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A new non-integer order mathematical model for SARS-CoV-2, Dengue and HIV co-dynamics is designed and
studied. The impact of SARS-CoV-2 infection on the dynamics of dengue and HIV is analyzed using the tools of
fractional calculus. The existence and uniqueness of solution of the proposed model are established employing
well known Banach contraction principle. The Ulam-Hyers and generalized Ulam-Hyers stability of the model
is also presented. We have applied the Laplace Adomian decomposition method to investigate the model with
the help of three different fractional derivatives, namely: Caputo, Caputo-Fabrizio and Atangana-Baleanu deriv-
atives. Stability analyses of the iterative schemes are also performed. The model fitting using the three fractional
derivatives was carried out using real data from Argentina. Simulations were performed with each non-integer
derivative and the results thus obtained are compared. Furthermore, it was concluded that efforts to keep the
spread of SARS-CoV-2 low will have a significant impact in reducing the co-infections of SARS-CoV-2 and dengue
or SARS-COV-2 and HIV. We also highlighted the impact of three different fractional derivatives in analyzing
complex models dealing with the co-dynamics of different diseases.
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1. Introduction

The Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-
2) has infected nearly 514,943,711 of the world's total population and
caused more than 6,000,000 deaths [1]. Mutations of the original strain
of the virus have emerged in recent times, and is creating more concerns
in the world [2]. SARS-CoV-2 co-infections with other micro-organisms
such as influenza virus, Legionella, Pneumocystis jirovecii, mycoplasma
pneumoniae, cytomegalovirus and HIV have been investigated in the lit-
erature [3]. Qin et al. [4] reported that the function of the immune sys-
tem is greatly reduced due to co-current infections with both HIV and
SARS-COV-2. Suwanwongse and Shabarek [5], in a study, considered
the co-infection of SARS-CoV-2 and Human immune deficiency virus
(HIV) among some selected patients and observed that CD+ T-cell
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greatly suffers dysfunction in co-infected patients. The World Health Or-
ganization (WHO) has affirmed that individuals infected with both
SARS-CoV-2 and HIV are prone to suffer severe illness leading to death
[3]. In addition, a significant rise in cytokine production has been asso-
ciated with patients co-infected with SARS-CoV-2 and HIV, thereby in-
creasing viral load and suppression of the immune system [3].

Moreover, Cardiovascular diseases and hyperlipidemia are some of
the co-morbidities linked with HIV and SARS-CoV-2 co-infected individ-
uals [6]. HIV infected persons have been reported to have an increased
risk of infection, severity of symptoms, reinfection and death from
COVID-19 [7,8]. It was reported in [9] that people infected with HIV
were more likely to report a positive diagnosis and were at least twice
as likely to die from COVID-19, and that they were more likely to be ad-
mitted to hospital and require mechanical ventilation, due to COVID-19
infection than those who were HIV-negative. Furthermore, the in-
creased risk of COVID-19 complications in those infected and living
with HIV, has mostly been observed among those with low CD4 cell
count, advanced disease, those not taking antiretroviral treatment, and
those with underlying health conditions [10-12].

On the other hand, dengue virus has been a major public health
problem, especially in tropical countries in Asia and South America.
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[13]. Due to overlapping symptoms between SARS-CoV-2 and dengue
virus, there is always a high possibility of mis-diagnosis of both infec-
tions [14]. Co-infections between SARS-CoV-2 and dengue have been
established in many countries [15]. Dengue patients co-infected
with SARS-CoV-2 can suffer worsening illness and hospitalization
[15]. It is worth pointing out that persons co-infected with SARS-CoV-
2 and dengue virus can have an enhanced glucose levels, which leads
to proliferation of SARS-CoV-2 [16]. Increased mortality has also been
linked with patients co-infected with dengue and SARS-CoV-2 infec-
tions [17]. Co-infection with HIV, SARS-CoV-2 and dengue has also
been studied in [18]. Salvo et al. [18] reported the case of an untreated
HIV patient who developed simultaneous infection with dengue and
SARS-CoV-2.

In Argentina, the prevalence of HIV is estimated to be 0.4 % among
the sexually active population. The prevalence is higher among men
who have sex with men (MSM) and transgender women, where it is
around 12-15 % and 34 %, respectively. In addition, it has been reported
that about 37.5 % of men and 30 % of women receive a late HIV diagnosis
[19]. In the last two decades, Argentina has experienced the re-
emergence of epidemics of arboviral diseases caused by Aedes mosqui-
toes [20]. Cases of dengue fever, chikungunya, and Zika have been re-
ported from northern and central provinces [21]. In 2009, there was
the outbreak of dengue in central region of Argentina for the first
time. Since then, dengue cases have been reported each year to date,
with the largest number occurring in the year 2020 when more than
50 % of all cases in the nation occurred in this region [22].

Recently, fractional derivatives have largely been applied in model-
ling real life situations. Fractional differential operators which depend
on a power-law kernel were first defined by Riemann-Liouville and
Caputo [23]. However, these definitions involve singular kernels
which have limitations to their usage in modelling biological and
other physical phenomenon. To overcome these limitations, Caputo
and Fabrizio (CF) [24] and Atangana and Baleanu (AB) [25] modified
and improved the definitions of fractional-order derivatives, which are
based on the exponential kernel and the generalized Mittag-Leffler
function, respectively. A lot of models have been successfully studied
using the Caputo and Caputo-Fabrizio derivatives. For instance, the au-
thors [26] carried out a comparative study on the general fractional
model of COVID-19 with isolation and quarantine effects. The model
was analyzed with the help of Caputo fractional derivative. The simula-
tions of the model showed that, a particular case of the fractional-order
model fits the real data more accurately than the other classical and
fractional cases. Also, Baleanu et al. [27] investigated the asymptotic be-
havior of immunogenic tumor dynamics using the Caputo fractional de-
rivative. Using a modified predictor-corrector scheme, numerical
simulations were carried out on the model. Results obtained showed
that, a general kernel in the fractional model provides high degree of
flexibility to describe the real dynamics more precisely than the pre-
existent classical integer-order models.

Baleanu et al. [28] analyzed a human liver model using the CF deriv-
ative. They established the existence and uniqueness of the solution of
the model using the Picard-Lindelof approach and fixed-point theory.
The model was solved using the homotopy analysis transform method.
Numerical simulations to compare results with the real clinical data in-
dicates higher efficacy of the new fractional model over the classical
integer-order model. Mansal and Sene [29] studied a fractional order
fishery model using the CF derivative. They analyzed the stability of
the model and showed the effectiveness of fractional derivative on the
study of the dynamics of the model. Gao et al. [30] studied a hepatitis
B virus (HBV) model with time delay using the Caputo-Fabrizio deriva-
tive. They used Sumudu transform and Picard iteration to study the sta-
bility and approximate solution of the model. Rahman et al. [31] applied
the Caputo-Fabrizio derivative to study a mathematical model for
COVID-19. Comparing their results with the classical integer order de-
rivatives, they observed that the simulations using the CF derivative
shows better results for the model. Shaikh and Nisar [32] developed a
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typhoid Fever model using Caputo-Fabrizio derivative. However, there
has been some concerns about the Caputo-Fabrizio derivative such as
the kernel is not local; the associated integral is not a fractional operator
but just an average of the function and its integral and merely acts as a
filter. On the other hand, the AB derivative has found applications in
several real life modelling problems. Hence, the usage of Atangana-
Baleanu derivative in modelling complex real life phenomena is more
preferable.

Jajarmi et al. [34] studied a model for the co-dynamics of diabetes
and tuberculosis (TB) using the AB fractional derivative. They developed
a new and efficient numerical scheme for the solution of the model.
Simulations of the model revealed that increase in cases of diabetes
mellitus could result in higher TB prevalence and incidence and could
also escalate tuberculosis multi-drug resistance. Kolebaje et al. [33]
modeled the dynamics of COVID-19 in some African countries using
real data via the Atangana-Baleanu derivative and showed that the frac-
tional derivative greatly influenced the dynamics of the disease. Bonyah
textitet al. [35] modeled the dynamics of COVID-19 via the Atangana-
Baleanu derivative. They proved the existence and uniqueness of the
solution using the Banach contraction principle and Leray-Schauder al-
ternative type theorem. Also, Omame et al. [36] considered a model for
the co-interaction of tuberculosis and COVID-19, employing the
Atangana-Baleanu derivative. They showed using numerical simula-
tions, the effect of COVID-19 re-infection on the dynamics of the co-
dynamics of both diseases. They established the conditions under
which both diseases could co-exist or be eliminated. The authors in
[37] studied a model for the co-dynamics of COVID-19 and diabetes
using the AB derivative and showed that, mass COVID-19 vaccination
was necessary to cut down COVID-19 and diabetes co-infections in
Indonesia. Sene [38] considered a delayed SIR model and analyzed
using the AB derivative. The model was solved using the Homotopy
Analysis method. He equally showed how the fractional derivative
could influence the disease dynamics. In a related research, the authors
in [39] considered a model for the dynamics of COVID-19 using the AB
derivative. They applied the q-homotopy analysis Sumudu transform
method (q-HASTM) and the generalized Adams-Bashforth-Moulton
method to solve the model.

Several methods have been laid down for solving fractional differen-
tial equations. Some of them are: Adomian decomposition method
(ADM), homotopy analysis method (HAM), homotopy perturbation
method (HPM), Laplace transformation, variational iteration method
(VAM), corrected Fourier series, natural decomposition method [40,
41]. The Laplace-Adomian decomposition method (LADM) is one of
the most effective techniques used in solving nonlinear FDEs. It pos-
sesses the combined behavior of the Laplace transformation and
Adomian decomposition method (ADM). The method requires no
predefined declaration size as in the Runge Kutta method. Also, LADM
requires fewer number of parameters, no discretization and lineariza-
tion as compared to other analytical techniques [42]. This is the motiva-
tion for the choice of the LADM for the solution of the proposed model,
via different fractional derivatives in this study.

In this paper, we have contributed in the following ways:

i. We have analyzed a non-integer order model for SARS-CoV-2,
Dengue and HIV co-dynamics to assess the impact of SARS-CoV-2
infection on the dynamics of dengue and HIV through fractional
derivatives, which, to the best of our knowledge, has not been
done before.

ii. We have considered three different fractional derivatives on this
new complex model, and presented how SARS-CoV-2 could influ-
ence dengue and HIV infections.

iii. The existence and uniqueness of solution of the proposed model has
been studied using the Banach fixed point theorem.

iv. We have established the stability of an iterative scheme for approx-
imation of the solution of the developed model via some recent fixed
point results.



A. Omame, M. Abbas and A.-H. Abdel-Aty

v. We used the Laplace Adomian decomposition method to solve
the model via the Caputo, Caputo-Fabrizio and Atangana-Baleanu
derivatives.

vi. We have examined the impact of the three derivatives in analyzing
complex disease models and we expect that our work will open
some new avenues of research in this direction.

2. Preliminaries and model formulation
2.1. Preliminaries

Definition 1 ([43]). The Caputo fractional derivative of a function f
of order { ER™ is defined by

= M) = / (=7 e,

cpé S
fo(t) - l—-(n_g) o

where n s a positive integer and n—1 < § < n, and the symbol I stands
for the Gamma function defined by

[ = /Ow exp(—7)757'dr, T(E+1)=EME), Re{€} >0.

If0 < & < 1, then the above Caputo fractional derivative of order § > 0
reduces into

izg ), €0 e

Definition 2 ([43]). The Caputo fractional integral of a function f of
order { ER™ is defined by

Dif(t) =

t
U0 =g [ €

t >0,

If f(t) = 1, the fractional integral of order § > 0 is given by

té

ey L[ e _
It(l)_l_(g_)/o (= (i = .

Definition 3 ([43]). The Laplace transform of Caputo fractional de-
rivative is given by

Z{DH (O} =S L)} ="f(0), 0<E<1, (1)
where . is the Laplace transform operator.

Definition 4 ([23]). The Sobolev space H'(a;,a,) of order 1 is de-
fined as

H'(a1,a;) = {f€L*(a,a) : DfEL* (a1, ) }

Definition 5 ([24]). Let f€H!(a;,az),a; > a1,€€0,1], then the
Caputo-Fabrizio (CF) derivative of a function f of order §ER ™ is defined

by
@-97© [, &(t—1)
=219 /alf(”e"p{_ 1—6}“’

where.7 (§) = (1—§) + = r denotes anormalization function satisfying

FZ0)=7(1)= l.However if f¢H'! (a1, a,), then the derivative is de-
fined as

FDEf (1)

Toifie) = 2828 ['r0—firy enp| - 4=

S 2(1-§) §
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Theorem 7 ([24]). The Caputo-Fabrizio fractional integral operator
of order § given by

2(1-¢) 2®
o e’ aorm ), (O

CFlgf() - g)

Definition 6. ([44]). The Laplace transform of the Caputo-Fabrizio de-
rivative is given by

o [CFpye _sZ{f)}—f(0)
7 {DEf(0) bis) = o
Definition 7. ([25]). The Atangana-Baleanu fractional derivative for a

given function of order § in Caputo sense is defined by

6
ABCDgf( ) (] (gg))/ d{i(:) Eg |:_§ (t _T) :|dT,

where .7 (§), satisfying .7 (0) = .7 (1) = 1, is a normalization function
and E¢ (.) is the Mittag-Leffler function, defined by,

() - Zl"§k+l §>0.

Definition 8. ([25]). Atangana-Baleanu fractional integral of order § is
defined as

—§

lqulff(t) = ;-(g)

§ ! 1
f(f)+'7.(g)r(g)/ﬂf(r)(t ¢ dr.

Definition 9. ([25]). The Laplace transform for the Atangana-Baleanu
fractional operator of order §, where 0 < § < 1 is given as

_ TS L{f(0)(s)—s"f(a)
1-§ § ‘
s§ +]—_g

2 {0 }(6)

Theorem 2. ([45]). “Let (X,I.lI) be a Banach space and T:X—-X a
contraction on X, that is, there exists a constant a€0, 1) such that IT (x) —
T(y)l<alx—yl, forall x,y€X”. Then

i. T has fixed point x*€X, that is, Tx" = x*.
ii. A sequence {xp},_, given by x,,1 = Tx,, forn=0,1,2,3,...,
verges to x*.

con-

Theorem 3. ([46]). “Let (X, I.Il) be a Banach space and T : X—X a weak
contraction on X, that is, there exists a constant a€0, 1) and L>0 such
that IT(x)—T(y)l<alx—yl + Lix—Txll, forall x,y€X”. Then

i. T has fixed point x*€X.
ii. A sequence {x,},_ given by x,1
verges to x*.

= Txp, forn=0,1,2,3,..., con-

2.2. Model formulation

At any time ¢, the total human population N 5(t) consists of the fol-
lowing states: Susceptible humans S°(t), infectious humans with
COVID-19.7%(t), infectious humans with dengue virus.7%(t), infectious
humans with HIV .79 (t), humans co-infected with COVID-19 and den-
gue virus .79, (t), humans co-infected with COVID-19 and HIV .79, (¢),

where, .25 (t),.#25(t) denotes humans who have recovered from
COVID-19 and dengue fever, respectively. The total vector population,
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at any time t, A"’ (t) consists of susceptible vectors: S°(t) and infectious
vectors with dengue virus, .79 (t). It is to be stated here that, the super-
script, 6 denotes the human component, while the superscript 6 repre-
sents the vector component of the model. The recruitment into the
human population is denoted by A°, Susceptible humans, S° can get in-
fected with SARS-CoV-2, dengue or HIV infection at the rates, a8.7%, o}
7% and 5.7 o, respectively. Natural death rate is assumed same for all
humans in each epidemiological state, at the rate y°. Upon infection, in-
dividuals in SARS-CoV-2 infected, dengue-infected and HIV-infected
compartments can suffer related disease induced death at the rates ¢y,
¢p and ¢y, respectively. Individuals in SARS-CoV-2 infected class can
also get co-infected with either dengue or HIV at the rates o579 and o}
7%, respectively. Due to lack of sufficient clinical data and to avoid
model complexity, we have assumed only co-infection with two dis-
eases (one of which must be SARS-CoV-2). Future work with sufficient
biological reports can consider co-infection with the three diseases,
which is possible [18]. Recovery rates for SARS-CoV-2 and dengue in-
fected individuals is given by ¢y, and ¢, respectively. Upon recovery
from dengue, an individual can loss immunity at the rate, ap. We have
assumed infection acquired immunity for those who have recovered
from COVID-19 due to current clinical reports. The other transitions in
the model are given in the following equations, with parameters well
defined in Table 1.

DS (1) = A°— (a’f.?‘f, + T+ a7 +u5)s“ +ap. 72,

TOET4(0) = 4 4(5 + )~ (b + oy + HNTG—hThTh—h 7T + G0l
IDpTH(t) = 8T (55 + ”?/) —(bp +$p+ 1) Tp—0. 70T b + Sy T
IDETY (1) = 08T (s5 2+ /?g) —(byy + )Ty —BT8TY,

IDET (1) = ag]‘%.?{"/ + a?~73~7%_(¢v +&p + v+ $p + 1) T,

IDET (1) = BTRTY + BTV T i (by + by + Sy + 1) Ty,
I (0) = Sy Ty~ (10 + 0§.7h + a7} )20,

DS (1) = {pT D — (,u5 +ap + a7 + a§.72)./ag,

IDfS(t) = &' [ (7 + 7)) + 1] S,

I 1) = (7 + 7S 487},

2)
Table 1
Description of parameters in the model (2).

Parameter Description Value Source

g Recruitment rate for humans % [51]

I Recruitment rate for vectors 1500 Assumed

b

u Human natural death rate S — [51]

ul Vector removal rate Jrday ~! [52]

of contact rate for transmission of 958558 x 10 ~ 8  Fitted
COVID-19 day !

o Effective contact rate for vector to 43x10 10 Estimated
human transmission of dengue virus

o Effective contact rate for human to 50x%x 10 ° Estimated
vector transmission of dengue virus

o Contact rate for HIV transmission 8.5890 x 10 ~ '© Estimated

Sy COVID-19 recovery rate 0.9826 day ~ Fitted

$p Dengue fever recovery rate 0.15day ~ ! [53]

by COVID-19-induced death rate 1.4948 day ~ ' Fitted

¢bp Dengue fever induced death rate 0.09day ~ ! Assumed

by HIV induced death rates 03425 gqy - 1 [54]

ap rate of loss of infection acquired 0.026 day ~ ' [53]
immunity for dengue virus

RS, COVID-19 related reproduction 1.0471 Fitted
number

Rgp Dengue related reproduction number 4.8103 Fitted

RSH HIV related reproduction number 3.0592 Fitted
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subject to the initial conditions

Sp = 5°(0), 57(\;/0 :h76 (0), 8-730 :573(0)(; 7350 = *7?/D§O)7 -75;/1-:0 =7 u(0),
Syg = S2y(0), #py = #p(0), Sg = 8°(0), FTpy =7p(0).

<

2.3. Non-negativity of the solution
Theorem 4. The closed set D = D° x DY, with

- {(55,,7“‘;..7,9,.72,.7%,.73,,,./;33,./;3;})&9%1 P N

g ) A0
+ Ty + Sy + Y < 5 }

]
D’ = { (s".7h)en : ' + 7 ﬁe}

is positively invariant with respect to the model (2).

Proof:. Adding all the equations corresponding to the human compo-
nents of the system (2) gives

IDEIN® = N —pP N (6)— {d)v'ﬂ} +dp Ty + by Ty + (by + bp) T + (by + ¢H)-73H]<

3)
From (3), we have that
AN — (1 + 7T$N° < IDIN <A — N,
where ¢ = min{¢y, ¢y, ¢p}.which can be re-written as
IDEN <A — PN, (4)

Without loss of generality, if we apply Laplace transform of the
Caputo-Fabrizio derivative on the above inequality, and simplifying,
we have that

A NQE—n) e N(0) et
NO<w H=glar T (T=ET (1o —a)
N°(0) —ayt 5
Ao+ pA—glla—a)® )

where a; = o

%’ 2= (175@

Therefore, the total human population, A/ 5( t)< ﬁ—f as t—, Following
the same procedure, it can be shown that the total vector population,
IRGE fT;. Similar conclusions can be reached via the Caputo derivative
and Atangana-Baleanu derivative. Hence, the system (2) has the solu-
tion in D. Thus, the given system is positively invariant.
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3. Existence and uniqueness of the solution

In this section, we shall apply some basic results from fixed point theory to the model (2), in order to establish existence and uniqueness of so-
lution. The model (2) is re-written in the following form:

SFDED(t) = L (t, (L)),
{(()D(O) = Cl)07 (6)

A A A - T
where the vector d(t) = (sﬁ(t) T T To(t) Top(t) Tou(t) () () S(1) .73,3(0) €R1? for t€]0, 7 may], denotes the states of the
model and ¥ represents a continuous vector given below:

A — <a1.7§} + 0870+ T +u5>85 + ap. 22D

7 4.7y (56 + ﬁ}%) — (v + 8y +1) TV =TTy =0Ty Ty +pTp
) b7} (55 + %)?/) —(bp+&Ep+ 1) Tp—04. 70T+ 5y Tip
. BTy (S"+ Ay +. ) = by + )T — b Ty,
| % |_ BT Ty +0GTVTh—(by +dbp + §y +Ep+ 1) T 0
:fe BILTY + QT 0T~ (by + by + &y + 10T,
! STy — (10 + 7Y + T ) A
Lo S0 7h— (1 + ap + 7Y + b7y ) A2
z A A
10 A — [ag (.7,”) + .7?,D> + u"] s
o (.7‘5 + .7%)39—“".7‘5
The initial condition of the variables of the model is denoted by
®(0) = (8°(0) 7y(0) F5(0) TH(0) Fyp(0) Fiu(0) #2y(0) #2H(0) §0) Fw(0)) -
In addition, % : [0, T max] x R'®>R'? is said to satisfy the Lipschitz condition in the second argument, if we have:
[ (t, 1) —Z (£, D) || €. 24||Dy — Dy ||, VEE[O, T max], Y1, DR ER, (8)
where . 7 > 0, T mqx is the final time.
The existence of a unique solution to the model (2) is established in the following theorem:
Theorem 5. There exists a unique solution to the initial value problem (6) on C([0, T max|, R'?), provided that (8) and
2(1-8).%4 26 70 >
>+ — T <1, 9
(Gore aorm ™ ©
are satisfied.
Proof:
If we apply the Caputo-Fabrizio fractional integral on each sides of (6), then we have
21-§) 2¢ ‘
D(t) = Py + —Z= L (1, D(t +7~/%T,¢T dr. 10
0=t egre” " zgrmh 7T 1o
Let 7 = [0,7 max]-
Let us define the operator K : (7, R1%)—=¢(7,R'?) by:
K[®](t) = V(t), P, VEC(T,R') (11)
where,
2(1-¢) 2§ / ‘
Vit) =g+ m—Z = L (t,P) + o——rern | Z(T,P(T))dT,
D=t g7ze """ agrgh 7TV

The supremum norm on C(.7, R'%) is given by:
IVI=EAV@©l.  vvee(T,R).

Clearly, ¢(7,R') equipped with ||.|| is a Banach space.
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Suppose, W is the fixed point of the operator K : ¢(.7,R'%)—C(.7,R'?), then W becomes the solution of the initial value problem (6), and
K[W](t) = W(t),

where,

_ 2(]_g) 9% Zg ‘ 94
Wi =%+ o g7m WO T g 7 (&)/o Zm W

Consider,
_ N 21=¢) L
ICIVI() = KW](D)]| = flo+(22?1g);g(g L(t, V(L) + /0[/, (T, V(T
~ |+ iy Ay F WO /o s

(12)
S| e (VO£ W< >>> e / (# . V)~ % W)

)

21 . o Vi
S op g 2V~ t(t,wm))u+(2_§),7(§)H [ zmvan-sewaer

Since the operator . satisfies the Lipschitz condition (eq. 8), we have that

20=8) v 200 1
07 ® g(g) AVO-WOI+ 5575 g(g)/ HV(su)p w(t)|dr,

( ) /SUp - % t B
SE—o7@ “eVO-WOI+ 5575 /0 o VO-waldr,

7

(13)

( ] ‘g 4 Zg///f()dT B

2870 267 (g)>|V il
Q=) 26 AT max \ 1,

S<(2—§)»‘7(§) " (2—§).7(g)>‘|v Wi

Thus if the condition (9) holds then,

K[V —K W) < (‘é@gfjl(g 2l Jv-wi.

Hence, the operator K becomes a contraction. Therefore K has a unique fixed point which is a solution to the initial value problem (6) and hence a
solution to the system (2).

3.1. The basic reproduction number of the model
By setting the right-hand sides of the equations in the model (2) to zero, DFE of the model (2) is given by

HO _ (86* z—& Ig*7z-?;ﬂ7z—3»b I‘)‘);;_I, RB* RD* Se*al—?/*D)
=(5%,0,0,0,0,0,0,0,5",0)
with,
N N
Sh* == 86* ==
I u

The stability of the DFE is established by applying the next generation operator principle [48] on the system (2). The transfer matrices are, respec-
tively, given by

as™ 0 0 0 0 0
0 0 0 0 0 ags™
F— 0 0 ags"* 0 0 0 i (14)
0 0 0 0 0 0
0 0 0 0 0 0
0 afs™ 0 A" 0 o0
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K{ 0 0 0 0 O
0 KX 0 0 0 0
6
ve| 0 0 K o6 0 0 (15)
0 0 0 K{ 0 0O
0 0 0 0 K2 0
0 0o 0o 0o 0 u
where,

K=y +Cy+1°, KS=dp+ip+1, Ki=oy+1° Ki=dy+dp+ly+ip+1°, Ks=dy+dy+y+u

The basic reproduction number of the model (2), is given by.
Py = p(FV™Y = max{.Ryy, Zop. Zor} Where .Zgy, . Zop and .2y are the associated reproduction numbers for the COVID-19, Dengue and
HIV, respectively, given by

5 A0 S 0 AOAD S5 AO
agA 5 Q505 A°A 5 asA

Sy =1 R 22 & g =3
OV w (dy + Gy + 1) 00\ o2 (b + &p +p0) T T b (hyy + o)

3.1.1. Assessing the impact of SARS-CoV-2 on dengue and HIV
Expressing the three reproduction numbers in terms of the human natural death rate, u’, we have,
5 N asa A’ A’ N

= _ = = \ 16
B =y + & + 16 o W2 (dp + $p +po) g2l (b +H0)-Fon (18)

Differentiating the SARS-CoV-2 related reproduction number with respect to the dengue-related reproduction number, we obtain

Rl 1 L OBABA(dy + &y + 1) (17)
20 51,02 5
0.7y agagée (dv + &y + ﬂﬁ)fﬁgv L (bp + o+ 4
U2 (dp + {p + 10
0o Gn+H) (18)

0.2, B B (dy + Sy + 1)
The two equations above, (17) and (18) show that increase in SARS-CoV-2 cases will result in detrimental impact on dengue and HIV cases.

3.2. Local asymptotic stability of the disease free equilibrium (DFE) of the model

Theorem 6. The DFE, .770, of the model (2) is locally asymptotically stable (LAS) if .22y < 1, and unstable if .72, > 1.

Proof:
The local stability of the model (2) is analyzed by the Jacobian matrix of the system (2) evaluated at the disease-free equilibrium, .720, given by:

—u —afs™ 0 -S> 0 0 0 ap 0 —a)s”
0 oS K8 0 0 ¢ 0 o0 0 0 0
0 0 —KS 0 &y 0 0 0 0 as”
0 0 0 oKy 0 0 0 0 0 0
0 0 0 0 K5 0 0 0 0 0
0 0 0 0 0 -K: 0 0 0 0
0 &y 0 0 0 0 —u 0 0 0
0 0 I 0 0 0 0 —W+¢) O 0
0 0 —as” 0 —ads™ 0 0 0 -0
0 0 ass™ 0 s 0 0 0 0 —u?

The eigenvalues are given by:

pr=—(¢v +dp+Sy+Ep+ 1), 02:_(¢v+¢’1~1+§v+ﬂ5)a ps = —p°(with multiplicity of 3), p, = — (& +41°),

and the solutions of the characteristic polynomial equations
p+K; (1-24) =0, (19)

p+ K5 (1-74) =0, (20)
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PP+ (1 + K)o+ 1OKS (1-7285 ) =0, (21)

Following the Routh-Hurwitz criterion, all the three equations. 19-21 will have roots with negative real parts if and only if the associated repro-
duction numbers .25, < 1, .22, < 1 and .%2{,, < 1. Hence, the DFE, .70 is locally asymptotically stable if 22y = max{.22},,. 225, 2254} < 1.
Note thatIm (o) =0, for k=0,1,2,3,...,10,| arg(py) |=m > &, for 0 <a<1.

4. Ulam-Hyers stability

The Ulam-Hyers (UH) stability and generalized UH stability [49,50] for the fractional system using the Caputo operator is discussed in this section.
The same can also be studied using the Caputo-Fabrizio and Atangana-Baleanu operator.

Let IE = C([0, Tymay); R'®) be the space of all continuous functions from [0, Tgx] to R'?, endowed with the norm:

IbI=3 [b(t)| where, J = [0, T na]. Consider

CDS(t) = L(t,d(t))

ot ) ) 22
{CD(O) = by, (22)
Also, let € > 0. Consider the following inequality:

ICDSD (1) — 7 (£, D(t)) e, t€T,e = max(e),i=1,2,3,...10,DEE (23)

Remark 4.1. “A function ®€E satisfies the inequality (23) if and only if there exists a function h€E, having the following properties:”
Ih(t)|<e,h = max(h))",t€ 7.

i. CDSD(t) = £ (t, D(1)) + h(b), t€T.

Definition 10. The fractional model (2) or the transformed system (22) is UH stable if for every € > 0 there exists k > 0, such that for any solution
WEE of the inequality (23), there exists a unique solution ®€E, of the fractional system (22) such that the following inequality is satisfied:

ID(t) —b(t)I <ke, t€ 7,k = max(k;)",j=1,2,3,...10.

where,

B0 = (S0 7,0 The) Th) Toplt) Toulty ) Tpe) S0 Tip®) -
D) = (8°0) TYt) TYO) Th) Tipt) Tow(t) 20 A1) SO Tip®) .
®(0) = (8°0) 7y(0) TH(0) FH(O0) Fyp(0) Fiu(0) 2y(0) 2p(0) S0) Fip(0)) -

Definition 11. The model system (22) is generalized UH stable if there exists a continuous function ¢ : Rt —R* satisfying ¢(0) = 0, such that for any
solution MEE of system (23), there exists a unique solution PEE such that the following inequality is satisfied:

ID(E) —D(O)I<(e), tET, b = max<¢j>T,j -1,2,3,...10.

Theorem 7. If DEE satisfies the system (23), then we have the following:

B(O)—To(t)— - [ (=) (7, B(r))dr| <26, where, @ — = [ (t—r)¢d 24
(t)— o<>—@/o<—r> ¢ (7,B(7))dr| e, where, —@/ﬁ—r) T (24)
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Proof:
Using (ii) of Remark 4.1, we have CD§$(t) = Z(t,®(t)) + h(t), t€ 7,which on applying the Caputo integral gives,

— — 1/t _ — 1/t _

d(t) = P, +—/ t—7) (1, B(T dT+—/ t—7)"h(r)dr

By re-arranging, applying norm on both sides and using (i) of Remark 4.1, it follows that
D(t)—Dg—

Lr,ﬁfha Ltig—l
/0 (t—=7) 2 (T, d(T))dT Sr(g)/o (t—=7)%" " |h(7)|dT<Qe.

6]

Theorem 8. Suppose % : 7 x R1°-R10 satisfies the Lipschitz condition, with Lipschitz constant.# > 0 and 1—. # > 0, then the model (22) is
generalized UH stable.

Proof:
Suppose that PEE satisfies the inequality in (23) and ®€EE is a unique solution of (22). Then Ve > 0, t€ 7, using Lemma 1, we have

(1) — o (t) =2 () —p— L [ (=) (r (mdr

=
L)
S—

< Mmax

max 5 /0 (t—7)5 1 2 (7, d(r))dr

t
+ Fé?%/o (=)L (1, D(7) = L (1. D(T))|dr

— 1/t E~1
5‘(1)(0—(1)0—@/0 (t—7)5 Z(1,P(7))dT

+

A [t 617
t—T d—|dT
i | el

Qe+ Q2| D—D)|.
Thus, we have

Ib—dll<ke, (25)

where, k = =%
Hence, equating ¢ (&) = ke, so that ¢(0) = 0, we conclude that the model (22) is both UH and generalized UH stable.

5. Iterative schemes involving the three different fractional operators

This section is divided into three parts. We shall study an iterative scheme using the three different fractional derivatives, that is, Caputo-Fabrizio,
Caputo and Atangana-Baleanu derivatives. We start with the following:

5.1. The Caputo-Fabrizio fractional operator

For the solution of the model, we shall adopt the Laplace Adomian Decomposition method. Applying the Laplace transform of the CF operator to
both sides of the system (2), we have
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£IIDEs (¢ )} A A5—<a1.7‘5, + .70 + 7Y +u5>85 + aD.%?g},

ID 70} = £{eh 7Y (S +2h) — by + Sy + W) Ty =T BTy =T 4Ty + 50T ),
,‘,{ffD‘ST’(t)} v {a 79(sb+ /?5) (¢D+§D+uﬁ)i7g—ait73.7g+§V.73D},
Z{IDETh() | = %{a Ti(S° + 2 + ) — (b + S + 1) Th— b TV T}y + §y T |
('{CfD§7 =2 {0‘276 Ty + Ty Th— (¢v+¢o+§v+§n+ﬂ6)<7?\}u}7 (26)
L{IDT (0} = L{GT4TY + ATVT = (by +du+ Sy + §u+ 1) Ty |
7 {IDE A1) | = u/{gv 7= (10 + 057 + 4.7y ) A},
‘,{CfD‘g/?“(t)} %/{S“Df —(u +aD+a‘§.7?,+a37‘§)/?D}
{050} = £ {a'—[a (7 + 7ip) + ]S,
{IDe 7)) = £ {b(Th+ T ) S 1T}
Following the definition of Laplace transform for the Caputo-Fabrizio derivative, we have that
sZ{S' ()} —=8"0) (. 5 5 5
stE(l=s) LN — (a17v+a27D+a3(7H+u)S +Qp.72 }
SLLTVE) | =T3(0) X
{s+§(1}—s) = 2{ah7Y (S +.25) = (by + Sy + W) Ty =BT BTy =T 4T + 50T ),
s {Th(0}=75(0)
— G O _ 5 70 6
{s+§(1}—s) = 2{eg 7Y (S +.2)) = (b + Sp + W) Th—CRTVTh +§v T |
ST () =T 3(0)
_ 5 9 1 6 6 770 6
T QTS + Ay + 78— (b + S + W) Th— b T4 T + $v T oy |
s T () =7 p(0)
{ }_ Z{O‘27D7v‘*‘0‘17b7‘S (¢v+¢n+§v+§o+ﬂ)7vp}
s+§(1—s) 27)
sl g0 —9
4 7VH(f)} 7VH(O):%{a5.75.75+a5.76.75—(¢> Fby+Cy+< +u5)_75}
S+§(] ) 3 HZV 17 V" H 1’4 H Vv H VH (>
sZ{ 7RO} —2(0)
_ 6 (16 5 0 5 76\ b
s+ E(1—s) = ﬁ{gvjv (ﬂ +0.7p Jr0‘3'7H)'”3v},
s {p(6) } = 72h(0)
_ o 5 5 5 56\ o
STEA—9) 7/,{§D7 (u +aD+a17V+a3.7H)./2D},
sL{S' )} =8"0) _ o [a( 70 5 0] <t
W ,{A —[az(.7D+Q7VD> +u ]S },
sLLTH) | —T5(0)
o b6 L 56 \ b 070
ST EA) = 2{dy(7h+ 7)) S'—10TB},
which can be written as
y {S‘*(t)}f‘gﬁs(o)Jr#‘f{A“ (oq 7V+a27%+a§Q7Z+u‘3)S‘*+aD.%3g},
(s T9(0) s+E(1-s 5 5 X s
2 {740} =T ST o fo 70 (804 ) — (b + &y + ) Ty~ T BT 0h 4Ty + Ep T ).
, TH0) s+E1=S) [ 5 , . :
{740} =720 ST oo 70 (504 ) — (0 + o + M) TH—hT T + 5 7).
) . 74 1—
V’{~7Z(f)}:7'§(0)+s+g(s s)/{a 70(SO+1, +ﬁ,5) (buy + Lu + 1) T — 0 7070 + £ T }
) ~ 75,(0) s+ &(1—s
(1’{'7‘}\]/0(0}: w;( )y g(s )/{ STDTY +TVT (¢v+¢n+§v+§o+ﬂ)7v0} 28
o f 76 7w(0) | s +§(1—s) 5 6 5 7 5 8)
’{'7VH(t)}: s T s /{a37 7v+ o7y 7 (¢v+¢H+§v+§H+#)7VH}
. 2(0)  s+E(1—s) 5 s X S
{0} = Z( )y g(s )%{;vqg”’,—(m+a3.7g+ag.7z).%a$,},
S00)  s+E(1—s) _
{0} = ‘;( ) gs )%{Q“D.75D—(u5+aD+a?l7€+a§.7ﬁH).%3;§},
S'0) s+E&(1-s) ) X
(S ()} = s()+7§i Lo {ni— [0 (7h+70p) + 1],
19 —
7 {740 :‘7‘35(0)+57+§(1 D s {oh (74 + 7p) S —u7B).

10
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According to the Adomian decomposition method, the solution will be in the following series type

S°(t) =Y _Sh(t), Z Ton(), TH) =D Th(0), Tyt)=>_ Tiu(t)
n= 0 n=0 n=0
Tp(t) Z (), T =D Toya(t),  2Y(E) =D A% (b), 22p(t) =Y Apa(0), (29)
n=0 n=0 n=0

Zs" Tht) = iﬂ"nn(t)‘
n=0

The thirteen nonlinear terms in the model (2) can be decomposed as

iAm ,73,55):,73(035(07 iAZn(z},sﬁ) 75080 (t), iAM(J&Sﬁ):JZ(t)S‘S(t),
n=0

n=0

(
A (75, 25) = 75 O0.25(0), Y Asn(75.7Y) = THO.75(0), fjAm(ﬂw‘é):72(0.7‘3(0,
n=0
(

120

n=0

Ao (T Ay) = THOA), Y Aan( T4, Th) = TYOTH0), Y Aan(Th ) = ThOA2(0),
n=0 n=0 n=0

Aron (T3 725) = THOAHO, S A (T0.Th) = TUOTHO, S A (75, 8") = TH 0 (@),
n=0 n=0 n=0

Ara (70, 8") = Tip(OS'(©),

where the polynomial A, (x,y) is defined thus,

b q .

9= > ln) s [ 32 Mo S| (30)
Particularly, we have that
Ao (75, 8°) = THO)S(0),  An (74, 8) = 7H(1)S(0) +.75(0)°(1)
A12(~7§,,35) = 7%(2)8%(0) +.75(1)8°(1) + .75(0)8°(2) 31
A3 (75,.8°) = 743)8(0) + TH2)S (1) + T(1)S(2) + T4 (0)S(3), el
Al4(.73,55) =.75(4)8%(0) +.75(3)8°(1) +.75(2)8°(2) +.75(1)8°(3) +.75,(0)5°(4)

11
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Applying Egs. (27)-(31) into the system (2), we have

- S%0) s+€(1—s > X & A - A
%{Zgg(t)} _ LJF% %{Aﬁ_ (al ZAM(.Z“,”,Sg) + 05 (T, S0) + 08 S As( T S)

S n=0 n=0 n=0
+MZS§> +aDZ.y2gn}7

n=0 n=0
- 75(0) s+ €&(1—s) - )
Z{Z‘7?/n(t) = ‘;( + gi U{O(? ZAln(7Vn: ) +a1 ZA4n 7\S/n7 ”Dn)
n=0 n=0
—(bv + &y 1) DTy —0h

ZAsn(-7GDn 7vﬂ) 0132«4&1 T w7 n) +§DZ 7VDn}
n=0
Aon (7, S3) + 4 ZAm(ﬂ%n,-%fén)

—(d)D +§D JF,uﬁ) Z'7gn_a?ZA (7Vn7 7gn) +§VZ 7VDn}

i=1
> s T80) s+E(1-s - ) X X > A
%{Z—%Zn(r) -#+L%{a2w (7 58) 0 = Aol ) 404 Y~ T 7
n=0
O
1

=
Il
(=]

n=0

‘iA <7an 7Hn) +§vz 7VHn}

i=1 n=0

o To(0) s+ E(1—s -
/»{27%”(0}— 0(0) ) SEEIZD) o oS A (7 7H) + S Asn( T T (32)
n=0 n=0

—(d)v +ép+Sv+4p +H§) 2'7%
i=1

= To0) s+E(1—s < 5 S
z{z,73Hn(t)}— w0 , s +8 )%{agZAsn(ygn,.??,n)+a§ZAm(.73n,,72n)

S n=0 n=0

@
<
+
=
+
¢
<
+
2%
jus}
4 [
"';
<\’
g
H,_/

S {§v27n u Z/? _ang7n<‘79Dnv‘ﬁ?&n>}v
2250 1— -
%{ %agn(t)} b0 S+§( =9 ’{SVD '7;33 (’J +ap ZA)DH alZA‘ln 73117 A)gn)
n

i=1 i=1 n=0

& &
—03 ZAlOﬂ T ¥ /D0

=) t) oo . 0 . oo
z{zszm}——s ), s+80-5) {M o zAlzn(.vzmsz)—azzAlgncﬂDﬂ?sz)—mzsﬁ}

n=0 n=0

TH(0
%{Zygn(t)} = Ds( ) g( )<,{aZZA12n(7Dn,s") +a22,413,, (T pns S5)— p"ygn}.
n=0

3
8 |l
o

n=0

Matching the terms on both sides of (32), and applying the inverse Laplace transform, we obtain

8‘8<t>:s§(0>3 Tho(t) = T9(0),  Tio(t) = TH(0), () = TH(0),  Fing(t) = Tip(0).  Fiyo(t) = Fi(0),
< )= A(0), Aho(t) = 725(0),8"(8) = 8°(0), Tho(t) = 7(0).

)= a0 (al T + 06T o + T ho + 1) S§ + ep. Ao | [1 + §(6=1)),

(t) = [ 7o (3 + ~%3g0) — (v + v + )T 00— 087 b0 TV~ 03T 1107 o + {p7 Upo |[1 +6(t—1)],
7gl(t) [0‘2 7 bo (38 + '/3(\5/0) = (¢bp + ¢ + 1) T o =087 407 o + §v~73D0] [1+8(t=1)],

Tin(t) = [a3‘7ZO (58 + Ay + .%3,‘30) —(¢u +#6)*7ZO_0‘?‘730'720] (1T+8(t=1)),

T (6) = [087ho 7o + Q4T 7 ho— by + bp + Sy + §p + 1) T o | [1 + E(—1)],

T (£) = [ag 7h07 V0 + 08707 o~ (dy + b + &y +“6)'7?\}H0} [1+&(t—1)],

S (t) = kv 70— (ﬂ5 + 05T pg + agjgo)'%f%] (1+8(t=1)],

S (0) = 07 ho— (K + ap + Q7o + 04 7o ). Ao 11+ E(—1)],

- [ag (-7&) + '7€/D0> +ﬂ9} ch)] [1+&(t—1)],

12
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Sh(t) = [Aﬁ_ (a(;j‘\s/o +05.7 g + 087 +H6)S(15 — 00847 —05S0.7 by — 0488 T iy + O‘D-’/ggl] (1+&(t=1)],
Tin(t) = [{a? <55 + "350) —04.7 ho— 03T} — (v + v +ﬂ6)}'731 + 08 T0ST + 1T Zp1 — 08T 0. T by
—08.7 67 1+ $p T vpnl[1+ g(t71)]7
Tha(t) = [0‘2'“700 (5? +'%3?/1) + 087, (38 + A2 )—(fl’D + 8+ )Ty — 08 T 0T by — 0. T, T g + §v'7%1] (1+§(t—1)],
Tia) = [T 1o(S3+ 20, + by ) + BT (S5 + A0 + #DO) (61 +10)-7 f =047 0.7 iy =6 75, 7o | [1 + 6(t=1)),
7VD2(t) [a2 T T + BT T g + 08T 0078 + 04T, T 00— (dby +bp + &y +&p + 1) VDJ[ +E(t—1)], (33)
()= [0@;/7,_,0;7‘,] + 0BT} T o+ 4TV T iy + 4T Ty —((f)v + b+ Sy 1) T vm][ +E(E=1)],
S(t) = {vaj?/] _(ﬂ + 057 + 0. 7‘0)*%3?/1 <a2 T + 05T 1>-%3§S/o} [1+§(t=1)),
A(0) = [S0T b1 — (10 + ap + 0 7Yg + 4T g ) A2y — (06475, + ATy, ) 2| (1 + E(6=1)),
S5t = [Ae_ag (*7?70 + ?7%0)5? —of (?7%1 + *7€D1)Sg _ﬂgsﬂ [1T+§(t=1),
Tha(t) = [ag (-7&) + 7%0)3‘; +af <~7g1 + .7%1)6‘8 _”9'7?)1] [1+&(t=1)].

VH2

5.2. The Caputo fractional operator
Applying the Laplace transform to system (2) and solving via the Caputo derivative, we have

Sh(t) = 8°(0), -7%(0 Th(0), Tholt) =7p(0), Tio(t) = T75(0),  Tipg(t) =7ip(0),  Timo(t) = 794(0),
Pio(t) = 729(0),  Rpo(t) =.22)(0),8°(t) = §°(0), Ty (t) = TH(0),

. . N &
Si(t) = [Aﬁ_ (aq.7\5,0 + 0878+ 8T8 + € )88 + aD.%BDO] {m ,

i o L \ r:
(€)= [T (S5 + 7o) = (v +§v + €)7o~ 0677 o= T 0 T o + {07 e ME+1)|
A 5 5 tt
Tp() = [aﬁ.?%o (Sg + '%3(\’/0> - (d)D +ép+ §O)-7go*a§-7éo'7go + §V'7(\S/DO] TEr |
, , e - £
740 0670(55 - A - )~ +€) 1073 g |
5 5 5 6 tﬁ
T () = (047807 h0 + 047007 b= (v + b0+ &y + 50 + €') Tim vk
¢ o b tt
Tl () = (0675074 + 4T h0Tho— (b + bu + Sy + €)7o T
5 s 5 tt
S () = [§v~7f/o*(§b + 05T o + ag]go)”(\’/o} fE+1)|
. - _ &
S () = [§D-7?)0* (’50 + o+ 04 T + 0‘375110)-/'%0] sk

)= [ (o + 7o) + €51 g

t&
5 70 0 __ 616
Th(t) = [0‘ (7Do+'7voo)50 §'7D0} e+
s N t&
[ ( 7v0+a27D0+a37ZO+§)8° a@SE T, ag$3.7,§1—a§$3.7,}1+ap.72f31] fEr T (34)
O
1

Ti(t) = [{a (So +- /”?)0) —08.7 o — 05T o~ (¢v +4v+ gﬁ) }'7\6/1 + 0T 0S] + 0T o 01 — 08T 0Ty
S s ‘ té
_ag.730.7?“ + gD]?\’/m} I:m ,
Th(t) = [0‘37%0 (5? + ”?/1) + 05T, (5(8) + -”30) - (¢D +$p+ §h)'7g1 —0} T T by — )T T o + §v~7z\i/m]
t&
I+ 1
7212(0 0‘3 7o (35 + A+ /fm) + 8.7 (58 + R + /Do) (d’H +§ )-7211 _a?-730~721_a?~7?\’/1~7?~10}

§+ 1 }

. . . . . o . o . &
Tina(0) = [T 5Ty + 470100 + BT 0Ty + 4T Tho— (b + 90+ 5v + 50+ €)7ot | | et ik
_
fE+ 1|

T (t) [ 5T 0070 + 0T i Ty + 04T 0. T iy + Q4T 9, T 30— (¢v+¢H+§v+§ﬁ)'7(\}H1}

A (1) = {vajo\ﬁ - (gﬁ + 05T ho + 0‘2-720)'73?/1 - (("37%1 + ag]ﬁ,l).%}%}

tt
rE+1))|

A o A ‘ o X I
P (t) = [50-731 - (gb +ap+ T+ 0‘?7‘210)-?2([’11 - (‘ﬁyfn + 0‘37‘211)-72%0] {m

40 = (8= (7 + 7o)t (7 + 7 i1 |

Thy(t) = [ag (-7go + -7?/00) ST+ (.7& +-7(\;/m)33—§6~79m]

ts
rE+1)|

13
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5.3. The Atangana-Baleanu fractional operator

Applying the Laplace transform to system (2) and solving via the Atangana-Baleanu derivative, we have

SO =50, Fialt) = Tio(0). Tht) = T0)._ Tho(®) = T40). Fhon(t) = Fip(0), Fhuo(t) = Tiu(O)
i) = A0, ) (0) SO) = 5(0), Tho(l) = 7(0).

1 £t
/<§>< al (é)ﬂ

3
S0 = [A (a‘ 7o + 057 o + 08T o + ‘g’)sg Dﬁ’no][/(ﬁ < —&+ g(t"é ﬂ
T (6) = [067bo(Sh +200) = (0 -+ {0 + &) 7o =04 7h0Tbo + 0T ) {/l@ ( e gfg)ﬂ

(&)( e g(%)]

'7(\3/01 (6= [agg%oj(\i/o + aéli'7(\;/o-7go (d’v +¢p+Sv+Sp+§ ) 7VD0] { ! < -6+ S ﬂ

'—‘Um H

Tn(t) = [Q?J% (Sg + -%520> - (¢v +8y + §h>'730_a2'7%0'7?\5/0_a3v7 Tvo+ 2 VDO]

Tin(t) = [a?.?ZO (53 +. 2y +~/’3g0) <¢’H +§ ) Tho—04-T o 720}

7(8) ()
T (t) = [0537330-7% + 0870 o~ ('i’v + ¢y + 8y +§ 7?/1-10 { (] §+ & )}

1 (e, &
7© (1 g*r@)]’

5 5 5 . S A 1 €
Sy () = [§D'J7%o_ (gb +ap+ 08Ty + a‘;.720).%ag0] [,_— < -6+ § )} )

S (1) = {§V*7€/0_ (gﬁ +05.700 + 01‘2«720)%%} !

7(§) I'(€)
1= [ [0+ 7hn) €8] [ (16 5

&t
Tt [a (7 +- 7VD0)SO 3 *79D0] {7(@ (1 _€+@ )
5 \ 1 t6
)= [ (70 + T ho + BT o + ) ST~ S5T 01 — 05867 by — 04 S5 T iy + Ay | {/ 5 ( —£+ g( é)ﬂ (35)
Ti(t) = [{oq <50 + *%go) —05.7 o~ 08T i~ <¢v +Sv+ §5> }731 + 0TSt + 01T Yo 1 — 08T 0. T iy
6 7¢ ¢ J 1 gtE
8.7y T i + §D~73D1][>J7(€) (1 —&+ w)} )
Th(t) = [ag~7900 (55 + %’31) +05T <Sg + ~%)/?/o) - (d’o +4p+ §5>-7g1 —08.T 0T b1 =08 T 1. T by + §v~‘7§§/m]
1 &t
X | = —&+
{/ ® ( <§>>

C 0 O % 9 J 70 7 7 7 9
Tin(t) = [a3'7H0 (S? + R+ '%gl) + 04T (58 + A+ 'ﬂgo) - (¢'H +§ )~71{:11 —04.7 V07 i —a?,731.720}

.
{7(@ (1 g*ra:)) ’

)

)

A A A X X ) A 1 t
T (t) = [agqeno?f\’/] + 057070 + 08T 00T by + 4.7, Do — (d)v +¢p+ Sy +4p+ 55)-7%1] {7@ 1-6+ §(g)

. N N N N . N 1 §t§
T (t) = [0‘3 T 70 + 0BT Ty + 04T T i +a‘?-‘731'720_(¢v + ¢y + v+ §b)-73H1] {7@ <1_§ +l“(§)>} ;

Sy (t) = {§V*7€/1 - (gﬁ +05.700 + ag.720),y231 (a2 T + 0. 7H1) ”?/0]

7 o))

N 5 « g N N © g gt
Py (1) = [§D~‘7g1 - (g +ap+ 04T + agy?lo)”%l - (0’-‘?-7(‘)/1 + 0‘37?11) /’)DO} {/ 7© ( =&+ }

6]
g
7© e

Tha(t) = [0 (Tho + 7m0 ) ST+ 6 ( Ty + T ) S6—E" 7] {7(6) <1 —&+ %)} :

S5(0) = [A"—a (Tho + T ) St = (T + Ty ) 4~}

and so on. Hence we obtain the required solution

S(t) = S(t) + S5() + S5(8) + ..., Ty(t) = 730( )+ T () + Ta(6) + o, Tp(E) = To(t) + Ty (£) + T (6) + ...,
TH(t) = Tip(t) +.7g1( Y+ T ( ) A ey U (t) = Topo(t) +.73D1(¢)+.7VD2( e

To(t) = 7 Juo(t) +-7VH1( ) + Tt )+ ﬁf{\’/(t) P (b) + 2201 (£) + 5 (E) + .o,

Z(t) = Ro(t) + 8§ (¢ )+5h( )+ 58( ) So(t) +S5(t) +85(6) + ...,

Tp(t) = Tpo(t) + Ty (t) + Tyt )

(36)
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(a) Fitting using the Caputo fractional derivative, with order & = 0.97.
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(b) Fitting using the CF fractional derivative, with order & = 0.88.
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(c) Fitting using the AB fractional derivative, with order & = 0.97.

Fig. 1. Model fittings using the three fractional derivatives. Series solution for best fit using the Caputo fractional derivative is: I"} (t) = 1.0 + 0.334438t%%7 1 0.11195t"** + 0.0374063t>°1,
with order § = 0.97. Series solution for best fit using the CF fractional derivative is: I}, (t) = 1.04127 + 0.315116t + 0.0946194t + 0.0245611¢>, with order § = 0.88. Series solution for
best fit using the AB fractional derivative is: I{,(t) = 1.01019 + 0.336905t%%7 4 0.112387t"%* + 0.0359822¢>9'.

5.4. Stability of the iterative scheme

In this subsection, the stability of the iterative scheme is established, in the framework of Ostrowski [47]. Let. 7 be a Banach space endowed with
anorm defined by lIxll = maXxep ) {|x(t)] : XE.72°}. Assume that F(G)#@ be the fixed point set of G. Let Gbe a self-map on.#”. Let {y,,} be a sequence in

.7°, and {x,}, denote an approximate sequence of {y,}. An iterative technique of the type Yni1 = &(G,y,), for some function, say, g, where y,

s
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Fig. 2. Solution profiles for S°(t), ], (t),J5 () and J§, (t) via the different fractional derivatives. Parameters are exactly as given in Table 1.
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converges to a fixed point y*€F(G), is said to be g-stable, provided that lim,_.k, = 0ifand only if lim,_.x}; = y*, where k; = [|x,.1 —&(G,x,)l. The
following theorems are now established:
Theorem 9. Assume that G be a self-map on .7 such that

IG(x") =G (y°) I Cil =G (x*) I + Collx* =

for all x°, yo€.9° with C{ >0, CS€[0, 1). Then, the iterative scheme {y, } is
G-stable.

Theorem 10. Let G be a self-map defined as

G(Sh(0) = Sh1(®: G(TWn(®) = Thr @, G(Tha(0) = Thur (0
9(75(0) = Zhna 0, G(Thpn() = Ty (1) 9((7%“(0):-73%1(0, G(An() = F i (0) (37)
G(-An(0) = D,m(t) G(Sh(0) = Saa () G(Thult)) = Ty (0):

It is G-stable in L' (a, b) if

(Hﬁfl (&) + apf(§) + A, f3(8) + A1 f4(§) + 0B Wsf5(8) + oW1 f6(8) + Awaf,(E) + agwlfs(g)) <1,

(K?gl () + $p&2(8) + A 283 (8) + 0§ 0184(8) + ] 285 (§) + A g (6) + A5 1087 (6)

+05835(6) + 050480 (§) + 502814 ()) < 1,

(thl (6) + Syha(§) + ab3hs () + A5w184(8) + AGwshs(§) + a5 ®7he(§) + Awahy (§) + Ol?w3h8(§)) <1,

(K331(6) + $va (6) + 0§43 (6) + Q5014 (€) + 0545 (§) + AB7js(€) + a7 (§)

+080sj5 (§) + 0 2o (€) + ] @ag1p(§)) <1, (38)
<K811 (6) + ABw10k(§) + ABl3(§) + A4 (§) + a‘}wng(g)) <1,

( oMy (§) + agwamy () + awams(§) + o My (€) +a?w4m5(§)) <1,

($yni(§) + 10na(8) + agwions (£) + abony(§)) <1, )

($pp1(8) + 15 (8) + app3(§) + a4 (§) + af wgps (§) + A3waps(§) + asmgp; (§)) <1,
(191 () + QB3G5 (§) + 50945 (§) + A5 2G4(§) + A509q5(§)) < 1,

(11 (8) + 0§32 (€) + ahars(§) + Awar4(§) + Ahwars(§)) <1,
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Fig. 3. Solution profiles for [, (t), ], (t), R} (t) and RS (t) via the different fractional derivatives. Parameters are exactly as given in Table 1.
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Fig. 4. Solution profiles for (t) and J@ (t)via the different fractional derivatives. Parameters are exactly as given in Table 1.
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Fig. 5. Solution profiles for |9, () and J5, (t) via the Caputo fractional derivative. Here, § = 0.97, while SARS-CoV-2 contact rate, of isvaried. Other parameters are exactly as given in Table 1.
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Fig. 6. Solution profiles forJ‘f,D(t) and j“\}H(t) via the Caputo Fabrizio fractional derivative. Here, § = 0.97, while SARS-CoV-2 contact rate, ¢} is varied. Other parameters are exactly as given

in Table 1.
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Fig. 7. Solution profiles for]%(t) and J?}H(t) via the Atangana-Baleanu fractional derivative. Here, § = 0.97, while SARS-CoV-2 contact rate, o is varied. Other parameters are exactly as

given in Table 1.
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Proof:
Consider the recursive formula below, associated with the system (2) (obtained via taking the inverse Laplace transform of the AB derivative).

. (7S§1§+€( S 6 . 8
S () =80)+ 7! {ﬁ L8 = (a1 TS} + T bySh + 4T S + 1055 + aD.ﬁgn}} ,
¢
74 _ g0 (*15(1 g)+§
Ty () =Ty (0) + £ [sﬁ,«(g) z
_a3'7Zn'7?/n + §D 7?/Dn }]
. . s5(1 + 5 N s R S .

T (6) = Tpu(0) + %7 {;,—%g L BT b (Sh+ i) = (b + Ep + 1K) Th—h T 4.7y, + §v-7i\}nn}} :

T (6) = T3(0) + £ {S(Slg /g() +§

5 ob 5 00 6 0 6
{OL?.7V,152 + a?*7(\',/n'£Dn_ (¢V + §V JrMﬁ)*7Vn_a(}2i'7Dn‘7Vn

(/{O(?, 7Hn (Sb + /? n /() ) (d)H + gH +l'l‘s)‘71§111_0‘?‘7?/n‘7?-ln + gV*7‘?/Hn}:| ’

£
sS(1—=6) +§ . A 5
'7?/Dn+1 (t)=Tp0)+ £~ = /{agjennj?/n + 0870, T by — (v +dp+Sv +$p +ﬂ8)"7%n} )
s6.7 (€) (39)
6 5 —1|S5(1=6) +& . 5 5 8\ 7
TV () = Ty (0) + £ TE7E) /{a3 T w7 + T 07 = by + by + Sy + Sy + 1 )'7VHn} ;
' ' . sS(1-6) +§ 3 , 5
Al () = A(0) + £ {ﬁ 20T (1 + g7 ) A}
1 [s5(1—-6) +§ ,
Ao (£) = 2H(0) + £ {55/()@ Lo T b= (W + a0+ 047y, + ag,7gn).%agn}} :
ss(1 + 5 5
Sha)=8"0)+ 27" {%ﬁg)g LA~ 74,81~ TSt 1S} .
1 |s5(1—€) + . .
Tt (6) = 7h(0) + 7 {(Sg%()@g L {758 + TS0 7, .
where ? S; /g )+ js 3 fractional Lagrange multiplier.
We will Si’lOW that G has a fixed point. Thus, for all (m,n)EN x N, we evaluate the following:
G(Sn(0) =G(Sm (D))
o1 Sg(l_g)'*‘g( ) 5 0 b 5 ob | 448.ab 5
— e L8 = (0170} + BT B, So + BT S+ 10S,) + ap. A, |
i [s8(1—¢) +¢€ S X X S A
— 1271766 Y4 Aﬁ_ .78 SD 6.76 Sh b';7h Sﬁ 888 ,ﬁh
i Sg_/(g) { (C\(] vmOm T 027 pmOm + 037 Sy + U m>+aD Dm} (40)
§(1—
— g %/{ (01 70,Sh + 0§75, S + QBT Sh + 1S} ) + . ﬁ’Dn}}
L [s1—¢ +€. 5 o X \ A ' i
— 5! ﬁ ){ (a].~7?,m821 +a578.80 + 578, S +,u5$*’m) + aD.%?gm} ‘
Taking the norm on both sides and applying the triangular inequality,
we have that
IG(Sn(6)) =G (Sm (D)1
- 1[% 7 (1= (Sh = So )+t (A2 = Ay )1 + 1= 7, (Sh = So ) + 1= S5 (T4 =T 1
=070, (SE =S + I—a5. S, (.76Dn—.7gm) I =087, (S =S ) + 1 — S, ((72,,1—(72,“) uH.
(41)
Now, noting that, 8% .78 .78 70 75 78 %% % S 7° are convergent sequences, we bound them as follows:
m Vn Dn Hn VDn VHn Vn Dn>“n n
1S3 121, LT85 <07, 178 1203, 178 14, 1T 5p | S5, 1.7 Sy 1< g, 11725, | <007, 1225, | <0,
IIS" <@g, Il 7Dn||sww
Also, as a result of similar pattern in the solutions, we assume that
182 (£) =82 () I=N.228,— @gmn
S%(t) S?z(t)”E”‘7€/n 7Vm”7 (42)
IS5, (£)—=Sh (ON=NT by —T Py,
IS8, () —So (ENNENT &y — T .
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Thus, we have that

IG(Sh(£) —G(Sp (D)< (u‘ffl (6) +anfy () + A 02f3(8) + Q01 f4(8) + A5 f5(8) + A1 f(6) + Awaf7(E) (43)
+ oo fg(6)1S, =S I,

where, f;(§),i = 1,...8 are functions resulting from ~~ [M ). In a similar manner, we have that,

1674 ) G(Tm(0) )15 [K381(6) + $8a(£) + }0283(6) + A 0184(6) + 0} 0285(6) + 02585 (6) + 51087 (£)
+ 08285(8) + 030480 (€) + 052810(6)] 17 by — T il

1G(:75u(6)) =G (-7 b 0) )15 [K3h1 (€) + Suha €) + A3 (€) + 0§0184(6) + Ashs (§) + aGerhs (£) + bt (6)
+ QG 3hg (§)] 1.7 by — T

1G(-70(0)) =G(Thn (D)) 15 (K31 (6) + $v2 (€) + Q05 (€) + QB0 ja(€) + QB0 (€) + B s(€)

+ 0804j7(8) + 0055 (§) + 2o (8) + 05410 ()] 17 iy — T .

II(;<.7§;,D,1 t)) g( 7“$,Dm(t)) [(1(511( + w19l (€) + aSwrl3(E) + Ayl (€) + a?co3l5(§)>] 1.7 S0 —7 Sl (44)

19(-7 4 (0)) =G( 7 (0) )1 [ (K31 (€) + Q24ma (€) + 003 (6) + 06 0ma(6) + 0 0ams (€)) |17 Yy =7 by

ug(,ﬁ@n t)) g( 20 (1) )n [($ym1(€) + 1PNy (€) + Abron3 (€) + Qg ()1 720, — 2l

1G(-20(6) ) =G (A 6) ) 1< [(§6P1(€) + P (€) + o3 (€) + Q24 (€) + Af0sPs (€) + A04P5 (€) + Q0P ()]

"n Lo,

1G(Sh(6) —G(Sm(D)11 [ 9 +glzw3(12(§) +050903(8) + 05024(8) + Awaqs () |15, —Spll,

||g(.7v (t) ) (7?,,” ) u 11(6) + A 312 (€) + A wor3(€) + A wora(€) + A wors (€))7, — Tl

%

Thus, the mapping G- has a fixed point. We now show that, G is valid for all the conditions in Theorem 9. Let (43) and (44) hold. If we use C‘? =(
0,0,0,0,0,0,0,0,0,0), and ] ) ) ] ) )
(#bf1 (6) + anf3(8) + cf@af5(8) + ] 01 f4(§) + ABws[5(§) + B f4(§) + 0Bwaf7(8) + o fg(§)) <1,
(Kig1(6) + $08a(6) + a8 (6) + h0184(6) + 0285 (€) + 0585 (6) + bwogs (€)
+agngs(§) +08ag(§) + 52819(6)) <1,
(thl (6) + {vha () + A5 w3h3 (8) + 0Bw184(6) + a3 hs(§) + A5w7h6(8) + afwzhy (§) + A wshg (§)> <1
(1(211 (6) + Svia(6) + 0Baj3(6) + Q501 j4(§) + 504 ]s(€) + ABw7jg(E) + 0Bajs (6)
+00g 5 (€) + A W2jg(§) + A wag1o(€)) < 1, (45)
(K% @ + Q010l2(6) + 0B ls(6) + Ahals(§) + a5 (€)) <1,
( ) + Q54my () + 0§03 (§) + A M4 (§) + a?m4m5(§)) <1,
(§vn1 + 105 (€) + 0 w10n3(€) + 0wy (§)) <1,
(§
('
(u'r

G

Dpl €) + P2 (§) + app3 (§) + AP (§) + A wsps (§) + Awaps(§) + Awep; (§)) <1,
) + 050305 (§) + 050903 (§) + Q5,44 (E) + agwe%(g)) <1,
+ Q50373 (8) + A5Wor3(§) + 05 ar4 (§) + 50975 (6)) < 1,

then all the conditions of Theorem 9 are fulfilled. Hence, the iterative scheme {y, } is G-stable. Thus, completing the proof.

6. Numerical simulations
6.1. Initial conditions and data fitting

The sexually active population in Argentina (aged 15-64) is estimated to be 29, 289, 357 [51]. Also, the life expectancy is 78.07 years [51]. Thus, we
set the human natural death rate, 4° as 7g555; Per day. The human recruitment rate, AP is set to be %. The initial total population, N®(0) = 2
9,289, 357. The initial conditions used for the fitting are: S%(0) = N°(0) = 29,289, 357,.7%(0) = 1,.75(0) = 0,.75(0) = 0,.75,(0) = 0,.75,,(0) = 0
. 225(0) = 0,.225(0) = 0,5”(0) = 0,.79,(0) = 0.

We performed the fitting using fiincon function in the Optimization Toolbox of MATLAB [56]. As depicted in Fig. 1, we fit the COVID-19 data [57]
for Argentina from March 3, 2020 to June 10, 2020. The parameters estimated from the fitting are presented in Table 1. With the Caputo operator, the
model fits well to data when the fractional order § = 0.97, as shown in Fig. 1a. With the Caputo-Fabrizio operator, the model fits well to data when the
fractional order § = 0.88, as shown in Fig. 1b. Using the Atangana-Baleanu operator, the model fits well to data when the fractional order § = 0.97, as
can be observed in Fig. 1c. Although using both Caputo and AB operators, the model fits well to data when the order is § = 0.97, the Caputo operator
gave a better fit as compared to the AB operator. It is also imperative to state that, these conclusions are based on the model proposed in this work.
The series solutions for the best fits are also presented.

The following series solutions were obtained for the system (2), under an endemic scenario when all the three diseases are present in the pop-
ulation, using the initial conditions $%(0) = N°(0) = 29,289,350,.7(0) = 1,.75(0) = 1,.75(0) = 1,.795(0) = 0,.7%,,(0) = 0,.225,(0) = 0,.225(0) =
0,5%(0) = 40,000,.79,,(0) = 15. The values of other parameters are exactly as given in Table 1. Series solutions via the Caputo-derivative is given by
eq. (46). Here all the parameter values as given in Table 1 were used.
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S°(t) = 29289350 + 2078.29t°%7 —0.716105t1°4—0.157525t>!
T5(t) = 1.0 + 0.232988t%%7 4 0.0543842¢t"%* + 0.0126472>%,
5 (t) = 1.0 + 0.168962t*%7 4 0.0128365t"** + 0.00301015¢>°!
T%(t) = 1.0 + 0.0253951t%%7 1 0.000645793t1% + 0. 0000163699¢> A1
F%p(t) = 0.0 + 9.748634592703136 x 105097 —2.173844324613856 x 10”7¢'% + 5.825026712347771 x 10776291, (46)
Tou(t) = 0.0+ 9.792059369532225 x 10897 —2.3023365866009796 x 107" + 6.067783798771481 x 10~ 721,
225 (t) = 0.994816t%97 —0.775467t"%* + 0.0540038¢>"
.Wﬁ 0 () = 0.0 + 0.015187t%%7 + 0.00256603t'%* + 0. 000127204r2 91
s"( ) = 40000 + 697.061t%%7 + 19.4575t"94—0.00694976¢>%!
7Y (t) = 15.0 + 1.30175¢%97 4 0.237782¢"%* + 0.00997563¢* o
Series solution via the Caputo-Fabrizio derivative is given by eq. (47). Here all the parameter values as given in Table 1 were used.
8(t) = 2.92894 x 107 + 1991.07t—0.670143t>—0.138522t3,
Z%(t) = 1.00695 + 0.226335¢ + 0.0509495¢% + 0.0111216¢>,
Z8(t) = 1.00502 + 0.162611¢ + 0.0120278¢% + 0.00264702¢>,
7°%(t) = 1.00075 + 0.0243666t + 0.000594089t2 + 0.0000143951¢3,
T4 (t) = 2.712870748778392 x 10™° + 8.252505019668144 x 10~8t—1.5200340503322315 x 1072 + 5.122340890403097 x 107/¢3 (47)
T8u(t) = 2.7150880462399953 x 1079 4 8.227282176372782 x 10 3t—1.6181662730296436 x 10~ 7t? + 5.335813653985 x 1077
/?5 o (t) = 0.0287975 + 0.909197t—0.707371t + 0.0474892¢>,

) =
720(t) = 0.000452256 + 0.014696¢ + 0.00236565¢2 + 0.000111859¢>,
( ) = 40020.7 + 668.927t + 17.8588t2—0.00611139¢3,

ZY(t) = 15.0388 + 1.26067t + 0.219067¢2 + 0.00877225¢>.

Series solution via the Atangana-Baleanu derivative is given by (48). Here all the parameter values as given in Table 1 were used.

S°(t) = 2.92894 x 107 + 2051.53t*%7—0.711698¢1 94 —0.151527¢>",

F%(t) = 1.00708 + 0.233265t*%7 + 0.0541099t"* + 0.0121657¢>"

T%(t) = 1.00511 + 0.167562t%7 + 0.0127739¢'°* + 0.00289555¢> o1

7%(t) = 1.00077 + 0.0251072t%%7 + 0 00063074t"%4 + 0. 0000157467r2 91

T (t) = 2.7579384914179242 x 10~ + 8.486010185015 x 103097 — 1.604826527624194 x 1077¢194 1 5.603260923141627 x 1077291,

(
Tou(t) = 2.7600149768101183 x 107° + 8.458917964913127 x 1075t%97 —1.70863697964998 x 10~ 1% 4 5.836775954633293 x 107>,
225 (t) = 0.0292943 + 0.936007%97 —0.750898t "9 + 0.0519478¢%°!
.//20 o (t) = 0.000460291 + 0.0151449:*%7 4 0.00251169t" + 0. 000122362¢> S
59( t) = 40021. + 689.258t%%7 + 18.9598t!%4—0.00668517t>°!
() = 15.0395 + 1.29919:%%7 + 0.232588¢194 4 0.00959585¢%91.

(48)

6.2. Simulating the different classes using different fractional derivatives

Here, we simulate the different classes in the model via Caputo, Caputo-Fabrizio and Atangana-Baleanu fractional derivatives to see how each de-
rivative impact the dynamics of the model (2). Unless, otherwise stated in the plots description, the parameter values used are obtained from Table 1.
In Figs. 2a — 4b, we present the various states of the model for different fractional operators. In Fig. 2a, the Simulations of the susceptible individuals
for different fractional derivatives are presented. It is observed that, over time, the susceptible population decreases, under an endemic setting, with
higher reduction recorded using the Caputo-Fabrizio derivative than with the Atangana-Baleanu and Caputo derivatives. Simulations of the individ-
uals infected with SARS-CoV-2, dengue and HIV for different derivatives are presented in Fig. 2b, c and d, respectively. It is observed that, over time, lower
number of infectious individuals are recorded using the Atangana-Baleanu derivative, followed by the Caputo-derivative derivative and then the Caputo-
Fabrizio derivative. Our aim is to reduce the infection cases, using this model. Also, simulating the co-infected individuals with dual infections, for differ-
ent fractional derivatives are shown by Fig. 3a and b. It is also observed that the Atangana-Baleanu derivative, records the lowest infections over time, in
comparison with other fractional derivatives applied. The Atangana-Baleanu derivative gave us reduced number of infections over time, relative to
Caputo and Caputo-Fabrizio derivative. Asamoah et al. [55] also recorded similar trend in the behavior of the AB derivative, when comparing simulations
using the three fractional derivatives for a Q fever disease. Similar trend is observed for the classes of individuals who have recovered from SARS-CoV-2
and dengue as well as the population of susceptible vectors, as depicted by Figs. 3¢, d and 4a. As for the total vector population with dengue (Fig. 4b), the
Atangana-Baleanu derivative gave the least number as compared to simulations via Caputo and CF derivatives.

Simulations of the co-infected cases for different SARS-CoV-2 contact rates using the three fractional derivatives are presented in Figs. 5a-7b. It is
observed in Fig. 53, that as SARS-CoV-2 infection rate o} decreases from 9.58558 x 1072t09.58558 x 10!, there is a significant reduction in the co-
infected cases (number of persons having both SARS-CoV-2 and Dengue). Similar trend is also observed for individuals co-infected with SARS-CoV-2
and HIV (shown in Fig. 5b). In the introduction section, we have reported that patients co-infected with SARS-CoV-2 and dengue can suffer worsening
illness, hospitalization and deaths [15,17]. So reducing the co-infection of SARS-CoV-2 and dengue can cut down these worse cases in co-infected
individuals. Also, we reported earlier, that individuals co-infected with SARS-CoV-2 and HIV are most likely to suffer severe illness and death [2].
Also, persons co-infected with HIV and SARS-CoV-2 infection can suffer great increase in cytokine production which could lead to increased viral
load and subsequent immune suppression [2]. If co-infection cases are greatly reduced due to reduction in SARS-CoV-2 cases, then we shall equally
have great reduction in cases of immune suppression and deaths which are direct consequences of the co-infection of both diseases. Similar reduction
in co-infected cases are observed when the simulations are done via the Caputo-Fabrizio (presented in Fig. 6a and b) and Atangana-Baleanu
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derivatives (shown in Fig. 7a and b). The emphasis in these simulations is not to compare the results via the different derivatives, as done for the pre-
vious simulations, but to show that with any of the fractional derivatives, SARS-CoV-2 prevention can reduce worse co-infection cases with either

Dengue or HIV.
7. Conclusion

In this work, we have studied a new mathematical model for SARS-
CoV-2, dengue and HIV co-dynamics, to assess the impact of SARS-CoV-
2 infection on the dynamics of dengue and HIV via fractional derivatives.
Some of the novelties of the current study are as follows: For the first
time, we have considered a model for the co-dynamics of SARS-CoV-2,
dengue and HIV. We have also considered three different fractional de-
rivatives on this new complex model, and presented how SARS-CoV-2
could influence dengue and HIV. This has not been done before. The ex-
istence and uniqueness of solution is carried out using the Banach fixed
point theorem. The stability analysis of the model is discussed in the
context of Ulam-Hyers and generalized Ulam-Hyers criteria. We have
applied the Laplace Adomian decomposition method, to investigate
the model's approximate solutions, with the help of three different frac-
tional derivatives, namely: Caputo, Caputo-Fabrizio and Atangana-
Baleanu derivatives. We have equally established the stability of the it-
erative schemes for the solution of the developed model, applying some
recent fixed point theorems. The model fittings, using the three frac-
tional derivatives, were done using real data from Argentina. With the
Caputo operator, the model fits well to data when the fractional order §
= 0.97. With the Caputo-Fabrizio operator, the model fits well to data
when the fractional order § = 0.88. Using the Atangana-Baleanu opera-
tor, the model fits well to data when the fractional order § = 0.97. Al-
though using both Caputo and AB operators, the model fits well to
data when the order is § = 0.97, the Caputo operator gave a better fit
as compared to the AB operator. Simulations were also carried out
with each non-integer derivative and the results thus obtained are com-
pared. Furthermore, it was concluded that efforts to keep the spread of
SARS-CoV-2 low, have a significant impact to reduce the co-infections of
SARS-CoV-2 and dengue or SARS-COV-2 and HIV. We also highlighted
the impact of the three fractional derivatives in analyzing complex
models such as this novel co-infection model for the dynamics of
three different diseases.

The current research has some limitations. In this study, so as to
avoid model complexity, asymptomatic classes for SARS-CoV-2 and
dengue were not considered. We also considered HIV infected compart-
ment only without considering full blown AIDS class. These can be in-
corporated in a further study. In addition, Nothing is known about
infection acquired or vaccine-derived cross-immunity between SARS-
CoV-2, HIV and dengue. No detailed information yet, whether the cur-
rent SARS-CoV-2 or dengue vaccines could have any impact on the dy-
namics of HIV. Thus, with more reliable data and detailed information
about the interactions of the diseases, further study in this direction is
much anticipated. Mutations of viral infections, including SARS-CoV-2
and dengue calls for further studies on their co-infections with other
diseases. We could thus, consider a model for the co-dynamics of
multi-strains of SARS-CoV-2 and dengue with HIV. Also, the proposed
model in this current work did not consider triple co-infection. Future
work with sufficient biological reports can also consider co-infection
with the three diseases, which is possible [18]. For the data fitting,
only SARS-CoV-2 daily reported data was used, as it was readily avail-
able. There was difficulty obtaining daily recorded cases for dengue
and HIV. For a future study, we hope to fit the model to all the three
data sets, as this will give better and more accurate estimates for the pa-
rameters, especially dengue and HIV associated parameters.
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