million, respectively [1]. 

Radiation therapy is one of the most effective and widely used treatment for cancer patients 

[2]. With the development of such treatment technologies, lung cancer death rate dropped 

45% from 1990 to 2015 among men, and 19% from 2002 to 2015 among women [3]. 

However, about half of all cancer patients who receive radiation therapy during their course 

of illness will suffer from Radiation-Induced Injuries (RII) to the hematopoietic tissue, skin, 

lung and gastrointestinal (GI) systems [2]. To prevent, mitigate or treat the RII plays an 

important role in improving the quality of radiation therapies.

For lung cancer, the most common RII is the radiation-induced Pulmonary Fibrosis (PF) 

[4], i.e., inflammation and subsequent scarring of lung tissues caused by radiation, which 

could lead to breathing problems due to lung damage and even lung failure [5]. Observation 

and assessment of the PF lesions using Computed Tomography (CT) imaging is critical 

for diagnosis and treatment follow-up of this disease [6]. For an accurate and quantitative 

measurement of PF, it is desirable to segment the PF lesions from 3D CT scans. The 

segmentation results can provide detailed spatial distribution and accurate volumetric 

measurement of the lesions, which is important for treatment decision making, PF progress 

modeling, treatment effect assessment and prognosis prediction.
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As manual segmentation of lesions from 3D images is time-consuming, labor-intensive and 

faced with inter- and intra-observer varabilities, automatic PF lesion segmentation from CT 

images is highly desirable [7]. However, this is challenging due to several reasons. Firstly, 

with different severity of the disease, PF lesions have a large variation of size and shape. A 

small lesion may only contain few pixels, while a large lesion can occupy a lung segment. 

The irregular shapes make it difficult to use a statistical model for the segmentation task [8]. 

Secondly, the lesions have a complex spatial distribution, and can be scattered in different 

segments of the lung. Thirdly, PF lesions often adhere to lung structures including vessels, 

airways and the pleura, and other lesions like lung nodules and pneumonia lesions with 

similar appearance may also exist. These factors, alongside with the low contrast of soft 

tissues in CT images, make it hard to delineate the boundary of PF lesions. Fig. 1 shows 

two examples of lung CT scans with PF, and it demonstrates the difficulties of accurate 

segmentation.

Recently, Convolutional Neural Networks (CNNs) have been increasingly used for 

automatic medical image segmentation [9]. By automatically learning features from a large 

set of annotated images, they have outperformed most traditional segmentation methods 

using hand-crafted features [7], such as for recognition of lung nodules [10], [11], lung lobes 

[12] and COVID-19 infection lesions [13], [14]. However, to the best of our knowledge, 

CNNs for PF lesion segmentation have rarely been investigated so far.

Besides the above challenges, existing CNNs may obtain suboptimal performance for the PF 

lesion segmentation task due to the following reasons. First, lung CT images usually have 

anisotropic 3D resolutions with high inter-slice spacing and low intra-slice spacing. Existing 

CNNs using pure 2D convolutions or pure 3D convolutions have limited ability to learn 

effective 3D features from such images, as 2D CNNs [8], [15]–[17] can only learn intra-slice 

features, and most 3D networks [18]–[21] are designed with isotropic receptive field in 

terms of voxels. When dealing with 3D images with large inter-slice spacing, they have 

an imbalanced physical receptive field (in terms of mm) along each axis, i.e., the physical 

receptive field in the through-plane direction is much larger than that in in-plane directions, 

which may limit effective learning of 3D features. Second, existing CNNs often use position 

invariant convolutions without spatial awareness, which makes it difficult to handle objects 

with various position and size. Attention mechanisms have recently been proposed to 

improve the spatial awareness [17], [22], [23], but their obtained spatial attention does not 

match the target region well, and their performance on PF lesions has not been investigated.

What’s more, current success of deep learning methods for segmentation relies highly on a 

large set of annotated images for training [9]. For 3D medical images, acquiring pixel-level 

annotations in segmentation tasks is extremely time-consuming and difficult, as accurate 

annotations could be only provided by experts with domain knowledge [24]. For the PF 

lesion segmentation task, annotation of a CT volume could take several hours, and the 

complex shape and appearance of PF lesions further increase the efforts and time needed for 

annotation, which makes it difficult to annotate a large set of 3D pulmonary CT scans for 

training.
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To deal with these problems, we propose a novel semi-supervised framework with a 

novel 2.5D CNN based on multi-scale attention for the segmentation of PF lesions from 

CT scans with large inter-slice spacing. The contribution is three-fold. First, we propose 

a novel network for PF lesion segmentation (i.e., PF-Net), which employs multi-scale 

guided dense attention to deal with lesions with various size and position, and combines 

2D and 3D convolutions to achieve balanced physical receptive field along different axes 

to better learn 3D features from medical images with anisotropic resolution. Second, a 

novel semi-supervised learning framework using Iterative Confidence-based Refinement 

And Weighting of pseudo Labels (I-CRAWL) is proposed, where uncertainty estimation 

is employed to assess the quality of pseudo labels of unannotated images in both pixel 

level and image level. We propose Confidence-Aware Refinement (CAR) based on pixel-

level uncertainty to refine pseudo labels, and introduce confidence-based image weighting 

according to image-level uncertainty to suppress low-quality pseudo labels. Thirdly, we 

apply our proposed method to radiation-induced PF lesion segmentation from CT scans, 

and extensive experimental results show that our method outperformed state-of-the-art semi-

supervised methods and existing 2D, 3D and 2.5D CNNs for segmentation. As far as we 

know, this is the first work on PF lesion segmentation based on deep learning, and our 

method has a potential to reduce the annotation burden for large-scale 3D image datasets in 

the development of automatic segmentation models with high performance.

II. RELATED WORKS

A. CNNs for Medical Image Segmentation

CNNs have achieved state-of-the-art performance for many medical image segmentation 

tasks [9]. Most widely used segmentation CNNs are inspired by U-Net [15], which is based 

on an encoder-decoder structure to learn features at multiple scales. UNet++ [16] extends 

U-Net with a series of nested, dense skip pathways for a higher performance. Attention 

U-Net [22] introduced an attention gate using high-level features to calibrate low-level 

features. Spatial and channel “Squeeze and Excitation” (scSE) [17] enables a 2D network to 

focus on the most relevant features for better performance.

Typical networks for segmentation of 3D volumes include 3D U-Net [18], V-Net [19] and 

HighRes3DNet [20]. They assume that the input volume has an isotropic 3D resolution to 

learn 3D features, and are not suitable for images with large inter-slice spacing. To better 

deal with such images, a 3D anisotropic hybrid network that uses a pre-trained 2D encoder 

and a decoder with anisotropic convolutions was proposed in [25]. Jia et al. [26] designed 

a pyramid anisotropic CNN based on decomposition of 3D convolutions. The nnU-Net [27] 

automatically configures network structures and training strategies, where different types of 

convolution kernels can be adaptively combined for a given dataset. In [28], a lightweight 

CNN combining inter-slice and intra-slice convolutions was proposed to for segmentation 

of CT images. In [29], 2D and 3D convolutions were combined in a single network for 

Vestibular Schwannoma segmentation from images with anisotropic resolution. However, 

these networks have limited ability to segment lesions with various size and position.
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B. Segmentation of Lung CT Images

CNNs have been widely used for segmentation of lung structures from CT images [7]. In 

[12], cascaded CNNs with non-local modules [23] were proposed to leverage structured 

relationships for pulmonary lobe segmentation. In [30], a CNN was combined with freeze-

and-grow propagation for airway segmentation. For lung lesions, a central focused CNN 

[11] was proposed to segment lung nodules from heterogeneous CT images, and Fan 

et al. [13] employed reverse attention and edge attention to segment COVID-19 lung 

infection. Wang et al. [14] developed a noise-robust framework for automatic segmentation 

of COVID-19 pneumonia lesions by learning from non-expert annotations. Despite the 

large amount of works on lung structure and lesion segmentation so far, there is a lack 

of deep learning models for the challenging task of radiation-induced pulmonary fibrosis 

segmentation.

C. Semi-Supervised Learning

To reduce the burden for annotation, semi-supervised learning methods have been 

increasingly employed for medical image segmentation by using a limited number of 

annotated images and a large amount of unannotated images [24]. Existing semi-supervised 

methods mainly have two categories. The first category is based on pseudo labels [13], [31], 

[32], where a model trained with annotated images obtains pseudo labels for unannotaed 

images that are then used to update the segmentation model. Lee [31] used such a strategy 

for classification problems, and Bai et al. [32] updated the pseudo segmentation labels and 

network parameters alternatively and used Conditional Random Field (CRF) to refine the 

pseudo labels. Fan et al. [13] progressively enlarged the training set with unlabeled data and 

their pseudo labels for learning. However, this method ignores the quality of pseudo labels, 

which may limit the performance of the learned model.

The second category is to learn from annotated and unannotated images simultaneously, and 

they often consist of a supervised loss function for annotated images and an unsupervised 

regularization loss function for all the images. The regularization can be based on teacher-

student consistency [33], [34], transformation consistency [35], multi-view consistency [36] 

and reconstruction-based auxiliary task [37]. Adversarial learning [38] also regularizes the 

segmentation model by minimizing the distribution difference between segmentation results 

of annotated images and those of unannotaed images. However, adversarial models are hard 

to train, and the complex size and shape of PF lesions make it difficult to capture the true 

distribution of lesion masks when only a small set of annotated images are available.

III. METHOD

In this section, we first introduce our proposed Pulmonary Fibrosis segmentation Network 

(PF-Net) with multi-scale guided dense attention, and then describe how it is used in our 

I-CRAWL framework for semi-supervised learning.

A. PF-Net: A 2.5D Network with Multi-Scale Guided Dense Attention

Our proposed PF-Net is illustrated in Fig. 2. It employs an encoder-decoder backbone 

structure that is commonly used and effective for medical image segmentation [15], [16], 
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[19]. The encoder contains five scales, and each is implemented by a convolutional 

block followed by a max-pooling layer for down-sampling. In each block, we use two 

convolutional layers each followed by a Batch Normalization (BN) [39] layer and a 

parametric Rectified Linear Unit (pReLU), and a dropout layer is inserted before the second 

convolutional layer. The decoder uses the same type of convolutional blocks as the encoder. 

We extend this backbone in the following aspects:

1) 2.5D Network Structure: To deal with the anisotropic 3D resolution with high 

inter-slice spacing and low intra-slice spacing, we combine 2D (i.e., intra-slice) and 3D 

convolutions so that the network has an approximately balanced physical receptive field 

along each axis. Let S represent the number of scales in the network (S = 5 in this paper), 

we use 2D convolutions and 2D max-poolings for the first M scales in the encoder, and 

employ 3D convolutions and 3D max-poolings for the last S – M scales in the encoder. Each 

resolution level in the decoder contains the same type of 2D or 3D convolutional blocks as in 

the encoder. We use trilinear interpolation for upsampling in the decoder.

As our lung CT images have a resolution around 0.3×0.3×1.25 mm, i.e., the in-plane 

resolution is about four times of the through-plane resolution, we set M = 2 so that the 

2D max-pooling layers in the first two scales make the resulted feature maps have a 

near-isotropic 3D resolution, as shown in Fig. 2. Note that the first and S-th scales have 

the highest and lowest spatial resolution, respectively. We use Fs
e and Fs

d to denote the 

feature maps obtained by the last convolutional block at scale s in the encoder and decoder, 

respectively. Note that FS
e = FS

d  in the bottleneck block.

2) Multi-Scale Guided Dense Attention: To better deal with PF lesions with 

various position and size, we use multi-scale attention to improve the network’s spatial 

awareness, and propose dense attention to leverage multi-scale contextual information for 

the segmentation task. Specifically, at each scale s of the decoder, we use a convolutional 

layer to get a spatial attention map Ps, and use Ps as a high-level attention signal to guide 

the learning in all lower scales of the decoder. The input of the decoder at scale s is a 

concatenation of three parts: Fs
e from scale s of the encoder, an upsampled version of the 

decoder feature map Fs + 1
d  and Ps + 1

s ⊕ Ps + 2
s ⊕ … ⊕ PS

s , where ⨁ is the concatenation 

operation and Ps + 1
s  is the upsampled version of Ps + 1 so that it has the same spatial 

resolution as Fs
e. Therefore, a lower scale accepts the attention maps from all the higher 

scales as input, which is referred to as Multi-Scale Dense Attention (MSDA). The decoder 

thus takes advantage of multi-scale contextual information that enables the network to pay 

more attention to the target region.

To better learn the spatial attention, we propose Multi-Scale Guided Attention (MSGA) to 

explicitly supervise P1, P2, …, PS at different scales. Let Ps denote the softmaxed output of 

Ps and Y denote the ground truth (i.e., one-hot probability map) of a training sample X. 

Unlike a common deep supervison strategy that upsamples Ps or Ps at different scales to 

the same spatial resolution as Y [40]–[42], we down-sample Y to obtain multi-scale ground 
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truth for spatial attention, which makes the loss calculation more efficient and can directly 

supervise the spatial attention maps at different scales. Let Ys denote the down-sampled 

ground truth at scale s. The multi-scale loss function for a single image is:

ℓ (P, Y ) = ∑
s = 1

S
αsLs Ps, Y s (1)

where P = P1, P2, …, PS . Ls() is a base loss function for image segmentation, such as the 

Dice loss [19]. αs is the weight of Ls() at scale s.

B. Semi-Supervised Learning using I-CRAWL

Generating pseudo labels for unannotated images has been shown effective for semi-

supervised segmentation [13], [31], [32]. However, the pseudo labels often contain some 

incorrect regions, and low-quality pseudo labels can largely limit the performance of 

the learned segmentation model. To prevent the learning process from being corrupted 

by inaccurate pseudo labels, we propose an Iterative Confidence-based Refinement And 

Weighting of pseudo Labels (I-CRAWL) framework for semi-supervised segmentation.

Assume that the entire training set consists of one subset DL with Nl labeled images and 

another subset DU with NU unlabeled images. For an image Xi
L ∈ DL, its ground truth label 

Y i
L is known, while for an image Xi

U ∈ DU, its ground truth label is not provided, and we 

use Y i
U to denote its estimated pseudo label. As the pseudo labels may have a large range of 

quality, we introduce an image-level weight wiU ∈ [0, 1] for each pair of Xi
U, Y i

U for learning, 

and define wiU based on the confidence (or uncertainty, inversely) of Y i
U. The weight for 

a labeled image Xi
L from DL can be similarly denoted as wiL, and we set wiL = 1 as the 

corresponding label Y i
L is clean and reliable. Therefore, the labeled subset can be denoted as 

DL = Xi
L, Y i

L, wiL , …  (i = 1, 2, …, NL), and the unlabeled subset with pseudo labels can 

be denoted as DU = Xi
U, Y i

U, wiU , …  (i = 1, 2, …, NU).

Our I-CRAWL is illustrated in Fig. 3, and it is an iterative learning process with K rounds. 

Each round has four steps: 1) inference for unannotated images with uncertainty estimation, 

2) confidence-aware refinement of pseudo labels, 3) confidence-based image weighting, and 

4) network update where the current pseudo labels and image-level weights are used to train 

the network. These steps are detailed as follows.

1) Inference for Unannotated Images with Uncertainty Estimation: With the 

network parameter θk−1 obtained in the last round, in round k, we first use θk−1 to predict 

provisional pseudo labels for unannotated images in DU and the associated uncertainty 

estimation. Note that in the first round (i.e., k = 1), the initial network parameter θ0 is 

obtained by pre-training with the annotated images in DL.
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With θk−1, we employ the Monte Carlo (MC) Dropout [43] that has shown to be an effective 

method for estimation of epistemic uncertainty caused by the lack of training data [34], [36]. 

MC Dropout feeds an image Xi
U into the network R times with random dropout, which 

leads to R predictions, i.e., R foreground probability maps [43]. The average of these R 

foreground probability maps is taken as the provisional probability map Pi
U, a binarization 

of which leads to a provisional pseudo segmentation label Y i
U.

At the same time, the statistical variance of the R foreground probability maps is taken as 

the uncertainty map V i
U, which gives voxel-level uncertainty. As uncertainty information 

can indicate potentially wrong segmentation results [34], [44], we treat the pseudo labels 

with high uncertainty (i.e., low confidence) values as unreliable labels for images in DU, 

and propose a Confidence-Aware Refinement (CAR) method to improve the pseudo labels’ 

quality.

2) Confidence-Aware Refinement of Pseudo Labels: Given the provisional 

pseudo label Y i
U with the uncertainty map V i

U for an unannotated image Xi
U ∈ DU, and 

let x denote a voxel, we split the voxels in Y i
U into three sets according to the status: 

high-confidence foreground voxels F = x ∣ Y ix
U = 1, V ix

U ≤ ϵ , high-confidence background 

voxels B = x ∣ Y ix
U = 0, V ix

U ≤ ϵ  and undetermined voxels U = x ∣ V ix
U > ϵ , where ϵ = 0.05 

is a small threshold value. For undetermined voxels in U, we refine their labels according to 

a contextual regularization considering intervoxel connections and softened probabilities for 

these voxels.

Our CAR for pseudo label refinement has two steps: probability map softening and 

contextual regularization. First, we soften the foreground probabilities for uncertain voxels, 

which will degrade the influence of the network’s prediction for these voxels in the 

following contextual regularization step. Let p denote a foreground probability value and 

u denote the corresponding uncertainty value, the softening function is:

g(p, u) = 0.5 + (p − 0.5) × (1 − u) (2)

where the softened foreground probability get closer to 0.5 when u is larger. Let Ṗ ix
U  denote 

the softened foreground probability of voxel x, and is obtained by:

Ṗ ix
U =

Pix
U if x ∈ F ∪ B

g Pix
U, V ix

U if x ∈ U
(3)

Then, we use contextual regularization taking Ṗ i
U as input to refine the pseudo labels, which 

is implemented by a fully connected Conditional Random Field (CRF) [45]. For simplicity, 

we denote Xix
U, Y ix

U and Ṗ ix
U  as xx, yx and ṗx, respectively. The energy function of CRF is:
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E Y i
U = ∑

x
ϕ yx + ∑

x, y
ψ yx, yy (4)

where ϕ yx = − yxlog ṗx − 1 − yx 1 − ṗx  constrains the output to be consistent with the 

softened probability map, and this constraint for the low-confidence voxels in U is weak. 

The second term in Eq. (4) is a pairwise potential that encourages the label’s contextual 

consistency:

ψ yx, yy = μ yx, yy w1exp(− x − y 2

2σα2
−

xx − xy 2

2σβ
2 )

+w2exp(− x − y 2

2σγ2
)

(5)

where μ(yx, yy) = 1 if yx ≠ yy and 0 otherwise. Minimization of Eq. (4) leads to a refined 

pseudo label Y i
U for Xi

U.

3) Confidence-based Image Weighting of Pseudo Labels: With the new pseudo 

label Y i
U, we further employ the confidence to update its image-level weight wiU to suppress 

low-quality pseudo labels at the image level. We first define an image-level uncertainty vi 

based on uncertainty map V i
U:

vi =
∑xV ix

U

∑xY ix
U + η

(6)

where vi is the sum of voxel-level uncertainty normalized by the segmented lesion’s volume 

in the image. η = 10−5 is a small number for numerical stability. Let vmax and vmin denote 

the maximal and minimal values of vi among all the unannotated images, we map vi to the 

range of [0, 1]:

vi′ = vi − vmin
vmax − vmin

(7)

Finally, the image-level weight wiU is defined as:

wiU = 1.0 − vi′ 1/γ (8)

where γ ≥ 1.0 is a hyper parameter to control the non-linear mapping between the image-

level uncertainty vi′ and the weight. We do not use γ < 1.0 as it will lead the weight of 

most samples to be very small (close to 0.0). In contrast, γ > 1.0 leads the weight for most 

samples close to 1.0, and only samples with a high uncertainty will be strongly suppressed. 

In the experiment, we set γ = 3.0 according to the best performance on the validation set.
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4) Model Update with Batch Training: With the refined pseudo labels and image-

level weights obtained above, we train the network based on DL and the current pseudo 

labels for images in DU, where each image is weighted by wiL or wiU in the segmentation 

loss function. The weighted loss for the entire training set is:

ℒ = ∑
i = 1

NL

wiL ℓ Pi
L, Y i

L + ∑
i = 1

NU

wiU ℓ Pi
U, Y i

U (9)

where ℓ() is defined in Eq. (1). Pi
L and Pi

U are the multi-scale predictions obtained by 

PF-Net for an annotated image and an unannotated image, respectively.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setting

1) Data: Thoracic CT scans of 41 Male Rhesus Macaques with radiation-induced lung 

damage were collected with ethical committee approval. Once irradiated, each individual 

underwent serial CT scans for assessment of PF around every 30 days in 3 to 8 months. 

133 CT scans with PF were used for experiments of the segmentation task. The CT scans 

have a slice thickness of 1.25 mm, with image size 512 × 512 and pixel size ranging 

from 0.20 mm × 0.20 mm to 0.38 mm × 0.38 mm. We randomly split the dataset at 

individual level into 86 scans from 27 individuals for training, 15 scans from 4 individuals 

for validation, and 32 scans from 10 individuals for testing. Manual annotations given by 

an experienced radiologist were used as the segmentation ground truth. In the training set, 

we used 18 scans with annotations as DL and the other 68 scans as unannotated images 

DU for semi-supervised learning, and also investigated the performance of our method 

with different ratios of annotated images. For preprocessing, we crop the lung region and 

normalize the intensity to [0, 1] using a window/level of 1500/−650.

2) Implementation and Evaluation Metrics: Our PF-Net1 and I-CRAWL framework 

were implemented in Pytorch with PyMIC2 [14] library on a Ubuntu desktop with an 

NVIDIA GTX 1080 Ti GPU. The channel number parameter N in PF-Net was set as 16. 

Dropout was only used in the encoder. The dropout rate at the first two scales of the encoder 

was 0 due to the small number of feature channels, and that for the last three scales was 0.3, 

0.4 and 0.5, respectively. We set the base loss function Ls() as Dice loss [19]. PF-Net was 

trained with Adam optimizer, weight decay of 10−5, patch size of 48 × 192 × 192 and batch 

size of 2.

The round number for our I-CRAWL was K = 3, and we use round 0 to refer to the 

pre-training with annotated images. In each of the following round, the pseudo labels of 

unannotated images acquired by CAR were kept fixed, and we used Adam optimizer to 

train the network for tens of thousands of iterations until the performance on validation 

1 https://github.com/HiLab-git/PF-Net 
2 https://github.com/HiLab-git/PyMIC 
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set stopped to increase. The learning rate was initialized as 10−3 and halved every 10k 

iterations. Uncertainty estimation was based on 10 forward passes of MC dropout. We used 

the SimpleCRF library3 to implement fully connected CRF [45]. Following [46], image 

intensity was rescaled from [0, 1] to [0, 255] before the image was sent into the CRF, and 

the CRF parameters were: w1 = 3, w2 = 10, σα = 10, σβ = 20 and σγ = 15, which was tuned 

based on the validation set. γ in Eq. (8) was 3.0, and the performance based on different γ 
values is shown in Table III.

For quantitative evaluation of the segmentation, we used Dice score, Relative Volume Error 

(RVE) and the 95-th percentile of Hausdorff Distance (HD95) between the segmented PF 

lesions and the ground truth in 3D volumes. Paired t-test was used to see if two methods 

were significantly different.

B. Performance of PF-Net

In this section, we investigate the performance of our PF-Net for pulmonary fibrosis 

segmentation only using the 18 annotated images for training. The results of semi-

supervised learning will be demonstrated in Section IV-C.

1) Comparison with Existing Networks: Our PF-Net was compared with three 

different categories of network structures: 1) 2D CNNs including the typical 2D U-Net [15] 

and more advanced attention U-Net [22] that leverages spatial attention to focus more on the 

segmentation target; 2) 3D CNNs including 3D U-Net [18], 3D V-Net [19] and scSE-Net 

[17] that combines a 3D U-Net [18] backbone with spatial and channel “squeeze and 

excitation” modules; and 3) existing networks designed for dealing with volumetric images 

with large inter-slice spacing (i.e., anisotropic resolution): nnU-Net [27] that automatically 

configures the network structure so that it is adapted to the given dataset, AH-Net [25] 

that transfers features learned from 2D images to 3D anisotropic volumes, and VS-Net 

[29] that uses a mixture of 2D and 3D convolutions with spatial attention. Quantitative 

evaluation results of these methods are shown in Table I. We found that 3D U-Net [18] 

achieved a Dice score of 57.19%, which was the lowest among the compared methods. 2D 

U-Net [15], Attention U-Net [22], 3D V-Net [19] and 3D scSE-Net [17] achieved similar 

performance with Dice score around 60%. The nnU-Net [27], AH-Net [25] and VS-Net 

[29] designed to deal with anisotropic resolution generally performed better than these 2D 

and 3D networks. Among these existing methods, VS-Net achieved the best Dice that was 

67.45%. Our PF-Net achieved Dice, RVE and HD95 of 70.36%, 27.96% and 10.87 mm, 

respectively, where the Dice and HD95 were significantly better than those of the other 

compared methods.

Fig. 4 shows a qualitative comparison between these networks, where (a) and (b) are 

from two individuals, and axial and coronal views are shown in each case. In Fig. 4(a), 

it can be seen that 2D U-Net [15], 3D V-Net [19] and AH-Net [25] lead to obvious 

under-segmentation, as highlighted by blue arrows in the first row. VS-Net [29] performs 

better than them, but the result of our PF-Net is closer to the ground truth than that of 

3 https://github.com/HiLab-git/SimpleCRF 
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VS-Net. From the coronal view of Fig. 4(b), we can observe that the result of 2D U-Net 

[15] lacks inter-slice consistency. 3D V-Net [19] achieves better inter-slice consistency, but 

it has a poor segmentation in the upper and lower regions of the lesion, as indicated by the 

blue arrow in the third column. AH-Net [25], VS-Net [29] and our PF-Net that consider 

anisotropic resolution obtain better performance than the above networks purely using 2D 

or 3D convolutions. What’s more, Fig. 4 shows that the lesions have complex and irregular 

sizes and shapes, and the proposed PF-Net is able to achieve more accurate segmentation in 

these cases than AH-Net [25] and VS-Net [29].

2) Ablation Study: To investigate the effectiveness of each component of our PF-Net, 

we set the baseline as a naive 2.5D U-Net that extends 2D U-Net [15] by using pReLU, 

replacing 2D convolutions with 3D convolutions at the three lowest resolution levels, and 

adding dropout layers to each convolutional block. To justify the choice of using 2D 

convolutions at the first two resolution levels and 3D convolutions at the other resolution 

levels, we set M to 0–5 respectively. Note that M = 0 and M = 5 correspond to pure 2D 

and pure 3D networks, respectively. Comparison between these variants are listed in the first 

section of Table II, which shows that the performance increases as M changes from 0 to 2, 

and decreases when M is 3 and larger. This is in line with our motivation to set M to 2 due 

to the fact that the in-plane resolution is around four times of the through-plane resolution. 

Thus, we use baseline (M = 2) in the following ablation study.

The proposed PF-Net is referred to as baseline + MSDA + MSGA, where MSDA is 

our proposed multi-scale dense attention and MSGA is the proposed multi-scale guided 

attention. We compared the baseline and our PF-Net with: 1) Baseline + non-local [23], 

where the non-local is a self-attention block inserted at the bottleneck (scale 5) of the 

baseline network, and it was not used at the lower scales with higher resolution due to 

memory constraint; 2) Baseline + deep supervision, where the baseline network was only 

combined with a typical deep supervision strategy as implemented in [40], [41]; 3) Baseline 

+ MSGA, without using MSDA; 4) Baseline + MSGA + MSDA°, where MSDA° is a variant 

of MSDA and it refers to Ps is only sent to its next lower scale s − 1, rather than all the lower 

scales in the decoder of PF-Net.

Quantitative evaluation results of these variants are listed in the second section of Table 

II. It shows that compared with the baseline (M = 2), deep supervision improved the Dice 

score from 67.87% to 68.57%, but our MSGA was more effective with Dice of 69.32%. 

Using MSDA° could further improve the performance, but it was less effective than our 

MSDA. Table II demonstrates that our PF-Net was better than the compared variants, and 

it significantly outperformed the baseline in terms of Dice and HD95. Fig. 6 presents a 

visualization of multi-scale attention maps of PF-Net. It shows that attention maps across 

scales are consistent with each other and they change from coarse to fine as the spatial 

resolution increases.

C. Results of Semi-supervised Learning

With PF-Net as the segmentation network structure, we further validate our proposed 

I-CRAWL for semi-supervised training. In Section IV-C1 and IV-C2 we used 18 annotated 
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and 68 unannounced images, i.e., the annotation ratio was around 20%. In Section IV-C3, 

we experimented with different annotation ratios including 10%, 20% and 50%.

1) Hyper-Parameter Setting: First, to investigate the best value of hyper parameter 

γ in Eq. (8) that controls the weight of unannotated images, we measured the model’s 

performance on the validation set at the first round of I-CRAWL with γ ranging from 

1.0 to 5.0. They are compared with “Initial” that refers to model pre-trained on the 

annotated images and “No weighting” that denotes treating all unannotated images equally 

without considering the quality of pseudo labels. Quantitative measurements shown in 

Table III demonstrate that the best γ value was 3.0, and its corresponding Dice score was 

68.75%, which was better than 66.62% obtained by “Initial” and 67.83% obtained by “No 

weighting”. Therefore, we set γ = 3.0 in the following experiments.

2) Uncertainty and Confidence-Aware Refinement: Fig. 5 shows a visual 

comparison between a standard fully connected CRF [45] and our proposed CAR that 

leverages confidence (uncertainty) for refinement of pseudo labels. The first row of each 

subfigure shows an unannotated image and the pseudo label with uncertainty obtained by 

the CNN, and the second row shows the updated pseudo labels. In Fig. 5(a), the initial 

pseudo label has a large under-segmentated region, which is associated with high values 

in the uncertainty map, i.e., low confidence. The standard CRF only fixed the pseudo 

label moderately. In contrast, with the help of confidence, our CAR largely improved the 

pseudo label’s quality by recovering the under-segmented region. In Fig. 5(b), the initial 

pseudo label has some over-segmentation in airways, and the uncertainty map indicates the 

potentially wrong segmentation in the corresponding regions well. We can observe that CAR 

outperformed CRF in removing the over-segmented airways.

We also compared MC Dropout [43] with two other uncertainty estimation methods: entropy 

minimization and Bayesian network [47]. A visual comparison of them is shown in Fig. 7. 

We found that in spite of longer time required than the other methods, MC Dropout could 

generate more calibrated uncertainty estimation. As shown in Fig. 7, the uncertain region 

obtained by entropy minimization and Bayesian network [47] are mostly located around 

the border of the segmentation output, and uncertainty map obtained by MC dropout can 

better indicate under- and over-segmentation regions, which is highlighted by red and yellow 

arrows in Fig. 7. For quantitative comparison, we applied CAR as a post processing method 

to the validation set in the first round of I-CRAWL, where these uncertainty estimation 

methods were used respectively. Results in Table IV show that using MC dropout for 

CAR improved the prediction accuracy from 66.62% to 69.05% in terms of Dice, which 

outperformed using the other two uncertainty estimation methods.

Fig. 8 shows a visualization of pseudo labels and uncertainty as the round increases. It can 

be observed that the initial pseudo label at round 0 has a large under-segmented region 

with high uncertainty. The pseudo label becomes more accurate and confident as the round 

increases.

3) Ablation Study of I-CRAWL: For ablation study of I-CRAWL, we set the PF-Net 

trained only with the annotated images as a baseline, and it was compared with: 1) IT 
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that refers to naive iterative training, where in each round pseudo label of an unannotated 

image is reset to the prediction given by the network without refinement, 2) IT + CRF that 

uses standard fully connected CRF [45] to refine pseudo labels, 3) IT + CAR denoting that 

our confidence-aware refinement is used to update pseudo labels in each round, and 4) our 

I-CRAWL (IT + CAR + IW) where IW denotes our confidence-based image weighting of 

pseudo labels.

The performance of these methods at different rounds are shown in Fig. 9. Note that round 

0 is the baseline, and all the methods based on iterative training performed better than 

the baseline. However, the improvement obtained by only using IT is slight. Using CRF 

or CAR to refine the pseudo labels at different rounds achieved a large improvement of 

Dice, and our CAR considering the voxel-level confidence of predictions outperformed the 

naive CRF. Weighting of pseudo labels based on image-level confidence helped to obtain 

more accurate result, and our I-CRAWL outperformed the other variants. Fig. 9 also shows 

that the improvement from round 0 to round 1 of I-CRAWL is large, but the model’s 

performance does not change much at round 2 and 3.

Table V shows quantitative comparison between the baseline and variants of I-CRAWL at 

the end of training (round 3). It can be observed that IT’s performance was not far from 

the baseline, with an average Dice of 70.87% compared with 70.36%. Using CRF and CAR 

improved the average Dice to 72.13% and 72.71%, respectively, showing the superiority of 

CAR compared with CRF. I-CRAWL improved the average Dice to 73.04%, with HD95 

value of 7.92 mm in average, which was better than the other variants.

4) Comparison with Existing Methods: I-CRAWL was compared with several sate-

of-the-art semi-supervised methods for medical image segmentation: 1) Fan et al. [13] that 

uses a randomly selected propagation strategy for semi-supervised COVID-19 lung infection 

segmentation, 2) Bai et al. [32] that uses CRF to refine pseudo labels in an iterative training 

framework, corresponding to “IT + CRF” described previously, 3) Cui et al. [33] that is an 

adapted mean teacher method, and 4) UA-MT [34] that is uncertainty-aware mean teacher. 

For all these methods, we used our PF-Net as the backbone network.

We investigated the performance of these methods with different ratios of labeled data: 10%, 

20% and 50%. For each setting, the baseline was learning only from the labeled images, 

and the upper bound was “full supervision” where 100% training images were labeled. The 

results are shown in Table VI. It can be observed that with only 10% images annotated, the 

baseline performed poorly with an average Dice of 54.73%. Our I-CRAWL improved it to 

67.18%, which largely outperformed the other methods. When 20% images were annotated, 

our method improved the average Dice from 70.36% to 73.04% compared with the baseline, 

while the mean teacher-based methods did not bring much performance gain. When 50% 

images were annotated, our method also outperformed the others, and it was comparable 

with full supervision (74.02±13.77% versus 74.58±10.99% in terms of Dice, with p-value > 

0.05).

Wang et al. Page 14

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



V. DISCUSSION AND CONCLUSION

Our PF-Net combines 2D and 3D convolutions to deal with anisotropic resolutions, and 

we set M = 2 as the in-plane resolution is four times of the through-plane resolution in 

our dataset. It may be set to other values according to the spacing information of different 

datasets. Multi-scale guided dense attention in PF-Net is important for dealing with PF 

lesions with various positions, shapes and scales. We noticed that Sinha et al. [48] also 

proposed a multi-scale attention, but it has key differences from ours. First, Sinha et al. 

[48] concatenated feature at different levels of the encoder to obtain a multi-scale feature, 

which is used as input for parallel attention modules at different scales. While PF-Net 

learns multi-scale attentions sequentially, where attention at a lower resolution level is used 

as input for all the higher resolution levels with dense connections. Second, Sinha et al. 

[48] used self-attention inspired by non-local block [23] that is computationally expensive 

with large memory consumption, while PF-Net uses convolution to obtain the attention 

coefficients at different spatial positions, which has higher memory and computational 

efficiency. In addition, for each attention module, the attention maps are calculated in two 

steps in [48], and a consistency between the two steps is imposed via an L2 distance of 

their encoded representations, which is called guided attention by the authors. In contrast, 

guided attention in PF-Net refers to supervising attention maps directly by the resampled 

segmentation ground truth.

Our I-CRAWL is a pseudo label-based method for semi-supervised learning. Despite 

that pseudo label has been previously investigated [13], [32], I-CRAWL is superior to 

these works mainly for the following reasons. First, the pseudo labels generated by a 

model trained with a small set of annotated images inevitably contain a lot of inaccurate 

predictions. Improving the quality of pseudo labels would benefit the final segmentation 

model. However, the method in [13] does not refine pseudo labels, and Bai et al. [32] 

refines pseudo labels by CRF without considering their confidence. Our method employs 

uncertainty estimation to find uncertain regions that are likely to be mis-segmented, and 

the confidence-aware refinement is more effective to refine these mis-segmented regions, 

leading to improved accuracy of pseudo labels. Second, the quality of pseudo labels of 

different images varies a lot, and it is important to exclude low-quality pseudo labels that 

may corrupt the segmentation model. However, Bai et al. [32] and [13] ignored this point 

and treated all the pseudo labels equally. In contrast, I-CRAWL uses image-level uncertainty 

information to highlight more confident pseudo labels and down-weight uncertain ones that 

are unreliable. Thus, the model is less affected by low-quality pseudo labels.

Uncertainty estimation plays an important role in our I-CRAWL framework. We found that 

the simple yet effective MC dropout performed better than alternatives including entropy 

minimization and Bayesian networks [47]. Despite that MC Dropout is slow for uncertainty 

estimation, it is used offline at the beginning of each round of our method and takes a 

short time compared with the batch training step. In the scenario of 20% annotated data, 

our uncertainty estimation takes 8.72 minutes (7.69s per 3D image), and CAR and image 

weighting take 12.98 minutes (11.45s per 3D image). In contrast, the model update with 

batch training takes around 4 hours for each round, i.e., the first three steps of I-CRAWL 

account for 8.29% of the entire runtime of each round, which could be further accelerated 
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by multi-thread parallel computing. Therefore, our uncertainty estimation and CAR require 

little extra time compared with naive iterative training and Bai et al. [32].

In conclusion, we present a novel 2.5D network structure and an uncertainty-based 

semi-supervised learning method for automatic segmentation of pulmonary fibrosis from 

anisotropic CT scans. To deal with complex PF lesions with irregular structures and 

appearance in CT volumes with anisotropic 3D resolution, we propose PF-Net that combines 

a 2.5D network baseline with multi-scale guided dense attention. To leverage unannotated 

images for learning, we propose I-CRAWL that is an iterative training framework, where 

a confidence-aware refinement process is introduced to update pseudo labels and a 

confidence-based image weighting is proposed to suppress images with low-quality pseudo 

labels. Experimental results with lung CT scans from Rhesus Macaques showed that our 

PF-Net outperformed existing 2D, 3D and 2.5D networks for PF lesion segmentation, and 

our I-CRAWL could better leverage unannotated images for training than state-of-the-art 

semi-supervised methods. Our methods can be extended to deal with other structures and 

human CT scans in the future.
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Fig. 1: 
Examples of radiation-induced Pulmonary Fibrosis (PF) of the Rhesus Macaque. The first 

row shows lung CT images, and the second row shows manual segmentation results of PF 

lesions. Note that the ambiguous boundary, irregular shape and various size and position 

make the segmentation task challenging.
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Fig. 2: 
Structure of our proposed PF-Net. To deal with 3D images with large inter-slice spacing, the 

first two scales use 2D convolutions while the other scales use 3D convolutions. Ps is the 

predicted spatial attention at scale s, and it is sent to all lower scales with dense connection 

in the decoder, as shown by green lines.
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Fig. 3: 
Our proposed I-CRAWL (Iterative Confidence-based Refinement And Weighting of pseudo 

Labels) framework for semi-supervised segmentation.
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Fig. 4: 
Qualitative comparison between different networks for PF lesion segmentation. (a) and (b) 

are from two different individuals. Blue arrows indicate some mis-segmented regions.
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Fig. 5: 
Visual comparison between CRF and our proposed Confidence-Aware Refinement (CAR) 

for update of pseudo labels. In the uncertainty map, dark green and red colors represent low 

and high uncertainty values, respectively. Blue arrows highlight some local differences.
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Fig. 6: 
Visualization of multi-scale attention maps of PF-Net. (a)-(b) CT image and segmentation 

result. (c)-(f) Attention maps P5, P4, P3 and P2, respectively.
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Fig. 7: 
Visual comparison of uncertainty obtained by different methods. (b)-(f) show two sub-

regions from (a), as indicated by red and green rectangles, respectively.
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Fig. 8: 
Change of uncertainty maps at different rounds of I-CRAWL. (a) input image. (g) sub-region 

of the input. (b) ground truth (just for reference here, not used during training). (c)-(f) and 

(h)-(k) show the pseudo labels and the corresponding uncertainty maps of I-CRAWL as the 

round increases.
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Fig. 9: 
Comparison between variants of I-CRAWL at different training rounds for semi-supervised 

learning. Round 0 means the baseline that only learns from annotated images.
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TABLE I:

Quantitative comparison of different networks for PF lesion segmentation.

Dice (%) RVE (%) HD95 (mm)

2D U-Net [15] 59.31±15.66 38.05±19.17 15.73±15.57

Attention U-Net [22] 59.22±14.55 31.93 ±20.47 18.64±15.58

3D U-Net [18] 57.19±13.47 40.09 ±22.45 18.93±12.98

3D scSE-Net [17] 59.54±12.24 41.95±19.59 19.18±15.57

3D V-Net [19] 60.37±13.33 35.03 ±27.95 19.22±14.65

nnU-Net [27] 64.51±15.25 33.19±21.54 18.46±15.70

AH-Net [25] 60.50±13.27 35.77±23.96 17.90±13.66

VS-Net [29] 67.45±9.70 30.03 ±24.78 18.35±17.67

PF-Net 70.36±10.14 * 27.96±21.72 10.87±9.28 *

*
denotes significant difference from the others (p-values < 0.05).
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TABLE II:

Quantitative comparison of different variants of baseline network and our PF-Net. Baseline (M) means 2D and 

3D convolutions are used in the first M and the other convolutional blocks, respectively.

Dice (%) RVE (%) HD95 (mm)

Baseline (M = 0) 60.83±14.93 36.09±21.29 19.80±11.48

Baseline (M = 1) 62.42±13.01 33.74±24.50 18.87±12.03

Baseline (M = 2) 67.87±9.96 30.79±20.37 15.31±15.88

Baseline (M = 3) 65.98±12.27 31.45±21.84 16.92±12.66

Baseline (M = 4) 65.93±14.01 32.37±23.17 17.35±12.67

Baseline (M = 5) 63.11±10.90 32.71 ±22.35 17.60±12.28

+ non-local 68.63±15.49 29.82±22.27 14.80±13.99

+ deep supervision 68.57±10.30 30.73 ±21.24 17.56±19.22

+ MSGA 69.32±13.20 27.55±21.67 13.85±16.68

+ MSGA + MSDA° 70.25±10.09* 28.09±19.67 12.28±12.12

+ MSGA + MSDA 70.36±10.14 * 27.96±21.72 10.87±9.28 *

The second section is based on Baseline (M = 2), and

*
denotes significant improvement from it (p-value < 0.05).

Note that the last row is our PF-Net.
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TABLE III:

Performance on the validation set based on different γ values in the confidence-based sampling weighting of 

pseudo labels in round 1 of I-CRAWL. “Initial” refers to model pre-trained on annotated images (round 0).

Dice (%) RVE (%) HD95 (mm)

Initial 66.62±8.53 23.91±15.14 11.11±6.00

No weighting 67.83±8.25 22.74±17.82 9.12±4.48

γ = 1.0 67.36±8.75 24.73±18.83 10.02±5.24

γ = 2.0 68.00±8.23 23.01±16.90 8.69±4.60*

γ = 3.0 68.75±8.00 * 22.42±17.11 8.97±4.45 *

γ = 4.0 68.54±8.64* 22.45±18.06 8.87±4.72*

γ = 5.0 66.86±8.74 23.44±17.95 8.75±4.51*

*
denotes significant improvement from it (p-value < 0.05).
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TABLE IV:

Comparison of different uncertainty estimation methods used in CAR for the validation set in the first round.

Dice (%) RVE (%) HD95 (mm)

Initial 66.62±8.53 23.91±15.14 11.11 ±6.00

CAR (entropy min) 67.68±10.64 22.73±17.38 10.54±6.39

CAR (Bayesian) 68.31±9.52 21.80±16.53 10.39±6.03

CAR (MC Dropout) 69.05±9.41 * 21.31±16.10 9.94±6.16 *

*
denotes significant improvement from Initial.
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TABLE V:

Ablation study of our semi-supervised method I-CRAWL for PF lesion segmentation. IT: iterative training. 

CAR: Confidence-aware refinement. IW: Image weighting of pseudo labels.

Dice (%) RVE (%) HD95 (mm)

Baseline 70.36±10.14 27.96±21.72 10.87±9.28

IT 70.87±8.77 28.37±17.38 9.75±6.36

IT + CRF 72.13±8.97 27.38±20.39 8.38±4.75

IT + CAR 72.71±9.50* 26.05±18.79 8.30±5.17

IT + CAR + IW 73.04±10.14 * 26.12±20.37 7.92±4.87 *

Full Supervision 74.58±10.99 23.07±15.79 7.03±4.09

*
denotes significant improvement from the baseline (p-value < 0.05).
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TABLE VI:

Quantitative comparison of different semi-supervised methods for PF lesion segmentation. Ran: Ratio of 

annotated images in the training set.

R an Method Dice (%) RVE (%) HD95 (mm)

10%

Baseline 54.73±16.34 45.83±24.99 25.79±18.71

Fan et al. [13] 60.44±15.86 42.40±21.06 17.44±16.00

Bai et al. [32] 65.03±18.01 32.98±23.16 16.82±14.82

Cui et al. [33] 61.86±16.20 41.16±20.78 16.72±16.18

UA-MT [34] 63.94±15.72 38.47±21.22 15.14±15.34

I-CRAWL 67.18±14.02 32.12±18.50 11.85±9.82

20%

Baseline 70.36±10.14 27.96±21.72 10.87±9.28

Fan et al. [13] 71.62±10.32 27.57±19.09 10.54±8.41

Bai et al. [32] 72.13±8.97 27.38±20.39 8.38±4.75

Cui et al. [33] 70.39±10.42 26.63±24.85 9.48±8.82

UA-MT [34] 70.46±9.53 27.14±23.17 8.25±4.93

I-CRAWL 73.04±10.14 26.12±20.37 7.92±4.87 
† 

50%

Baseline 72.09±12.54 26.49±23.19 9.38±6.43

Fan et al. [13] 72.69±11.41 26.46±17.71 9.19±6.45

Bai et al. [32] 72.92±10.41
25.71±19.97

†
7.45±4.98

†

Cui et al. [33] 72.72±12.44
24.57±19.96

†
8.11±5.76

†

UA-MT [34] 73.40±11.48
24.67±19.08

†
7.86±4.56

†

I-CRAWL
74.02±13.77 

† 
23.93±16.75 

† 
7.24±5.03 

† 

Full Supervision 74.58±10.99 23.07± 15.79 7.03±4.09

†
denotes there is no significant difference from full supervision (p-value > 0.05).
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