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Abstract

Human gut microbial dynamics are highly individualized, making it challenging to link microbiota 

to health and to design universal microbiome therapies. This individuality is typically attributed 

to variation in host genetics, diets, environments, and medications, but it could also emerge from 

fundamental ecological forces that shape microbiota more generally. Here we leverage extensive 

gut microbial time series from wild baboons—hosts who experience little interindividual dietary 

and environmental heterogeneity—to test whether gut microbial dynamics are synchronized across 

hosts or largely idiosyncratic. Despite their shared lifestyles, baboon microbiota were only weakly 

synchronized. The strongest synchrony occurred among baboons living in the same social group, 

likely because group members range over the same habitat and simultaneously encounter the 

same sources of food and water. However, this synchrony was modest compared to each host’s 

personalized dynamics. In support, host-specific factors, especially host identity, explained, on 

average, more than 3 times the deviance in longitudinal dynamics compared to factors shared with 

social group members and 10 times the deviance of factors shared across the host population. 

These results contribute to mounting evidence that highly idiosyncratic gut microbiomes are not 

an artifact of modern human environments, and that synchronizing forces in the gut microbiome 

(e.g., shared environments, diets, and microbial dispersal) are not strong enough to overwhelm 

key drivers of microbiome personalization, such as host genetics, priority effects, horizontal gene 

transfer, and functional redundancy.

INTRODUCTION

Mammalian gut microbiotas are highly complex, dynamic ecosystems. From these dynamics 

emerge a set of life-sustaining services for hosts, which help them digest food, process 

toxins, and resist pathogens. Despite their importance, our understanding of how gut 

microbial communities change over time within hosts, especially the collective dynamics 

of microbiotas from hosts in the same population, is poor1, 2. This gap exists in part because 

we lack time series data that track gut microbiotas longitudinally across many hosts living 

together in the same population. As a result, it has been difficult to answer key questions. 

For example, when host populations encounter shifting environments and resources, does 

each host’s microbiota respond similarly—i.e., in synchrony—or idiosyncratically to these 

changes? Further, what factors predict synchronized versus idiosyncratic microbiota?

Answering these questions is important because synchronized gut microbial communities, 

if and when they occur1, could help explain shared microbiota-associated traits in host 

populations, such as patterns of disease susceptibility3, 4. A high degree of synchrony may 

also suggest that similar ecological principles govern changes in microbial composition 

across hosts5. Further, there is theoretical justification to expect coordinated microbial 

dynamics, as host populations and their microbiotas can be considered a ‘microbiome 

metacommunity’ (see e.g.,6, 7, 8, 9). Metacommunity theory predicts that synchrony will 
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arise across microbiotas if their hosts experience similar environmental conditions and/or 

high rates of microbial dispersal between hosts10, 11. In support, fruit bats living in the 

same colony exhibit coordinated fur microbiota, due to shared environments and microbial 

dispersal1.

However, even in the presence of such synchronizing forces, there are many reasons 

to expect that hosts in a microbiome metacommunity will exhibit idiosyncratic (i.e., 

individualized) microbial compositions and dynamics. First, idiosyncratic dynamics are 

expected when the same microbes in different hosts respond in different ways to 

environmental fluctuations, chance events, or interactions with other microbes12, 13, 14, 15. 

These forces are likely important in microbiotas where priority effects, functional 

redundancy, and horizontal gene flow can cause the same microbe to play different 

ecological roles and exhibit different environmental responses in different hosts16, 17, 18, 19. 

Second, several cross-sectional studies, in both humans and animals, find that individual 

hosts exhibit distinctive gut microbiotas, and host identity explains a large fraction 

of population-wide microbiome taxonomic variation1, 20, 21, 22, 23, 24, 25. Further, 

some longitudinal studies in humans and animals find personalized gut microbial 

dynamics1, 24, 26, 27, 28. This personalization is usually attributed to interpersonal differences 

in diet, medications, and lifestyle27, 29, 30, 31. If correct, then idiosyncratic microbiome 

dynamics may be simply explained by a lack of shared environmental drivers rather 

than distinct microbiome responses to shared environments (but see 27). In contrast, if 

personalized dynamics persist even when hosts share the same environment, then (i) host-

specific dynamics may not be solely attributable to interpersonal differences in lifestyles; 

(ii) predicting the dynamics of microbial taxa in individual hosts may prove difficult; and 

(iii) microbiome interventions that rely on manipulating taxa may face challenges beyond 

heterogeneity in lifestyles, and instead may be related to conserved ecological principles 

across microbiomes.

RESULTS AND DISCUSSION

Baboon gut microbiota show seasonal and annual cycles

We tested for gut microbial synchrony using 17,265 16S rRNA gene sequencing-based 

microbiome profiles from 600 baboons living in 12 social groups over a 14-year span32 

(Fig. 1A; Supplementary Fig. 1). The baboons were members of the well-studied Amboseli 

baboon population33, who experience shared diets, environments, and opportunities for 

between-host microbial dispersal. All groups used an overlapping ~60 km2 range (Fig. 

1B; Supplementary video 1;32), and all baboons experienced the same seasonal changes in 

rainfall and temperature. Seasonal weather patterns drive a rotating set of baboon foods, 

including grass corms in the dry season and growing grass blades and grass seed heads in the 

wet season32, 34, 35 (Figs. 1C and D).

We began by visualizing annual and inter-annual fluctuations across all 17,265 samples over 

the 14-year span of the data. Consistent with prior research on primates36, 37, 38, we found 

population-wide, cyclical shifts in microbiome community composition across seasons and 

years (Fig. 2). This wet-dry seasonal cyclicity was primarily observable in the first principal 

component (PC1) of a principal component analysis (PCA) of clr-transformed ASV read 
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counts (Figs. 2A, 2B; Supplementary Figs. 2–4; PC1 explains 16.5% of the variance in 

microbiome composition). PC1 exhibited its lowest values during the dry season, and 

highest values during the wet season, mirroring monthly rainfall (Fig. 2B; Supplementary 

Fig. 4). PC1 was also linked to annual rainfall across years, exhibiting especially low values 

throughout 2008 and 2009, corresponding to the worst drought in the Amboseli ecosystem 

in 50 years (Figs. 2A, 2B). We also observed small, but statistically significant seasonal 

differences in PC2 and PC3 (8.4% and 3.7% of variation in community composition; Fig. 

2C; Supplementary Figs. 2–4) and in measures of alpha diversity (Fig. 2C; Supplementary 

Figs. 4, 5), as has been reported in other ecosystems39. Together, these seasonal changes are 

probably caused by seasonal shifts in plant phenology and its effects on diet (Fig. 1D), as 

well as the effects of rainfall and other weather variables on bacterial exposures from the 

environment (e.g., soil communities and sources of drinking water).

In terms of individual microbiome taxa, 17% of phyla (2 of 12) and 38% of 

families (13 of 34) exhibited significant changes in abundance between the wet and 

dry seasons (Fig. 2C; Supplementary Table 1; linear models with false discovery rate 

(FDR) threshold=0.05). These changes were significant for the phyla Firmicutes and 

Tenericutes (Fig. 2C, 2D; Supplementary Fig. 6), and were especially pronounced for the 

families Helicobacteraceae, Coriobacteriaceae, Burkholderaceae, Bacteroidales RF16 group, 

vadinBE97, Spirochaetaceae, and Campylobacteraceae (Fig. 2C; Supplementary Fig. 7). 

28% of ASVs also exhibited significant changes in abundance across seasons (97 of 341 

ASVs; linear models with FDR threshold=0.05 for n=393 models; Supplementary Fig. 8; 

Supplementary Tables 2 and 3). However, most ASVs, families and phyla did not change 

in abundance, suggesting that many taxa play consistent roles in the gut throughout the 

year, including Kiritimatiellaeota, Elusomicrobia, Ruminococcacaceae, Clostridiaceae 1, and 

Rikenellaceae (Fig. 2C; Supplementary Figs. 6 and 7; Supplementary Table 1).

Baboon gut microbial dynamics are individualized

While the microbiome metacommunity exhibited cyclical, seasonal shifts in composition, 

microbiome dynamics across different baboons were only weakly synchronized. Instead, 

consistent with prior observations of microbiome personalization1, 20, 21, 22, 23, 24, 25, 

patterns of temporal autocorrelation indicated that each baboon exhibited largely 

individualized gut microbiome compositions and dynamics (Fig. 3). In support, ASV-level 

Aitchison similarity was much higher for samples collected from the same baboon within a 

few days of each other than for samples from different baboons over the same time span, 

regardless of whether those animals lived in the same or a different social group (Fig 3A, 

3B; Kruskal-Wallis: p<2.2×10−16 for all comparisons). Likewise, a PERMANOVA of Aitchison 

similarities between 4,277 samples from the 56 best-sampled baboons (Supplementary Fig. 

9) revealed that host identity explained 8.6% (p<0.001) of the variation in community 

composition, much larger than the variation explained by sampling day or month (R2=2.5% 

and 1.4%), group membership (2.2%), or the first three principal components of diet (0.04% 

to 2.4%; Supplementary Table 4; Supplementary Fig. 10).

Aitchison similarity among samples from the same baboon fell steeply for samples collected 

a few days to a few months apart, indicating that individualized dynamics are strongest 
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for samples collected close in time (Figs. 3A–3C). At longer time scales (e.g., months and 

years), self-similarity was modest, but samples from the same baboon were significantly 

more similar to each other than they were to samples from different baboons, even for 

samples collected several years apart (Figs. 3A, 3C; Supplementary Figs. 11 and 12). 

Following the initial steep decline in self-similarity, community similarity rose again at 12-

month intervals, both within and between hosts, reflecting synchronized, seasonal microbial 

dynamics across the host population. These small, 12-month peaks in similarity were visible 

even for samples collected more than 5 years apart, indicating that individual hosts and the 

population at large return to similar microbiome community states on 12-month cycles over 

several years (Fig. 3C). Hence, the patterns in Figs. 3A and 3C show both idiosyncratic and 

synchronized microbial dynamics: over short time scales, hosts are much more similar to 

themselves than they are to others, but on annual scales, all hosts are weakly synchronized 

across seasons.

The greater influence of individualized dynamics compared to synchronized dynamics can 

also be captured by comparing microbiome dynamics for deeply sampled hosts sharing the 

same habitat at the same time (Fig. 3D; Supplementary Fig. 13). For instance, during the 

2008–2009 hydrological year, we collected nearly one sample per month from 17 baboons. 

When we aligned these time series, we observed little convergence to similar values within 

any given month and little evidence of shared changes in the top three principal components 

of ASV-level microbiome composition over time (Fig. 3D). Consequently, the microbiome 

of each baboon took a different path over the ordination space over the same 1-year span 

(Supplementary Fig. 13; see Supplementary Fig. 14 for similar results during 2007–2008).

Microbiome taxa varied in their contributions to individualized gut microbiome 

compositions (Fig. 3E; Supplementary Fig. 15). For the 56 best-sampled hosts 

(Supplementary Fig. 9), several phyla and families exhibited substantial variation 

in host mean clr-transformed abundance (across repeated samples for that host) 

compared to their mean clr-transformed abundance across all hosts. These taxa included 

the phyla Cyanobacteria, Spirochaetes, Lentisphaerae, and Elusimicrobia, and the 

families Spirochaetaceae, vadinBE97, Elusimicrobaceae, and Muribaculaceae (Fig. 3E; 

Supplementary Fig. 15). These highly variable taxa exhibited below-average abundances 

compared to less variable taxa (Supplementary Fig. 16). Hence, idiosyncratic dynamics may 

be more often linked to uncommon than common taxa, perhaps because uncommon taxa 

have greater functional variability across hosts.

To test whether individualized gut microbial dynamics could be explained by microbial 

dispersal limitation between hosts, we used the Sloan Neutral Community Model for 

Prokaryotes to estimate metacommunity-wide migration probabilities, m, for ASVs in each 

season and hydrological year40, 41. m provides a measure of dispersal limitation because it 

represents the probability that “vacancies” in a local community (a host’s microbiome) will 

be replaced by dispersal from the microbiome metacommunity (other hosts), as opposed to 

reproduction within a focal host’s community40, 41. We found little evidence that dispersal 

limitation contributed to idiosyncratic compositions and dynamics. The probability that a 

given ASV lost from a host’s microbiota would be replaced by an ASV from another host 

in the population was nearly 40% (average host population-wide m across seasons and 
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years=0.373; range=0.332–0.416; Supplementary Fig. 17). These migration probabilities are 

generally lower than those Sieber et al.9 found for marine sponges sampled from the same 

location (m across sponge species: min=0.36; median=0.78; max=0.86), but much higher 

than for mice and nematodes, both in natural and laboratory populations (mice: mwild=0.11 

and mlab=0.18; nematode: mwild=0.03 and mlab=0.01). Hence, dispersal limitation is low for 

baboon microbiota in Amboseli.

Interestingly, when we re-defined the microbiome metacommunity to be the host’s social 

group, instead of the whole host population, migration probabilities were similar (average 

m across groups=0.355; range=0.347 to 0.365; colored points on Supplementary Fig. 17). 

Hence, despite several studies that find microbiome compositional differences between hosts 

living in different social groups, including in the Amboseli baboons1, 42, 43, 44, 45, 46, social 

groups are not major barriers to microbial colonization between baboons, perhaps because 

of their overlapping home ranges, similar diets, and network connections via male dispersal 

(Fig. 1).

Shared environments lead to modest synchrony across hosts

To quantify the relative magnitude of idiosyncratic versus synchronized dynamics across 

the host population, social groups, and hosts, and to test whether synchrony varies for a 

set of common microbial taxa, we used generalized additive models (GAMs) to capture the 

nonlinear, longitudinal changes in 52 microbiome features (3 PCs of ASV-level community 

variation, 3 metrics of ASV-level alpha diversity, and clr-transformed relative abundances of 

12 phyla and 34 families). For each feature, we ran three GAMs to measure the deviance 

explained in gut microbial dynamics by successive sets of parameters, reflecting the nested 

nature of our variables (Fig. 4A; x-axis of Fig. 4C; Supplementary Table 5). The population-

level model (model P) captured factors experienced by the whole host population, including 

average rainfall and maximum daily temperature in the 30 days before sample collection 

and random effect splines to capture monthly and annual cyclicity in microbiome features 

(e.g., Figs. 2A and B; see Supplementary Fig. 18 for effects of time of day, which was not 

included). The group-level model (model P+G) included all the predictor variables in model 

P, and added a random effect spline for each social group, and variables to capture temporal 

changes in each group’s diet, home range use, and group size (Figs. 4A, 4C). The host-level 

model (model P+G+H) included all of the predictor variables in model P+G, and added 

a random effect spline for each host, and variables for host traits, including sex, age, and 

social dominance rank (Figs. 4A, 4C).

Consistent with our autocorrelation analyses (Fig. 3), comparing the deviance explained 

for each microbiome feature across the three models revealed stronger idiosyncratic than 

synchronized dynamics for most microbiome features (Figs. 4B, 4C). Host-specific factors, 

especially host identity, explained, on average, 10 times the deviance in the longitudinal 

dynamics of microbiome features, compared to factors shared across all hosts and more than 

three times the deviance by factors shared with group members. Specifically, model P only 

explained on average 3.3% (range=0.46%–14.0%) of the deviance across all 52 microbiome 

features (pink bars in Fig 4B; Supplementary Table 6), compared to 8.1% on average after 

adding group-level factors to the population-level model (increase from model P to model 
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P+G; range=2%–25%; green bars in Fig. 4B; Supplementary Table 6), and 30.1% of the 

deviance after including host-level dynamics (model P+G+H; range=11.0%–62.2%) for the 

same set of features (yellow bars in Fig. 4B; Supplementary Table 6). Importantly, the 

added deviance for model P+G+H compared to model P or model P+G was not caused by 

including more parameters. Randomizing host identity and host-level traits across samples, 

while keeping each sample’s annual, seasonal, and group identity intact, led to a substantial 

drop in deviance explained compared to the real data (Supplementary Fig. 19).

44 of the 52 microbiome features exhibited greater gains in deviance by adding host-level 

factors to model P+G, compared to adding group-level factors to model P. Of these 44, 22 

features gained more than 20% deviance explained between model P+G and model P+G+H 

(Fig. 4B; Supplementary Table 6). Three of the most common phyla, Actinobacteria, 

Bacteroidetes, and Firmicutes all gained >20% deviance explained between model P+G 

and model P+G+H (Actinobacteria=27.1%; Bacteroidetes=24.6%, and Firmicutes=25.2%; 

Fig. 4B; Supplementary Table 6). The most idiosyncratic features (i.e., those that gained 

>30% deviance explained by adding host-level factors), were microbiome PC2, the 

phylum Euryarchaeota, and the families Campylobacteraceae, Methanomethylophilaceae 

and Desulfovibrionaceae (Fig. 4B; Supplementary Table 6). Even the most synchronous 

feature, microbiome PC1 (14% deviance explained by the P model), gained 23.2% deviance 

explained when adding host-level factors to the P+G model.

Removing covariates from model P+G+H one at a time, while keeping all other covariates 

intact, revealed that host identity explained nearly all of the deviance in our models 

(Fig. 4C; Supplementary Table 6; average loss in deviance explained by removing host 

identity=17.3% versus 0.2% deviance for all other factors). Beyond host identity, the next 

most important factor was the geographic area where the group traveled in the 30 days prior 

to sample collection, which explained 1% of the deviance, on average, across all 52 features 

(Supplementary Fig. 20; Supplementary Table 6). All other individual predictor variables 

had only minor effects on deviance explained (Supplementary Fig. 20; Supplementary Table 

6).

To investigate whether some of the idiosyncrasy we observed was due to host genetic 

effects, we tested for a relationship between the deviance explained by each GAM and the 

narrow-sense heritability (h2) of microbiome taxon abundance as estimated by Grieneisen et 

al.32. We found that higher levels of deviance explained by model P+G+H were predicted 

by higher taxon heritability (Pearson correlation: R=0.37, p=0.016; Fig. 5A). In contrast, 

we found no such effect at the population or group level, as expected since genotype is 

a property of individual hosts, not groups or populations (model P+G: R=0.047, p=0.76; 

model P: R=0.0085, p=0.96; Fig. 5B). We explained substantially more deviance by adding 

the host level to model P+G for microbiome taxa with h2 > 0.05 than we did for taxa 

with very low h2 values (model P+G+H: min=16.0, median=32.6, max=53.4 vs model P+G: 

min=4.6, median=11.1, max=26.8; Fig. 5B). Hence, some idiosyncrasy in gut microbiome 

dynamics is likely a consequence of differences in host genotype. However, because h2 

estimates cannot be mapped directly onto estimates of deviance explained in GAMs, direct 

estimates of genetic versus environmental effects on host dynamics remain an important 

topic for future work.
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The strongest synchrony is among social group members

Previous research finds that hosts in the same social group have more similar gut microbiota 

than hosts in different groups1, 42, 43, 44, 47. Likewise, in our current data set, several taxa 

exhibited abundances that were, on average, higher or lower within a given group compared 

to their average abundance in the host population at large (Supplementary Figs. 21 ans 22). 

Hence, we tested whether shared social group membership is linked to greater microbiome 

synchrony than hosts in different groups. In support, the patterns of temporal autocorrelation 

in Fig. 3A showed that hosts in the same group have more similar microbiomes than 

those in different groups, especially for samples collected within 10 days of each other 

(Fig. 3B; Kruskal-Wallis: p <2.2×10−16). Likewise, samples from the same group occupy 

similar ordination space over time (Supplementary video 2). While small, these group-level 

similarities were detectable, even for samples collected more than 2 years apart (Fig. 3C; 

Supplementary Fig. 11A). The addition of group-level splines to our GAMs led to gains in 

deviance that explained more than 10% for 15 of 52 microbiome features, including all three 

microbiome PCs, five phyla, and seven families (Figs. 4B, 4C; Supplementary Table 6).

Gut microbial congruence among group members could also be linked to shared behaviors 

and environments: baboons in the same group eat the same foods at the same time, 

travel as a unit across the landscape, and may be grooming partners that are frequently 

in physical contact32, 48, 49, 50, 51, 52 (Figs. 1B, 1D). Indeed, after host identity, the next 

most important variable in model P+G+H was the group’s home range in the 30 days 

before sample collection (Supplementary Fig. 20; Supplementary Table 7). Despite previous 

evidence that grooming partners have similar microbiota42, we did not find evidence for 

this pattern in our data (Supplementary Fig. 23). Samples collected from individuals with 

strong grooming bonds were not more similar than samples from animals with weak or no 

grooming relationships (Supplementary Fig. 24). However, the lack of a grooming effect 

in this data set should be interpreted with caution. Our prior research on this topic42 

characterized microbial communities using shotgun metagenomic sequencing from >90% 

of social network members, all within 30 days of each other. Such data provide higher 

taxonomic resolution and more accurate estimates of abundance than 16S data, and may 

more accurately capture transmission between hosts.

Conclusions

We find that gut microbial dynamics are both weakly synchronized across hosts and strongly 

idiosyncratic to individual hosts. Like members of a poorly coordinated microbial orchestra, 

microbial communities in different baboons are only weakly “in concert” across the host 

population. Instead, gut microbial dynamics are idiosyncratic at the level of individual 

hosts, and each baboon “player” approaches the gut microbial “song” differently. Our 

results contribute to mounting evidence that forces proposed to synchronize gut microbial 

metacommunities—shared environments, diets, and between-host microbial dispersal—can 

create modest synchrony among hosts, especially for hosts living in the same social unit. 

However, these forces are typically not strong enough to overwhelm powerful and well-

known drivers of microbiome personalization, including host genetic effects, individual-level 

priority effects, horizontal gene transfer, and functional redundancy16, 17, 18, 19. Interestingly, 
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these idiosyncratic dynamics were strong even for microbial phyla and families, whose 

dynamics reflect multiple microbial functions and interactions that potentially buffer them 

against large fluctuations in abundance. We expect that the personalized dynamics we 

observed will be even stronger for finer taxonomic levels, especially bacterial species or 

strains that exhibit a high degree of functional variability across hosts.

Understanding if hosts in the same social group or population exhibit shared microbiome 

dynamics may be useful to researchers interested in predicting individual microbiome 

changes, linking microbiome dynamics to health outcomes, and designing broadly effective 

microbiome interventions. These objectives have already been difficult to achieve, in part 

because of gut microbial personalization in humans and animals. For instance, predictive 

models of gut microbiome dynamics from one person fail when they are applied to other 

people27. Our results support the idea that microbiome predictions and interventions focused 

on specific taxa will require personalized approaches. Even then, “universal” microbiome 

therapies that work the same way for all hosts may be unattainable. Instead, interventions 

will likely work best when they are designed for host groups or populations that have 

shared compositions and dynamics. Functional redundancy and horizontal gene flow may 

also mean that functions will be more predictable than taxa, and prediction and intervention 

efforts that focus on microbiome functional traits (e.g., metabolite levels; the presence of 

specific pathways) will likely be less affected by gut microbiome personalization. Together, 

our results provide novel insights about the extent and ecological causes of microbiome 

personalization, and they indicate that personalized compositions and dynamics are not an 

artifact of modern human lifestyles.

METHODS

All data collection procedures adhere to the regulations of the Institutional Animal Care 

and Use Committees of Duke and Notre Dame universities, and to the laws of Kenya. 

A complete description of our methods is in the Supplementary Materials and Methods, 

Sections 1A–1C.

Study subjects.

Our subjects were individual wild baboons studied by the Amboseli Baboon Research 

Project (ABRP) in Kenya33. Baboons are terrestrial primates that live in stable social groups, 

typically with 20 to 130 members. The 600 baboons in our data set lived in 12 social groups 

between April 2000 and September 2013 (5 original groups and 7 groups that were fission/

fusion products from these original groups; Fig. 1A). ABRP collects detailed longitudinal 

data on rainfall and temperature; social group membership, ranging patterns and diet; and 

host traits such as age, sex, social relationships, and dominance rank (see Supplementary 

Methods Section A). The Amboseli ecosystem is a semi-arid savanna with a 5-month long 

dry season spanning June to October, during which very little rain falls. The remaining 7 

months (November to May) constitute the wet season, which has highly variable rainfall 

(mean annual rainfall between 2000 and 2013 was 319 mm; range=140–559 mm).
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Sample collection.

A large majority of the microbiota data we use here were published in Grieneisen et al.32, 

but we include data from 1,031 additional samples that were generated at the same time 

using the same methods (they were not included in the heritability analysis of Grieneisen 

et al.32 because we lack pedigree information for these hosts). The addition of these 1,031 

samples led to a total of 17,265 samples in our study. These samples were collected from 

baboons who ranged in age from 7.4 months to 27.7 years, spanning these animals’ natural 

lifespans (Supplementary Fig. 1A). Each baboon was sampled a median of 19 times, and 

124 baboons were sampled at least 50 times (Supplementary Fig. 1B). On average, these 

samples spanned 4.3 years of a baboon’s life (range=4 days to 13.2 years; Supplementary 

Fig. 1C), with a median of 35 days between consecutive samples (Supplementary Fig. 1D).

DNA extraction and sequencing.

DNA was extracted from each sample using MoBio and QIAGEN PowerSoil kits and 

subjected to 16S rRNA sequencing on the Illumina HiSeq 2500 platform (896,911,162 total 

sequencing reads; mean=51,913.6 reads per sample; range=1021–477,241; Supplementary 

Fig. 1E). We used DADA253 for sequence quality processing following the default protocol 

for large data sets. To allow us to compare the dynamics of individual taxa in different hosts, 

we filtered to taxa found in at least 20% of samples, resulting in 341 ASVs (mean=162 

ASVs per sample; range=19–311 ASVs; Supplementary Fig. 1F; Supplementary Table 2). 

This filtering captured 92% of the reads and many of the same compositional properties of 

the data set when filtered to 5% prevalence (Supplementary Fig. 25). DNA concentration 

and ASV diversity were not predicted by time since sample collection (Supplementary Figs. 

1G, 1H). As is typical for wild microbiota, 22.9% of the 341 ASVs could not be assigned to 

a known family (78 of 341), and 5.5% of ASVs could not be assigned to a known phylum 

(19 of 341; Supplementary Table 2). To address the compositional nature of our data, read 

counts were centered log-ratio (clr) transformed independently in each sample (including 

independent transforms for samples from the same individual), prior to all analyses54, 55.

Statistical analyses.

To test whether shared environmental conditions and host traits lead to similar gut microbial 

compositions and synchronized dynamics across the microbiome metacommunity, we first 

characterized patterns of temporal autocorrelation in ASV-level Aitchison similarity within 

and between hosts over time. Our expectation was that, if hosts or social groups exhibit 

idiosyncratic composition and dynamics, then samples collected close in time from the 

same baboon, or from baboons in the same group, should be more similar than they are 

to samples collected from different baboons living in different groups. Alternatively, if gut 

microbial dynamics are strongly synchronized, then samples collected close in time across 

the metacommunity should be compositionally similar, and samples collected from the same 

host should not be substantially more similar than samples from different baboons. These 

analyses were run in R (v 4.0.256) using custom-written functions (code and analyzed data 

are available on GitHub/OSF; see Data Statement).

To test whether dispersal limitation could explain microbiome idiosyncrasy, we estimated 

metacommunity-wide microbial migration probabilities in each season and year using the 
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Sloan Neutral Community Model for Prokaryotes40, 41. This model assumes that each local 

community, defined as the ASV-level microbial composition of a single host in a given 

season-year, is the outcome of stochastic population dynamics and microbial immigration 

from other hosts in the microbiome metacommunity (i.e., other local communities). Briefly, 

local communities have a constant size N, and individual microbes within each local 

community die at a constant rate. These deaths create vacancies that can be occupied, 

either by individuals immigrating from the microbiome metacommunity (with probability 

m), or by daughter cells from any taxon within the local community (i.e., from reproduction 

within the same host, with probability 1-m). Taxa that are common in the metacommunity 

have a higher chance of occupying vacancies than rare taxa. Without immigration from 

the microbiome metacommunity, ecological drift leads each host’s microbial diversity to 

reduce to a single taxon. Thus, the migration probability, m, represents the metacommunity-

wide probability that any taxon, randomly lost from a given host/local community, will be 

replaced by dispersal from the microbiome metacommunity, as opposed to reproduction 

within hosts40, 41. Following Burns et al.57, m can be interpreted as a measure of dispersal 

limitation, such that low migration probabilities signify high dispersal limitation. We 

estimated season and hydrological year-specific values for m by defining the microbiome 

metacommunity as either the hosts’ social group or the whole host population. We fit neutral 

models using nonlinear least-squares regression as implemented in the R package tyRa58.

To quantify the relative magnitude of idiosyncratic versus synchronized dynamics for 

community metrics and common families and phyla, we used generalized additive models 

(GAMs) to capture the non-linear, longitudinal dynamics of 52 features, including the 

first three principal components of ASV-level composition, three indices of alpha diversity 

(ASV richness, the exponent of ASV-level Shannon’s H, and the inverse Simpson index 

for ASVs, as computed by the function reyni from the R package vegan59), and the 

clr-transformed abundances of 12 phyla and 34 families present in >20% of samples. We 

analyzed phyla and families (as opposed to genera or ASVs) because phyla and families 

are highly prevalent across samples (mean prevalence=85.6% for the 12 phyla and 73.7% 

for the 34 families), offering excellent power to compare their dynamics between different 

baboons. However, phyla and families might exhibit stronger synchrony than lower-level 

taxa because, compared to species or strains, the dynamics of families and phyla reflect 

multiple microbial processes and interactions, which are expected to buffer them against 

large fluctuations in abundance. Further, the processes and interactions that a given phylum 

or family collectively encompasses may be more consistent across hosts than those carried 

out by an individual species or strain (although this consistency will vary depending on the 

phylum, family, or process in question18, 60).

Our GAMs allowed us to calculate the percent deviance in each feature’s dynamics 

attributable to factors that could contribute to synchronized dynamics at different scales 

(percent deviance is a measure of goodness-of-fit for nonlinear models and is analogous to 

the unadjusted R2 for linear models). We considered deviance explained by factors at three 

scales: those experienced by the whole host population (e.g., rainfall and temperature), those 

differentiated by social groups (e.g., group identity, group home range location, and diet), 

and those differentiated at the level of individual hosts (e.g., host identity, sex, age, and 

social dominance rank; see below for complete model structures). If microbiome community 
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dynamics are largely idiosyncratic, then population- and group-level factors will not explain 

considerable deviance in microbiota change over time, and instead, a large fraction of the 

deviance will be attributable to host identity, controlling for shared environments, behaviors, 

and traits. Alternatively, if shared environments and behaviors across the population and 

within social groups synchronize gut microbiota, then population- and group-level factors 

should explain substantial deviance in community dynamics. To ensure sufficiently dense 

sampling for identifying host- and group-level dynamics, all three GAMs were run on a 

subset of the full data set, consisting of 4,277 16S rRNA gene sequencing profiles from the 

56 best-sampled baboons living in the 5 social groups sampled the longest (between 2002 

and 2010; median=72.5 samples per host; minimum=48 samples; maximum=164 samples; 

Supplementary Fig. 9). GAMs were fit using the R package mgcv61, 62, 63.

To test whether host genetic effects contribute to gut microbial idiosyncrasy, we performed 

a post hoc analysis of the relationship between the deviance explained in the GAMs for 

each microbial taxon and the heritability of that taxon’s relative abundance32. If host effects 

on microbiome dynamics are in part explained by host genotype, we predicted that taxon 

heritability should be positively correlated with deviance explained at the host level (i.e., 

model P+G+H), but not at the group or population level (i.e., model P and model P+G).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Baboons in Amboseli experience shared environments at multiple scales.
(A) Our microbiota time series consisted of 17,265 16S rRNA gene sequencing gut 

microbial profiles. Each point represents a microbiota sample, plotted by the date it was 

collected (x-axis). Each row (y-axis) corresponds to a unique individual host. Samples were 

collected from 600 wild baboons living in 5 original social groups (indicated by dark colors 

marked with black dots in the legend) and 7 groups that fissioned/fused from these original 

groups (no black dots). (B) All baboon groups ranged over a shared ~60 km2 area, and 

the social groups had largely overlapping home ranges. Ranges are shown as 90% kernel 
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densities over the sampling period specific to each group; 5 original social groups are shown 

with solid borders, fission and fusion products with dashed borders. (C) Monthly rainfall 

amounts (blue bars, in mm) with yellow and green stripes along the x-axis representing dry 

and wet seasons, with the width of the green stripes reflecting the number of months within 

the focal year that had at least 1 mm rainfall. (D) Temporal shifts in diet from the years 

2000 – 2013, shown as the relative abundance of diet components in the 5 original social 

groups over 30-day sliding windows prior to each sample collection date. Colors correspond 

to the 13 most common food types, while the grey bars correspond to other or unknown 

food types. Colored boxes around each panel reflect each of the 5 original, most extensively 

sampled social groups (colors as in plots A and B). The white bars indicate time periods 

where no diet data were collected.
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Fig. 2. Baboons show population-wide, cyclical shifts in microbiome community composition 
across seasons and years.
(A) Changes in microbiome PC1 mirror monthly rainfall across all 14 years. The grey 

points show values of PC1 for each of the 17,265 samples (y-axis) on the dates they 

were collected (x-axis). The thin black line and grey band are a plate regression spline 

and 95% simultaneous confidence interval for daily changes in microbiome PC1. Blue 

bars show monthly rainfall (right-hand y-axis), and the yellow and green bars along the 

x-axis represent dry and wet seasons, respectively, with the width reflecting the number 

of months within the focal year with at least 1 mm rainfall. (B) Changes in microbiome 

PC1 on an annual scale across all 14 years (N=17,265 samples). The box plots [box and 

whiskers indicate the median, 25th/75th percentile and 1.5 × interquartile range (IQR)] 

show the distribution of PC1 in wet (green) and dry (yellow) seasons. The thin black 

line and grey band are a plate regression spline and 95% simultaneous confidence interval 

for annual changes in microbiome PC1. Blue points show total annual rainfall (right-hand 

y-axis). (C) The effect of season varies across 52 features of the microbiome, including 

six community features (top panel) and 46 taxa (bottom panel; 12 phyla: light blue 

vertical bar; 34 families: turquoise vertical bar; for 341 ASVs, see Supplementary Fig. 

13). Each horizontal bar shows the effect of season from linear mixed models for each 
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feature. Asterisks indicate features that changed significantly between the wet and dry 

seasons (N=17,265 samples; FDR threshold=0.05). See Supplementary Fig. 6 and 7 for 

feature-specific smooths and Supplementary Fig. 8 and Supplementary Table 3 for results 

for ASVs. (D) Bar plots showing the relative abundance of ASVs colored by four most 

common microbial phyla (above) and the seven most common families (below) across all 

17,265 samples. Green and yellow bars along the x-axes represent wet and dry seasons, 

with the width corresponding to the number of samples in the focal hydrological year and 

season. 22.9% of ASVs (78 of 341) could not be assigned to a known family (“unclassified”, 

shown in grey). The abundance of ASVs unclassified to family in the lower plot is ~35% 

because one unclassified ASV was the second most abundant ASV in the data set, with 

a mean abundance of 16.9% across all samples (ASV#2, phylum Kiritimatiellaeota, order 

WCHB1-41; Supplementary Table 2).
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Fig. 3. Baboons exhibit largely idiosyncratic gut microbial compositions and dynamics.
(A) Temporal autocorrelation in baboon gut microbiome communities for samples collected 

on the same day and up to 5-years (1,825 days) apart. Points show mean ASV-level 

Aitchison similarity (y-axis) between samples as a function of the number of days between 

sample collection (x-axis; small tick marks correspond to months). Lines depict moving 

averages (window size = 7 days) and their ribbons show 95% confidence intervals. The 

grey region on the left indicates samples collected within one month of each other. Brown 

points show average Aitchison similarity between samples collected from the same baboon 

(N=392,817 distinct sample pairs from 547 hosts with 2 or more samples); green points 

show similarity between samples from different baboons living in the same social group 

(N=16,391,761 distinct sample pairs); orange points show similarity between samples from 

different baboons living in different social groups (N=77,520,289 distinct sample pairs). 

(B) Average Aitchison similarity between pairs of samples collected within 10 days of 

each other. Samples from the same baboon are significantly more similar than samples 

collected from different baboons in the same or different social groups (Kruskal-Wallis; p 

= 2.22 × 10−16; N distinct sample pairs = 5,791 for within-host comparisons; 218,340 for 

different host same group; 779,054 for different host different group). Box and whiskers 

indicate the median, 25th/75th percentile and 1.5 × interquartile range (IQR). (C) Temporal 

autocorrelation in Aitchison similarity on monthly scales for samples collected up to 10 

years apart (N distinct sample pairs=496,057 for within-host comparisons; 23,433,667 for 

different host same group; 114,170,919 for different host different group). (D) Microbiome 
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dynamics for 174 samples from 17 baboons for which we had at least one sample from 10 

or more months during the 2008–2009 hydrological year (Nov 2008 to Oct 2009). Panels 

show each individual’s mean values for microbiome PC1, PC2, and PC3; each colored line 

represents a distinct host. See Supplementary Fig. 14 for similar results during another 

densely sampled time period. Gaps indicate that the focal host did not have a sample 

in a given month. (E) Some taxa have more idiosyncratic abundances than others. Each 

horizontal bar shows a given taxon’s minimum and maximum absolute log fold change in 

abundance across the 56 best-sampled hosts (hosts are represented as points within the bars; 

see Supplementary Fig. 9 for information on the 4,277 samples from the 56 best-sampled 

hosts). Absolute fold changes were calculated, for a given taxon in a given host, as the 

taxon’s average clr-transformed abundance across all samples from that host, relative to the 

taxon’s grand mean in all hosts in the population. Hosts with large absolute fold changes 

for a given taxon therefore have abundances of that taxon that are either well above or 

below-average compared to its abundance in the host population at large (hosts with points 

close to zero exhibited taxonomic abundances typical of the population at large). For many 

taxa, hosts varied in their absolute log ratio values, indicating that they also deviated 

substantially from each other in the abundance of those taxa. Taxa (y-axis) are ordered (from 

top to bottom) by their highest absolute log ratio value across the 56 best-sampled hosts. 

Blue bars represent microbial phyla; green bars represent families. See Supplementary Fig. 

15 for a longitudinal version of this analysis for the most and least idiosyncratic phyla and 

families.
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Fig. 4. Multilevel modeling identifies idiosyncratic microbial dynamics.
(A) We fit three hierarchical GAMs to 52 microbiome features measured in 4,277 samples 

from the 56 best-sampled baboons, all of whom lived in the 5 social groups sampled the 

longest (between 2002 and 2010; median=72.5 samples per host; minimum=48 samples; 

maximum=164 samples; Supplementary Fig. 9). Each model contained successive sets of 

predictor variables reflecting population-level factors (pink), group-level factors (green) and 

host-level factors (yellow). The factors at each level are listed at the bottom of panel C 

and defined in Supplementary Table 5). Panel (B) shows, for each microbiome feature (i.e., 

response variable), the deviance explained by model P and the successive sets of predictor 

variables added in model P+G and model P+G+H, respectively (Supplementary Table 6; 

percent deviance is a measure of goodness-of-fit for nonlinear models and is analogous 

to the unadjusted R2 for linear models). Panel (C) shows the loss in deviance explained 

for model P+G+H as we successively removed each predictor variable in turn from model 

P+G+H, keeping the model otherwise intact (Supplementary Table 7). Losses in deviance 
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are shown in green, and we only provide numeric values for losses in deviance > 15%. Gains 

in deviance are shown in red; we only show numeric values for gains > 0.1%.
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Fig. 5. Microbiome taxon heritability is associated with idiosyncratic dynamics.
(A) Deviance explained (y-axis) by the phylum and family level GAMs (from Fig. 4) plotted 

against the focal taxon’s heritability estimate (h2; x-axis). Pink, green and yellow denote 

model P, model P+G and model P+G+H, respectively. Each regression line is plotted with its 

95% confidence interval. (B) Deviance explained (y-axis) across the model hierarchy (pink: 

model P; green: model P+G; yellow: model P+G+H) for each taxonomic feature (i.e., at the 

phylum and family level; x-axis). The x-axis is ordered by increasing heritability with light 

blue and turquoise squares representing phyla and families, respectively. Horizontal dashed 
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lines show the average deviance explained per model for taxa with low heritability estimates 

(h2 <0.05; light gray); medium heritability estimates (0.05< h2< 0.1; dark gray); and high 

heritability estimates (h2 ≥0.1; black).
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