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Abstract

Cognitive reserve (CR) has been introduced to explain individual differences in susceptibility 

to cognitive or functional impairment in the presence of age or pathology. We developed a 

deep learning model to quantify the CR as residual variance in memory performance using the 

structural MRI data from a lifespan healthy cohort. The generalizability of the sMRI-based deep 

learning model was tested in two independent healthy and Alzheimer’s cohorts using transfer 

learning framework.

Structural MRIs were collected from three cohorts: 495 healthy adults (initially aged 20–80) 

from RANN, 620 healthy participants (age 36–100) from lifespan Human Connectome Project 

Aging (HCPA), and 941 subjects from Alzheimer’s Disease Neuroimaging Initiative (ADNI). 

Region of interest (ROI)-specific cortical thickness and volume measures were extracted using the 

Desikan-Killiany Atlas. Cognitive reserve was quantified by residuals which subtract the predicted 

memory from the true memory. Cascade neural network (CNN) models were used to train RANN 

dataset for memory prediction. Transfer learning was applied to transfer the T1 imaging-based 

model from source domain (using RANN) to the target domain (HCPA or ADNI).

The CNN model trained on the RANN dataset exhibited strong linear correlation between true and 

predicted memory based on the chosen T1 cortical thickness and volume predictors. In addition, 

the model generated from healthy lifespan data (RANN) was able to generalize to an independent 

healthy lifespan data (HCPA) and older demented participants (ADNI) across different scanner 

types. The estimated CR was correlated with CR proxies such education and IQ across all three 

datasets.
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The current findings suggest that the transfer learning approach is an effective way to generalize 

the residual-based CR estimation. It is applicable to various diseases and may flexibly incorporate 

different imaging modalities such as fMRI and PET, making it a promising tool for scientific and 

clinical purposes.
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Introduction

Approximately 15–20% of adults aged 65 or older suffer from significant cognitive decline 

resulting in mild cognitive impairment (MCI); among these, 11.3% adults later develop 

dementia due to Alzheimer’s disease (AD) (Association, 2021). With the lack of an effective 

treatment strategy, there is a great need to identify factors that can slow the progression to 

dementia and maintain quality of life (Zissimopoulos, Crimmins, & St Clair, 2014).

Cognitive reserve (CR) has been introduced to explain individual differences in 

susceptibility to cognitive or functional impairment in the presence of age or disease-

related brain changes (Stern, 2002). Individuals with high CR have greater resilience and 

maintained normal cognitive function longer when confronted with late-life neuropathology. 

Typical CR proxy measures include years of education (Meng & D’Arcy, 2012; Stern et al., 

1994), premorbid IQ (Alexander et al., 1997), occupational achievement, and engagement in 

cognitively and socially stimulating activities (Scarmeas & Stern, 2003). These are thought 

to protect against functional impairment by promoting the ability to better compensate 

for brain changes. However, qualifying as a proxy for cognitive reserve does not imply 

sufficiency for the mechanism proper since a rigorous test of cognitive-reserve mechanisms 

requires both brain and cognitive measures. Proxy measures, while often used in the past 

and spoken about interchangeably with cognitive reserve, are not enough here since their 

effect on cognition could be fully mediated through brain structure, a clear case where better 

brain maintenance, and not better cognitive reserve, would be at play. An NIH-funded 

collaboratory for clarifying research definition for cognitive reserve and resilience has 

brought all this into clear focus over the last 3 years. (https://reserveandresilience.com/). 

Thus, proxy measures fail to provide the entirety of the construct; the same value of a proxy 

variable may reflect different experiences across people. In addition, most proxy measures 

only represent static cognitive reserve and cannot account for possible change over time. 

Lastly, these measures rely on the recollection of prior activities, which are an indirect proxy 

of CR. (Borenstein, Copenhaver, & Mortimer, 2006; Jones et al., 2011; Satz, Cole, Hardy, & 

Rassovsky, 2011). To address these limitations, a direct measure of CR based on unbiased 

current information is highly needed. One popular approach to quantify CR is to measure the 

residual variance between predicted cognitive performance based on an individual’s level of 

brain status and neuropathology and the actual individual’s performance (Reed et al., 2010). 

These residual-based measures offer a more precise measurement of CR (Bocancea et al., 

2021). High-reserve individuals exhibit higher actual measured cognitive performance than 

that predicted.
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Structural magnetic resonance imaging (sMRI) has been used as a measure of the regional 

brain atrophy underlying cognitive decline and dementia (Mueller, Schuff, & Weiner, 2006). 

Previous studies using the sMRI to calculate the residual variance operational measure of 

CR showed promising results (Reed et al., 2010; Zahodne et al., 2015; Zahodne et al., 

2013) in older participants. Currently, most research in cognitive aging has used life-span 

data (Razlighi, Habeck, Barulli, & Stern, 2017; Salthouse, 2010; Taylor et al., 2017; Tucker-

Drob, 2019). However, leveraging life-span brain and cognition data in quantifying cognitive 

reserve has not been done.

In addition, brain imaging data from multi-sites may have high variability due to different 

MRI sequences of different scanners, thus, limiting direct application of a previously trained 

model to new datasets acquired from different sites.

Traditional machine learning methods to mitigate the influence of variability across sites 

require a balanced sample from each site and assume the same distribution across training 

and test datasets. The performance of a predictive model declines when these assumptions 

are violated. Transfer learning is a machine learning technique that utilizes the knowledge 

gained from one task and applies it to a different but related task. It is a popular optimization 

approach that allows rapid progress or improved performance when modeling the second 

task. The sMRI obtained from various sites or scanners may represent similar brain 

properties but may exhibit different observational distributions. Thus, the transfer learning 

approach may be applied to improve the generalizability of the sMRI-based residual models.

In this study, we proposed a CR quantification framework that leverages a single-site, large 

scale lifespan data and uses transfer learning to handle scanner and site differences. We first 

built a deep learning model to quantify the CR as residual variance in memory performance 

using the sMRI data from a healthy lifespan cohort (age 20–80). Our first goal was to 

assess whether using lifespan data of healthy individuals, which shows more variability in 

cognition function, may enable better quantification of the relationship between sMRI and 

cognitive performance. Second, to test the generalizability of the sMRI-based deep learning 

model, we utilized the transfer learning approach to fine-tune the pre-trained deep learning 

model to an independent, healthy lifespan cohort: the Human Connectome Project-Aging 

cohort (HCPA). Third, to test whether the model generated from healthy lifespan data 

could generalize to older MCI or demented individuals, we used transfer learning again to 

fine-tune the model to fit data from participants in the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI). The ADNI datasets were acquired from different scanners and under 

different imaging conditions, so we could test whether the model is affected by different 

scanners. To validate our operationalization of CR in all three cohorts, we hypothesized that 

the estimated CR would correlate with education and IQ (i.e., a well‐established CR proxy).

Method and Material

Participants

CR/RANN: 495 healthy adults (initially aged 20–80) were drawn from our ongoing studies 

at Columbia University Irving Medical Center: The Reference Ability Neural Network 
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(RANN) study and the Cognitive Reserve (CR) study (Stern, 2009; Stern et al., 2014). 

Demographic characteristics of these participants are summarized in Table 1.

Subjects were recruited primarily by randomized market mailing. An initial telephone 

screening determined whether participants met basic inclusion criteria (i.e., right-handed, 

English speaking, no psychiatric or neurological disorders, and normal or corrected-to-

normal vision). Potentially eligible participants were further screened in person with 

structured medical and neuropsychological evaluations to ensure that they had no 

neurological or psychiatric conditions, cognitive impairment, or contraindication for MRI 

scanning. Global cognitive functioning was assessed with the Mattis Dementia Rating Scale 

(Lucas et al., 1998), on which a minimum score of 130 was required for retention in the 

study. In addition, participants who met diagnostic criteria for MCI were excluded. The 

studies were approved by the Internal Review Board of the College of Physicians and 

Surgeons of Columbia University. Initially, 561 participants were enrolled to CR/RANN 

study, and 532 participants had memory composite score, and 37 participants (7%) were 

further excluded due to missing T1images, resulting 495 participants. All 495 images passed 

QC.

CR/RANN Memory Tasks: all participants performed Selective Reminding Task (SRT) 

(Buschke & Fuld, 1974). Three memory measures were based on sub-scores of the SRT: 

the long-term storage sub-score, continuous long-term retrieval, and the number of words 

recalled on the last trial. The z-scores of each of the three measures were computed by 

subtracting the sample means followed by dividing by the sample standard deviation. The 

composite memory scores were computed as the average of the three z-scores.

HCPA: 620 healthy participants with available cognitive data (age 36–100) from the 

lifespan Human Connectome Project Aging were included in this study (Bookheimer et al., 

2019). The demographic information for the participants was presented in Table 1. HCPA 

excludes participants who have been diagnosed and treated for major psychiatric disorders 

(e.g., schizophrenia, bipolar disorder) or neurological disorders (e.g., stroke, brain tumors, 

Parkinson’s Disease). To be included in the current study, the following measurements had 

to be available: 1) T1-weighted MRI scans from 3T scanner, 2) years of education and recent 

occupation, and 3) Composite episodic memory score.

HCPA Memory Tasks: The cognitive and performance battery includes episodic memory 

measured by Picture Sequence Memory Test and Rey Auditory Verb al Learning Test 

(RAVLT). The z-scores of each of the three measures were computed by subtracting the 

sample means followed by dividing by the sample standard deviation. The composite 

memory scores were computed as the average of the three z-scores.

ADNI: 941 subjects, including 417 normal control (CN), 378 mild cognitive impairment 

(MCI), and 146 Alzheimer’s disease (AD), were included from this study. The demographic 

information for the participants is presented in Table 1 and Table 3.

Detailed inclusion and exclusion criteria for the ADNI study can be found at 

adni.loni.usc.edu. To be included in the current study, the following measurements had 
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to be available: 1) T1-weighted MRI scans from 3T scanner, 2) years of education and 

recent occupation, and 3) Composite memory score (Crane et al., 2012). Written informed 

consent was obtained from all study participants according to the Declaration of Helsinki, 

and Ethical approval for data collection and sharing was given by the institutional review 

boards of the participating institutions in the ADNI.

ADNI Memory Tasks: ADNI memory was measured using modern psychometric 

approaches to analyze Rey Auditory Verbal Learning Test (RAVLT, 2 versions), AD 

Assessment Schedule – Cognition (ADAS-Cog, 3 versions), Mini-Mental State Examination 

(MMSE), and Logical Memory data. The composite scores were computed based on bifactor 

model (Crane et al., 2012). The computed data were downloaded from the ADNI website 

(UWNPSYCHSUM_03_26_20.csv).

Image Procedures

Neuroimaging data acquisition

RANN: Structural MRI scans were acquired on a 3.0T Philips Achieva scanner. T1-

weighted MPRAGE scan was acquired with a TE/TR of 3/6.5 ms and Flip Angle of 8°, 

in-plane resolution of 256 × 256, field of view of 25.4 × 25.4 cm, and 165–180 slices in 

axial direction with slice-thickness/gap of 1/0 mm.

HCPA: Structural MRI scans were acquired from all sites using 3T Siemens Prisma scanner, 

and 32-channel Prisma head coil. T1-weighted images were acquired with 3D multi-echo 

magnetization prepared rapid gradient echo (MEMPRAGE) at 0.8 mm isotropic resolution 

(Harms et al., 2018). Other parameters include: TR/TI = 2500/1000, TE = 1.8/3.6/5.4/7.2 

ms, flip angle of 8 deg, FOV of 256 × 240 × 166 mm with a matrix size of 320 × 300 × 208 

slices, water excitation employed for fat suppression (to reduce signal from bone marrow 

and scalp fat), and up to 30 TRs allowed for motion-induced reacquisition.

ADNI: Structural MRI scans were acquired from all sites using 3T Philips, GE, and 

Siemens scanners. Since the acquisition protocols were different for each scanner, an 

image normalization step was performed by the ADNI. The imagining sequence was a 

3-dimensional sagittal part magnetization prepared of rapid gradient-echo (MPRAGE). 

This sequence was repeated consecutively to increase the likelihood of obtaining at least 

one decent quality of MPRAGE image. Image corrections involved calibration, geometry 

distortion, and reduction of the intensity of non-uniformity applied on each image by the 

ADNI. More details concerning the sMRI images is available on the ADNI homepage 

(http://adni.loni.usc.edu/methods/mri-tool/mri-analysis/).

Neuroimaging data processing

Each subject’s structural T1 scan was reconstructed using FreeSurfer v7.1.1 (http://

surfer.nmr.mgh.harvard.edu/). The accuracy of FreeSurfer’s subcortical segmentation and 

cortical parcellation (Fischl et al., 2002) has been reported to be comparable to manual 

labeling. All T1 images went through an automated quality control through MRIQC 

(Esteban et al., 2017). For the multiple available T1 images at the same visit, we selected 

the images with the best quality for further analysis. For all images that passed quality 
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check, cross-sectional image processing was performed using FreeSurfer Version 7.1.1 

(https://surfer.nmr.mgh.harvard.edu/). Region of interest (ROI)-specific cortical thickness 

and volume measures were extracted from the automated anatomical parcellation using the 

Desikan-Killiany Atlas (Desikan et al., 2006) for cortical and aseg atlas for subcortical ROIs. 

To test the robustness of the models (supplementary material), we also used an alternative 

Destrieux atlas (Destrieux, Fischl, Dale, & Halgren, 2010).

Brain memory prediction model

The memory prediction model was trained using the RANN dataset. An overview of the 

transfer learning method is presented in Figure 1. First, the RANN dataset was split 

into the training set (70%) and test set (30%) using a conditionally random method. The 

distributions of age and sex in the two sets were statistically identical. Cascade neural 

network models with all regional cortical thickness and volume from FreeSurfer as inputs 

were used to train the RANN dataset for memory prediction. The cascade neural network is 

a feedforward neural network involving connections from the input and every previous layer 

to the subsequent layer (Figure 2). The advantage of the model is that it accommodates the 

nonlinear relationship between input and output. The CNN outperforms the other common 

classical machine learning approaches for brain residual-based analysis and is more flexible 

and efficient to implement the transfer learning framework than other approaches. (Chen et 

al., 2020). The hyperparameters of the model, including numbers of hidden layers, numbers 

of neurons, penalty of regularization and types of activation function, were optimized 

through random search. The loss function of model optimization was specified as mean 

square error function optimized using gradient descent algorithm with an adaptive learning 

rate and constant momentum. A 10-fold cross-validation procedure was conducted within 

the training set to estimate the memory prediction model performance. To quantify model 

performance, metrics including Pearson’s correlation coefficient (rho), mean absolute error 

(MAE) and cohen’s f2 between the predicted and true memory were calculated.

Transfer learning

To transfer the T1 imaging-based model from source domain (using RANN) to the target 

domain (HCPA or ADNI), we first randomly divided the whole HCPA or ADNI dataset into 

the tuning pool and test sets (tuning set 70%, test set 30%). The subset of the tuning pool 

was randomly selected to re-train the pre-trained model.

In the refined optimization procedure of the transfer learning, the optimal tuning sample, the 

regularization ratio (0 to 1), the loss function (i.e. mean square error), and the choice which 

layers were frozen (if the layer of the pre-trained model was frozen, the parameters in that 

layer were not updated in the fine-tuning process) were tested. The transfer learning process 

was optimized using an agile optimization process because it facilitated rapid prototyping 

and broad searching. After the tuning procedure, the transferred model was applied to 

the test set for model performance evaluation. We compared the performance of transfer 

learning approach with the TLCO, which is used for re-training the pre-trained memory 

prediction model by using a combination of the tuning and training sets with the site 

indicator. We optimized the tunning process by adopting an agile optimization method that 

exploit a time-saving optimizer called scaled conjugate gradient (SCG) algorithm for fast 
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optimization and the hyperparameter settings emulated as those of the training process in the 

target domain. We compared the performance of the optimized transfer learning with tuning 

procedure with the model applied pre-trained model without tuning. Since ADNI data was 

collected from multiple sites and multiple scanners, for the secondary analysis, we applied 

the transfer learning by the scanner manufacturers: GE, Siemens and Philips. The data in the 

three target domains were divided in to the tuning-pool and test sets (Siemens: tuning pool 

N=377, test set N=160; GE: tuning pool N=164, test set N=68; Philips: tuning pool N=124, 

test set N=48). Then, transfer learning was performed in the same pattern separately for 

three datasets. The transfer learning with cotrain (TLCO) method was used to compare the 

performance with transfer learning. TLCO integrated both training set from source domain 

and tunning set from target domain to tune the pre-trained CNN model. The TLCO approach 

accounts for intersite differences through statistical variance analysis. It employs statistical 

models to regress out site-specific differences by using statistical covariates. This approach 

requires the source domain data to be accessible and the data size from different sites to 

be balanced. The code of the transfer learning is available at https://github.com/XiZhu-CU/

Transfer-Learning-Submission.

Quantification of cognitive reserve

After establishing the memory prediction model, a person’s predicted memory performance 

could be obtained. Structural brain features along with age and sex were included in 

the model as predictors (Reed et al., 2010). Race was not included in the model as a 

predictor because more than 93% of our targeted sample (ADNI) is non-Hispanic white. 

The impact of race on the model performance is presented in supplementary material. 

In addition, the estimated intracranial volume (eTIV) was extracted from each subject 

and used as a predictor. Cognitive reserve was quantified by residuals which subtract the 

predicted memory from the true memory. To validate our brain-based CR quantification, we 

performed correlation analyses between the residuals and several proxies of CR including 

education, occupation and IQ. For RANN and ADNI, we used National Adult Reading Test 

(NART) IQ, which reflects the crystallized intelligence. Occupational attainment variables 

(data, people, things) reflect the specific demands of an occupation. All RANN and ADNI 

findings were corrected for multiple comparison at p<0.01 (5 measures: education, IQ, data, 

people, things). Similarly, for HCPA, the NIH Toolbox was administrated provided the 

Crystallized composite scores which reflects the intelligence. The Crystallized Composite 

score is derived from performance on the Reading Recognition and the Picture Vocabulary 

tasks (Heaton et al., 2014). The HCPA findings were corrected for multiple comparison at 

p<0.025 (2 measures: education, IQ).

Results

Demographic Characteristics

Demographic and clinical characteristics are presented in Table 1. All three datasets 

significantly differed in age, sex, and education. Participants were older in ADNI compared 

with RANN and HCPA. Education was higher in HCPA subjects, compared with RANN or 

ADNI. IQ was not significantly different between CRNN and ADNI.
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Training memory prediction modeling in the RANN dataset

The cascade neural network model (Figure 2) using 10-fold cross-validation on the 

RANN training set demonstrated significant linear correlation between true and predicted 

memory based on the chosen T1 cortical thickness and volume predictors for both training 

set (rho=0.6076, MAE=0.5856, cohen’s f2=0.58) and independent test set (rho=0.3886, 

MAE=0.6980, cohen’s f2=0.18) (Figure 3). After random search, the model performance 

improved in training set (rho=0.5578, MAE=0.5792, cohen’s f2=0.45) and test set 

(rho=0.3963, MAE=0.6888, cohen’s f2=0.19).

There was significant correlation of NART IQ with residuals for training set (NART IQ: 

rho=0.154, p-value =.004, cohen’s f2=0.01). There was significant correlation between the 

residuals and both NART IQ (NART IQ: rho=0.169, p-value =.003, cohen’s f2=0.03) and 

education (rho=0.2069, p-value=0.01, cohen’s f2=0.04) for test set. Residuals were not 

associated with data, people or things.

Transfer learning to HCPA

The best model trained using RANN dataset (pre-trained model) was used in this analysis. 

First, we tuned the model using tuning set from target domain (HCPA). We found linear 

correlation and low MAE between true and predicted memory for tuning set (rho=0.4909, 

MAE=0.4101, cohen’s f2=0.32) and test set (rho=0.4062, MAE=0.4107, cohen’s f2=0.20). 

When we directly applied pre-trained model without tuning, the performance dropped 

in test set (rho=0.3099, MAE=0.5358, cohen’s f2=0.11) (Figure 4). Second, the transfer 

learning with cotrain (TLCO) approach uses both training set from source domain (RANN) 

and tunning set from target domain (HCPA) to further tune the pre-trained model. The 

TLCO performed comparable with the transfer learning approach (Tuning set: rho=0.3872, 

MAE=0.4318, cohen’s f2=0.18; Test set: rho=0.4474, MAE=0.3867, cohen’s f2=0.25).

There was significant correlation of both IQ and education with residuals of the transfer 

learning model for both tuning set (IQ: rho=0.227, p-value <.001, cohen’s f2=0.05; 

education: rho=0.255, p-value=0.0015, cohen’s f2=0.07); IQ: rho=0.3612, p-value <.001, 

cohen’s f2=0.15; education: rho=0.2798, p-value<.001, cohen’s f2=0.09).

Transfer learning to ADNI

1. Primary analysis—We found strong linear correlation and low MAE between true 

and predicted memory for tuning set (rho=0.7385, MAE=0.4935, cohen’s f2=1.2) and test 

set (rho=0.7117, MAE=0.5435, cohen’s f2=1.03). When we directly applied the pre-trained 

model without tuning, performance dropped in test set (rho=0.5485, MAE=0.9259, cohen’s 

f2=0.43) (Figure 5). The TLCO performed comparable with the transfer learning approach 

(Tuning set: rho=0.7187, MAE=0.5158, cohen’s f2=1.1; Test set: rho=0.6684, MAE=0.5967, 

cohen’s f2=0.81).

There was significant correlation between IQ, education, and residuals of the transfer 

learning model for both tuning set (IQ: rho=0.2025, p-value < .001, cohen’s f2=0.04; 

education: rho=0.1698, p-value=0.0032, cohen’s f2=0.03) and test set (IQ: rho=0.366, p-

value < .001, cohen’s f2=0.15; education: rho=0.255, p-value < .001, cohen’s f2=0.07).
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We further assessed the correlation of IQ and education with residuals separately within 

each diagnosis group (CN, MCI and AD). Correlations of NART IQ and education with 

residuals are presented in Table 4. Significant correlation between IQ and residuals was 

found in all three groups, while the significant correlation between education and residuals 

was found in CN and MCI.

2. Secondary analysis—We found strong linear correlation and low MAE between 

true and predicted memory in the Siemens, GE and Philips respectively for tuning set 

(Siemens: rho=0.6488, MAE=0.0.5349; GE: rho=0.7813, MAE=0.4700, cohen’s f2=1.57; 

Philips: rho=0.8264, MAE=0.3850, cohen’s f2=2.15) and test set (Siemens: rho=0.5909, 

MAE=0.5163, cohen’s f2=0.54; GE: rho=0.6558, MAE=0.5932, cohen’s f2=0.75; Philips: 

rho=0.5785, MAE=0.7179, cohen’s f2=0.50). Using the transfer learning approach, the 

performance of the RANN pre-trained model could be reproduced in each target domain 

with a smaller amount of tuning data (Figure 6). The transfer learning approach always 

outperformed the TLCO. The results are shown in Table 3.

Significant and positive correlations between NART IQ, education and residuals were 

demonstrated in both tuning and test sets (Table 5).

Discussion

In this study, we built a deep learning model to quantify the CR as residual variance in 

memory performance using the sMRI data from a healthy lifespan cohort (age 20–80). 

Importantly, our study demonstrates that the pre-trained model constructed using the healthy 

lifespan data (RANN) from a single-site and a single sequence was able to generalize to 

two target datasets acquired with different age ranges, imaging protocols, and clinical status. 

These included healthy lifespan Human Connectome Project-Aging cohort (HCPA) and 

older MCI and demented participants from Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) across different scanner types. By tuning the models with relatively small sample 

sizes and the same T1 brain features, optimal transferred models were obtained with 

satisfactory prediction performance in both target cohorts. The estimated CR was also 

validated by showing significant correlation with CR proxies such as education and IQ 

across all three datasets.

We found that the cascade neural network (CNN) model trained on the RANN data 

demonstrated a linear correlation between true and predicted memory based on the T1 

cortical thickness and volume predictors. The sMRI-based measure of CR was associated 

with CR the proxy measures of education and IQ. Previous studies have used sMRI from 

older healthy subjects (Sole-Padulles et al., 2009), older MCI, or patients with AD to 

quantify CR (van Loenhoud et al., 2017). However, patients with neurological diseases with 

aberrant cognition may lead to bias for the quantification of CR. We first demonstrated 

that using lifespan data of healthy individuals, enabled good quantification of cognitive 

performance. It is worth noting that the performance achieved by our model is also 

comparable to that of previous studies applying residual approaches on quantifying CR 

(Vieira, Pinaya, & Mechelli, 2017).
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Second, to test the generalizability of the sMRI-based deep learning model, this study 

utilized the transfer learning approach to fine-tune the pre-trained deep learning model to 

an independent, healthy lifespan HCPA data. The transfer learning approach is an efficient 

and stabilized way to generalize the T1 imaging-based memory prediction model. Compared 

with the TLCO, the tuning methods with the transfer learning approach always provided 

lower MAE and a stronger correlation between the actual and predicted memory in all 

results.

Third, the model not only could generalize from healthy lifespan data to an independent 

healthy lifespan HCPA dataset, but also to an older demented participants from ADNI 

using transfer learning. Although the three datasets administrated different tests to assess 

memory, by tunning the models with relatively small sample size, prediction performance of 

the models were relatively comparable. Moreover, the models were robust across different 

scanners. When conducting retrospective multi-center imaging studies, such as ADNI, or 

applying models trained on one site to another, heterogeneous MRI data from different 

scanner hardware, and acquisition protocols will pose challenges in the evaluation and 

generalization of these trained models. Structured programs aimed at standardizing and 

harmonizing MRI acquisition in research settings (Weiner et al., 2017). However, data 

obtained in these selected frameworks might not be representative of real-world populations. 

In our work, CNN was trained, tested using the RANN dataset, then using transfer learning 

to fine-tune and test in another two datasets obtained by different MR protocols and scanners 

to capture the full spectrum of heterogeneity among data and provide a less dataset-specific 

approach. Through further training iterations, the pre-trained CNN network adjusted for 

data bias stemming from the differences in acquisition and reconstruction between different 

scanners. In fact, our approach overcomes the caveats of previous work, which obtained 

data from single-center datasets leading to a limited reproducibility of findings (Wen et al., 

2020).

Interestingly, In the residual-based cognitive reserve (CR) or brain age gap (BAG) literature, 

a correlation between residuals and the outcome (e.g., age or cognition) has been observed 

(for example, (Anaturk et al., 2021; Le et al., 2018)). It is still an ongoing investigation in 

the cause of remaining correlation with age or cognition in the residual-based measures. It is 

potentially due to the choice of the imaging modality, mis-specified models, and many other 

unknown causes. Some studies suggested re-residualizing the outcome (e.g., age, cognition) 

to remove the correlation (Le et al., 2018), but it is also criticized by others (Butler et al., 

2021), because it can inflate residual-based measure’s relative quantity. At present, there are 

no established and validated remedies, and it is out of the scope of the current manuscript.

In the current study, we used a standard pipeline to process the raw MRI image and 

extracted the cortical thickness and volume measures from T1-weighed MRIs. Our ROI-

based approach shown promising and robust results for the given sample sizes. Further 

deep learning studies with larger sample size may also consider using voxel-wise whole 

brain based approach as input. Moreover, despite progress on the interpretability of deep 

learning, deep neural networks are still considered, to a large extent, as black boxes, due 

to the difficulty of interpreting their inner networks. For example, even when an model 

allows detection of patients from controls with high levels of accuracy, it can be difficult to 
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establish the specific features that informed the classification decision (Cruz-Roa, Arevalo 

Ovalle, Madabhushi, & Gonzalez Osorio, 2013). However, our focus of this study was to 

better predict the memory measures, further studies may develop more interpretable deep 

learning models to better understand the underlying neural mechanism. Lastly, we only used 

sMRI to assess the feasibility for CR estimation across three studies. Future studies should 

consider adding other MRI modalities, such as, diffusion tensor imaging (DTI), PET, and 

CSF biomarkers together with sMRI to improve the power of prediction as well as the 

accuracy of the residual in estimating CR.

Conclusions

In conclusion, we have shown the general feasibility of using deep learning to quantify 

cognitive reserve by leveraging lifespan healthy data. Our findings showed that brain/

cognitive function across lifespan provided good brain-based quantification of CR. 

Moreover, transfer learning shows promises for building robust models that can be 

fine-tuned and generalized to independent healthy lifespan cohort and in patients with 

Alzheimer’s disease, also robust across different scanners with different acquisition 

parameters. The residuals (CR) were significantly associated with NART IQ and education 

across different cohorts. The transfer learning method is applicable to various brain diseases 

or CR proxies and may flexibly incorporate different imaging modalities making it a 

promising tool for scientific and clinical purposes.
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Highlight:

• Quantification of cognitive reserve using brain measures for pre-symptomatic 

Alzheimer’s patients can be estimated by leveraging lifespan data.

• Multi-center, multi-scanner, multi-sequence can affect the performance of the 

quantification.

• Leveraging lifespan data from a single site can improve the performance.

• Transfer learning allows the pre-trained network to successfully reconstruct 

the dataset acquired from different domains or age groups.
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Figure 1. 
Overview of transfer learning methods
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Figure 2: 
the initial cascade neural network model used to train CR model (top). The cascade neural 

network is a feedforward neural network involving connections from the input and every 

previous layer to the subsequent layer. This network trained using RANN dataset has seven 

layers (L1 to L7). The number under each layer represents the number of neurons in that 

layer. The first layer has a weight coming from the input and each subsequent layer has 

weight coming from the inputs with all previous layers. The last layer is the network output, 

called as output layer. The output layer is also connected directly with the input layer beside 

with hidden layer. The hyperparameters of the model, including numbers of hidden layers 

and neurons, penalty of regularization, and types of activation function, were determined 

through random search. The optimized CNN model after random search (bottom) included 5 

layers.
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Figure 3. 
Scatter plot for true memory (x axis) against predicted memory (y axis) in RANN dataset 

after random search.

A) Training set; B) Test set
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Figure 4. 
Scatter plot for true memory (x axis) against predicted memory (y axis) in HCPA dataset, 

while applied pretrained model from RANN.

A) Tuning set using HCPA data; B) Test set after tuning using HCPA data; C) Test set if 

applying the pretrained model directly
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Figure 5. 
Scatter plot for true memory (x axis) against predicted memory (y axis) in ADNI dataset, 

while applied pretrained model from RANN.

A) Tuning set; B) Test set after tuning; C) Test set if applying the pretrained model directly
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Figure 6. 
Scatter plot for true memory (x axis) against predicted memory (y axis) in ADNI dataset by 

scanner types using random searching models.
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Table 1.

Demographic Characteristics in RANN, HCPA, and ADNI Study

RANN HCPA ADNI p

Total N 495 620 941

Age <0.001

- Mean(SD) 53.42 (16.90) 59.499 (15.171) 72.40 (7.21)

- Median(Q1,Q3) 60.00 (38.00,67.00) 58.04 (46.92,70.98) 72.00 (67.00,77.00)

Sex, n(%) 0.0065

- Female 282 (57%) 358 (57.6%) 474 (50.4%)

- Male 213 (43.0%) 263 (42.4%) 467 (49.6%)

Memory <0.001

- Mean(SD) 0.03(0.94) 0.01 (0.72) 0.45 (0.91)

- Median(Q1,Q3) 0.13(−0.62,0.80) -0.34 (−0.38, 0.37) 0.53 (−0.19,1.12)

Education <0.001

- Mean(SD) 16.20 (2.35) 17.46 (2.19) 16.42 (2.53)

- Median(Q1,Q3) 16.00 (14.00,18.00) 18.00 (16, 19) 16 (15.00,18.00)

IQ NART IQ Nih fluidcogcomp NART IQ 0.512

- N-Miss 5 2 17

- Mean(SD) 117.02 (8.68) 120.85 (139.17) 116.35 (11.23)

- Median(Q1,Q3) 119.20
(111.92, 124.00)

100
(91.00, 108.00) 119.44 (110.76,124.40)

People

- N-Miss 113 - -

- Mean(SD) 4.77 (2.28) - -

- Median(Q1,Q3) 6.00 (3.00, 6.00) - -

Data

- N-Miss 113 - -

- Mean(SD) 1.73 (1.44) - -

- Median(Q1,Q3) 1.00 (1.00, 3.00) - -

Things

- N-Miss 113 - -

- Mean(SD) 5.40 (2.40) - -

- Median(Q1,Q3) 7.00 (2.00, 7.00) - -

Diagnosis, n(%)

CN 495 (100%) 620 (100%) 417 (44.3%)

MCI - - 378 (40.2%)

AD - - 146 (15.5%)
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Table 2.

Demographic Characteristics in ADNI dataset across three scanners

GE
(N=232)

Philips
(N=172)

Siemens
(N=537)

Total
(N=941) p-value

ADNI Memory 0.043

 - Mean (SD) 0.38(0.95) 0.36(0.92) 0.52(0.90) 0.45(0.91)

Diagnosis, n(%) 0.034

 - CN 99(42.7%) 64(37.2%) 254(47.3%) 417(44.3%)

 - MCI 87(37.5%) 77(44.8%) 214(39.9%) 378(40.2%)

 - AD 46(19.8%) 31(18.0%) 69(12.8%) 146(15.5%)

Age 0.803

 - Mean (SD) 72.62(7.13) 72.50(6.86) 72.26(7.36) 72.40(7.21)

Gender, n(%) 0.307

 - Female 109(47.0%) 83(48.3%) 282(52.5%) 474(50.4%)

 - Male 123(53.0%) 89(51.7%) 255(47.5%) 467(49.6%)

PT Education 0.665

 - Mean (SD) 16.31(2.64) 16.38(2.58) 16.49(2.46) 16.42(2.53)

NART IQ 0.365

 - N-Miss 10 5 2 17

 - Mean (SD) 115.53 (11.55) 116.05 (11.31) 116.77 (11.07) 116.35 (11.23)
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Table 3.

Model performance for ADNI datasets by scanning manufacturers using random searching model

Manufacturers Tuning set
(TL)

Test set before tuning (TL) Test set after tuning (TL) Tuning set
(TLCO)

Test set (TLCO)

Siemens Rho 0.6488 0.4589 0.5909 0.7836 0.5904

MAE 0.5349 0.8938 0.5163 0.5750 0.6244

GE Rho 0.7813 0.5181 0.6558 0.5655 0.4636

MAE 0.4700 0.8461 0.5932 0.6816 0.6731

Philips Rho 0.8264 0.3138 0.5785 0.5039 0.5238

MAE 0.3850 0.9285 0.7179 0.6406 0.6563

*transfer learning (TL), and the hybrid (TLCO) approaches
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Table 4.

Pearson’s correlation coefficient between IQ, education and residuals by group diagnosis in ADNI dataset

Group IQ p-value Education p-value

CN Tuning set residuals 0.109 0.063 0.122* 0.036

Test set residuals 0.302** 0.001 0.304** 0.001

MCI Tuning set residuals 0.189** 0.002 0.148* 0.015

Test set residuals 0.245* 0.011 0.112 0.244

AD Tuning set residuals 0.355** 0.001 0.093 0.366

Test set residuals 0.215 0.138 0.003 0.986
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Table 5.

Pearson’s correlation coefficient between IQ, education and residuals by scanner types in ADNI dataset

Manufacturer IQ p-value Education p-value

Siemens Tuning set residuals 0.2364** < .001 0.2171** 0.0020

Test set residuals 0.1933* 0.0143 0.1858* 0.0186

GE Tuning set residuals 0.2700** 0.0085 0.1999* 0.0461

Test set residuals 0.0886 0.4791 0.3130* 0.0094

Philips Tuning set residuals 0.1996* 0.0488 0.2808** 0.0047

Test set residuals 0.5001** <.001 0.3424** 0.0172

Neuroimage. Author manuscript; available in PMC 2022 September 01.


	Abstract
	Introduction
	Method and Material
	Participants
	CR/RANN:
	HCPA:
	ADNI:

	Image Procedures
	Neuroimaging data acquisition
	RANN:
	HCPA:
	ADNI:

	Neuroimaging data processing
	Brain memory prediction model
	Transfer learning
	Quantification of cognitive reserve

	Results
	Demographic Characteristics
	Training memory prediction modeling in the RANN dataset
	Transfer learning to HCPA
	Transfer learning to ADNI
	Primary analysis
	Secondary analysis


	Discussion
	Conclusions
	References
	Figure 1.
	Figure 2:
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.

