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SUMMARY

Background: Pro-inflammatory fibroblasts are critical for pathogenesis in rheumatoid arthritis, 

inflammatory bowel disease, interstitial lung disease, and Sjögren’s syndrome and represent 

a novel therapeutic target for chronic inflammatory disease. However, the heterogeneity of 

fibroblast phenotypes, exacerbated by the lack of a common cross-tissue taxonomy, has limited 

our understanding of which pathways are shared by multiple diseases.

Methods: We profiled fibroblasts derived from inflamed and non-inflamed synovium, intestine, 

lungs, and salivary glands from affected individuals with single-cell RNA sequencing. We 

integrated all fibroblasts into a multi-tissue atlas to characterize shared and tissue-specific 

phenotypes.

Findings: Two shared clusters, CXCL10+CCL19+ immune-interacting and SPARC+COL3A1+ 

vascular-interacting fibroblasts, were expanded in all inflamed tissues and mapped to dermal 

analogs in a public atopic dermatitis atlas. We confirmed these human pro-inflammatory 

fibroblasts in animal models of lung, joint, and intestinal inflammation.
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Conclusions: This work represents a thorough investigation into fibroblasts across organ 

systems, individual donors, and disease states that reveals shared pathogenic activation states 

across four chronic inflammatory diseases.

Funding: Grant from F. Hoffmann-La Roche (Roche) AG.

Graphical Abstract

Fibroblasts support tissue re-organization and immunoregulation in inflammatory diseases. 

Korsunsky et al. construct a single-cell atlas of human fibroblasts from four diseases (Sjögren’s 

syndrome, interstitial lung disease, ulcerative colitis, and rheumatoid arthritis), define two 

functionally distinct inflammatory fibroblast phenotypes shared across diseases, and confirm their 

presence in independent datasets.

INTRODUCTION

Fibroblasts are present in all tissues and adopt specialized phenotypes and activation 

states to perform essential functions in development, wound healing, and maintenance 

of tissue architecture as well as pathological functions such as tissue inflammation, 

fibrosis, and cancer responses.1 Recent studies of chronic inflammatory disease have 

leveraged advances in high-throughput single-cell genomics, particularly single-cell RNA 

sequencing (scRNA-seq) to identify molecularly distinct fibroblast populations associated 

with pathological inflammation in different anatomical sites.2–9 A study of the large 

intestine from individuals with ulcerative colitis (UC) identified stromal cells expressing the 
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Oncostatin-M receptor (OSMR) and Podoplanin (PDPN) enriched in biopsies tracking with 

failure to respond to anti-tumor necrosis factor (TNF) therapy.10 Other studies suggested 

immunomodulatory roles of OSMR+PDPN+ intestinal fibroblasts through interactions 

with inflammatory monocytes3 and neutrophils.11 Lung investigations identified that 

COL3A1+ACTA2+ myofibroblasts, PLIN2+ lipofibroblast-like cells, and FBN1+HAS1+ 

fibroblasts are expanded in lung biopsies from individuals with idiopathic pulmonary 

fibrosis (IPF).4,5 In the salivary gland, chronic destructive inflammation in primary 

Sjögren’s syndrome (pSS) with tertiary lymphoid structures is linked to expansion of 

PDPN+CD34− fibroblasts.12 In synovial tissue, FAPα+CD90+ fibroblasts are expanded in 

individuals with rheumatoid arthritis (RA)2,13 and drive leukocyte recruitment and activation 

in an animal model of arthritis.14

In each study, inflammation-associated fibroblasts are characterized by their ability to 

produce and respond to inflammatory cytokines. These cytokines are often members 

of conserved families that signal through similar downstream pathways and result in 

similar effector functions.15 For instance, the inflammatory cytokines interleukin-6 (IL-6), 

Oncostatin M (OSM), leukemia inhibitory factor (LIF), and IL-11 belong to the gp130 

family, whose cognate receptor molecules, including IL-6R, OSMR, LIFR, and IL-11R, 

contain the glycoprotein 130 (gp130) subunit. In UC, OSMR+ fibroblasts express high 

levels of the IL-11-encoding gene.3 In RA, a subset of FAPα+CD90+ synovial fibroblasts 

produce high levels of IL-62 through an autocrine loop involving LIF and LIFR.16,17 In 

a mouse model for human IPF, IL-11-producing fibroblasts drive fibrosis and chronic 

pulmonary inflammation.18 These examples of gp130-family cytokines associated with pro-

inflammatory fibroblasts highlight that, although individual factors may be tissue specific, 

their downstream effects may be shared across diseases. This pattern underlines an important 

question with clinical implications: are inflammation-associated fibroblasts tissue specific, 

or do they represent shared activation states that manifest a common phenotype across 

different diseases? A drug that targets a shared pathogenic phenotype can potentially be 

used to treat multiple inflammatory diseases. Identifying such shared fibroblast programs is 

a major challenge because these programs are likely to be transient and reversible activation 

states that vary over the course of a disease rather than representing a static, committed cell 

lineage.13

There is growing evidence in recent studies of the existence of shared fibroblast 

transcriptional states across tissues. In particular, single-cell atlas projects that profile tissue 

samples from multiple organs from the same postmortem individuals provide a unique 

opportunity to compare fibroblast profiles across tissues while accounting for shared donor 

effects. When we analyzed fibroblast profiles from two such atlas datasets, the Adult Human 

Cell Atlas (AHCA)19 and Tabula Sapiens (TS),20 we found that fibroblasts from different 

tissues group together (Figures S1A and S1B), suggesting that lineage contributes more to 

transcriptional identity than tissue of origin. When we performed cluster marker analysis 

on these fibroblast from different tissues (Table S1), we found that of the 2,602 (AHCA) 

and 2,321 (TS) genes upregulated in fibroblasts in at least one tissue, 1,545 (AHCA) and 

1,385 (TS) genes were shared by at least two tissues, and 256 (AHCA) and 357 (TS) 

genes were universal markers of fibroblasts in all tissues (Figures S1C and S1D). A second 

line of evidence for universal fibroblasts is presented by Buechler et al.,21 who analyzed 
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mouse fibroblast from 17 distinct tissues and identified shared fibroblast clusters in healthy 

and perturbed tissues. They experimentally validated the existence of Dpt+ pluripotent 

universal fibroblasts, present in healthy and perturbed states, that may be able to give rise to 

functionally distinct fibroblasts in tissue.

Identification of shared cell states across tissues with scRNA-seq has recently become 

possible with advances in statistical methods for integrative clustering22–24 and reference 

mapping.25–27 Integrative clustering identifies similar cell states across a range of scRNA-

seq datasets even when the datasets come from different donors, species, or tissues. For 

example, using integrative clustering, Zhang et al.28 identified shared macrophage activation 

states across five tissues, and Butler et al.24 identified shared pancreatic islet cells between 

mouse and human datasets. Reference mapping allows rapid comparison of data from a 

new study to a well-annotated reference even when the study represents a tissue, disease, 

or species not present in the reference atlas. For instance, Andreatta et al.26 mapped T cell 

subtypes to a scRNA-seq atlas of annotated tumor-infiltrating T cells, and Lotfollahi et al.25 

found disease-related immune states by mapping PBMCs from individuals with coronavirus 

disease 2019 (COVID-19) to a healthy reference library of immune cells.

In this study, we generated scRNA-seq profiles of CD45−EPCAM− stromal cells derived 

from affected individuals and then characterized fibroblasts across multiple inflammatory 

diseases involving lung, intestine, salivary gland, and synovium. After confirming known 

fibroblast subtypes in our data, we built a de novo, integrated fibroblast atlas and identified 

five shared phenotypes, two of which are consistently expanded in all four inflammatory 

diseases. Using reference mapping, we map these to human dermal fibroblasts from 

inflamed and healthy skin and to fibroblasts from mouse models of lung, synovial, and 

intestinal inflammation to demonstrate the generalizability of our findings. Our integrated 

resource represents an important systematic examination of fibroblast subsets and activation 

states in inflamed tissues. Our identification of two pathogenic fibroblast phenotypes that 

are shared among four inflammatory diseases suggests potential novel avenues for fibroblast 

therapeutic targeting. By making available the necessary computational tools to map new 

datasets to our annotated fibroblast atlas, we provide a common reference for future studies 

of fibroblasts in tissues and diseases.

RESULTS

Single-cell transcriptional profiles of fibroblasts in human lung, salivary gland, synovium, 
and intestine

We used droplet-based scRNA-seq to profile individual fibroblasts from a total of 74 high-

quality samples in lung, large intestine, lip salivary glands, and joint synovium, selecting 

donors with inflammatory diseases and controls (Figure 1A). For synovium, we collected 

arthroplasties and biopsies from 15 individuals with RA and 6 with osteoarthritis (OA) 

(Table S2). For the lung analysis, we acquired lung biopsies samples from 8 individuals 

with earlier-stage interstitial lung disease (ILD) who underwent video-assisted thoracoscopic 

surgical (VATS) biopsy for ILD diagnosis, characterized by inflammatory pathology, and 

comparator lung transplant samples of explanted lung from 4 control donors and 11 

individuals with end-stage IPF and RA-ILD (STAR Methods; Table S3). All individuals 
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were assessed for clinical requirement for supplemental O2 at the time of enrollment (Figure 

S1E) and assigned to the earlier-stage subcohort when they did not require supplemental O2 

treatment. None of the individuals in the earlier-stage subcohort were under consideration 

for pre-transplantation work-up. To examine salivary glands, we used lip biopsy tissue from 

7 individuals with pSS and 6 individuals with non-Sjögren’s Sicca syndrome, characterized 

as non-autoimmune dryness, as control comparators (Table S4). For the intestine, we 

collected large intestinal biopsies from individuals with UC (n =7) and control donors 

(n = 5) (Table S5). Included in the 7 UC samples were 4 individuals for whom we had 

paired inflamed and adjacent non-inflamed tissue biopsies. To enrich for stromal cells in the 

synovium and intestinal samples, we used flow cytometry to sort live, CD45−EpCAM− cells 

(Figure 1A), depleting CD45+ immune and EpCAM+ epithelial populations (Figure S1F). 

We did not flow sort cells in samples from the salivary gland or lung. For the salivary gland, 

we avoided flow sorting to optimize cell numbers in small biopsies, and in the lung, we 

found that flow cytometry compromised fibroblast cell yields. We performed droplet-based 

scRNA-seq (10X Genomics) on all samples, applied stringent QC to remove low-quality 

libraries and cells (STAR Methods), and combined all data samples to analyze 221,296 

high-quality cells. Using clustering analysis (STAR Methods), we identified 7 major cell 

types (Figure 1B) across multiple donors (Figure 1C) using canonical markers (Figure 

1D): CDH5+ endothelial cells, COL1A1+ fibroblasts, EPCAM+ epithelial cells, GFRA3+ 

glial cells, JCHAIN+ plasma cells, MCAM+ perivascular murals, and PTPRC+ leukocytes. 

Consistent with our flow sorting strategy, non-stromal cells (epithelial, glial, and immune) 

were more abundant in the salivary gland and lung (Figure S1G). We identified stromal 

(endothelial, mural, and fibroblast) populations in all four tissues, allowing us to carry out a 

focused analysis of fibroblasts across tissues.

Fibroblast heterogeneity within tissues

We next examined the heterogeneity of fibroblast cell states within individual tissues. We 

performed a separate fine-grained clustering analysis for fibroblasts within each of the four 

tissues and annotated clusters with previously identified states (Figure 1E) across individual 

donors (Figure 1F) by comparing published marker genes with cluster markers in our data 

(Table S6). In the intestine, we were able to recapitulate 7 of 8 populations identified by 

Smillie et al.:3 crypt-associated WNT2B+Foshi and WNT2B+Foslo, epithelial-supportive 

WNT5B+−1 and WNT5B+−2, stem cell niche-supporting RSPO3+, inflammatory, and 

myofibroblasts. Our data did not support the 2 subtypes of WNT2B+Foslo fibroblasts 

identified originally by Smillie et al.3 In the lung, Habermann et al.4 described 4 states: 

HAS1+, PLIN2+, fibroblasts, and myofibroblasts. However, in their analysis, HAS1+ cells 

were identified in only 1 of 30 donors. When we re-analyzed their data to identify clusters 

shared by multiple donors, we could not distinguish the HAS1+ from the PLIN2+ population 

and, thus, merged these two in our annotation. In the salivary gland, the only single-cell 

study of fibroblasts to date was performed with multi-channel flow cytometry,12 not scRNA-

seq. The findings here represent the first set of scRNA-seq data in this context. In our 

single-cell clusters, we identified the two populations described previously (CD34+ and 

CCL19+) and confirmed the expression of key distinguishing cytokines and morphogens 

they measured by qPCR. In the synovium, we clustered 55,143 fibroblasts into 5 major 

states described in three scRNA-seq studies.2,6,14 These states are largely correlated with 
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anatomical position: THY1−PRG4+ cells in the synovial boundary lining layer and THY1+, 

DKK3+, HLA-DRA+, and CD34+ cells within the sublining. In total, we labeled 17 

fibroblast clusters defined across all four individual tissues.

Next we wanted to determine whether fibroblast states defined within one tissue shared 

similar expression profiles with states defined in other tissues. To look for these similarities, 

we selected genes that were significantly (p < 0.01, logFC ≥ 0.5) associated with at least one 

cluster and computed the correlation of relative gene expression for every pair of clusters 

(Figure S1H). The clusters naturally grouped across tissues. Using hierarchical partitioning 

of this correlation matrix, we grouped the 17 tissue-defined clusters into 5 meta-clusters. We 

then found that 894 marker genes were upregulated in a meta-cluster and shared by all tissue 

clusters in that meta-cluster (Figure 1G). This heatmap demonstrates shared gene expression 

profiles across clusters from different tissues and suggests shared functions for these tissue-

defined clusters. For instance, COL3A1 shared by group A, with inflammatory fibroblasts in 

the gut, myofibroblasts in the lung, and DKK3+ sublining fibroblasts in the synovium, may 

reflect a common extracellular matrix (ECM) modulatory function. Marker genes that are 

not shared across clusters in the same meta-cluster can arise in two different ways: from a 

technical artifact, such as different clustering parameters in tissue-specific analyses, or from 

a true biological signal, such as a tissue-specific microenvironment. To distinguish between 

the two possibilities, we decided to perform a single integrative clustering analysis with 

fibroblasts from all tissues. Just as integrative clustering within tissue allowed us to identify 

clusters shared by multiple donors (Figure S1I), we anticipated that integrative clustering 

across tissues would highlight shared transcriptional signatures missed in the within-tissue 

analyses.

Integrative clustering of fibroblasts across tissues

To construct a cross-tissue taxonomy of fibroblast states, we pooled 55,143 synovial, 15,089 

intestinal, 7,474 salivary gland, and 1,442 pulmonary fibroblasts and performed integrative 

clustering analysis. The different numbers of fibroblasts from each tissue, arising because 

we enriched for stromal cells in intestine and synovium but not in lung and salivary 

gland, presented a technical challenge. The results of many analyses, including principal-

component analysis (PCA), are biased toward tissues with more cells rather than treating 

each tissue equally. The second major analytical challenge arises because gene expression 

depends on a complex interplay of tissue, donor, and cell state. As we have described 

in previous work,22 such confounding variation is particularly challenging to model in 

scRNA-seq data because the confounder can have global and cell-type-specific effects on 

gene expression.

We designed an analytical pipeline for integrative clustering to address the two concerns 

described above (Figure 2A). In this pipeline, we select genes that were informative in 

the tissue-specific analyses (STAR Methods), associated with cluster identity (Table S6; n 

= 7,123) or inflammatory status (Table S7; n = 6,476) within tissue, for a total of 9,521 

unique genes. To minimize the effect of different cell numbers, we performed weighted 

PCA, giving less weight to cells from over-represented tissues (e.g., synovium) and more to 

cells from under-represented tissues (e.g., lung) so that the sum of weights from each tissue 
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is equivalent (STAR Methods). Compared with unweighted PCA, this approach results in 

principal components whose variation is more evenly distributed among tissues (Figure 

S2A). As expected, in this PCA space, cells group largely by donor and tissue (Figures 

S2B and S2C). To appropriately align cell types, we removed the effect of donor and 

tissue from the cells’ PCA embedding coordinates with a novel, weighted implementation 

of the Harmony algorithm we developed for this specific application (STAR Methods). 

Uniform manifold approximation and projection (UMAP) visualization of the harmonized 

embeddings shows that cells from different tissues are well mixed (Figure 2B). In contrast, 

fibroblast states identified in tissue-specific analyses are well separated (Figure S2D), 

suggesting that the integrated embedding faithfully preserves cellular composition. In this 

integrated space, we performed standard graph-based clustering to partition the cells into 14 

fibroblast states (Figure 2C) with representation across multiple donors from all 4 tissues 

(Figure 2D). These 14 integrated clusters represent putative shared fibroblast states, each of 

which may be driven by a combination of shared and tissue-specific gene programs.

Identification of shared and tissue-specific marker genes in integrated clusters

Next we modeled gene expression to define active gene programs in the 14 integrative 

fibroblast clusters. We wanted to distinguish between two types of cluster markers: tissue 

shared and tissue specific. Tissue-shared markers are highly expressed in the cluster for all 

four tissues. Tissue-specific markers are highly expressed in the cluster for at least one tissue 

but not highly expressed in at least one other tissue. In our expression modeling analysis, 

we needed to allow for the possibility that tissue gene expression will be consistent in 

clusters and variable in others (Figure 2E). As we explain in our approach below, we will 

use ADAM12 expression in cluster C4 as an example of a tissue-shared gene and MYH11 
expression in cluster C13 as an example of a tissue-specific gene.

Typically, cluster marker analysis is done with regression to associate gene expression with 

cluster identity. To address the complex interaction between cluster and tissue identity in 

our data, we used mixed-effects regression to perform hierarchical cluster marker analysis 

(STAR Methods). This analysis estimated two sets of differential expression statistics for 

each gene: mean log2 fold change (e.g., cluster 0 versus all other clusters) and tissue-specific 

log2 fold change (e.g., cluster 0 in lung versus all other clusters in lung). This approach 

distinguishes shared marker genes, defined by minimal tissue-specific contributions, from 

tissue-specific marker genes, defined by large tissue-specific fold changes, relative to the 

mean fold change. To demonstrate this, we plotted the estimated log2 fold changes, with 

a 95% confidence interval, for one shared (Figure 2F) and one tissue-specific (Figure 2G) 

cluster marker. ADAM12, a shared marker for cluster C4, has significant (log2 fold change 

= 1.6, p = 6.5 × 10−9) mean differential expression in C4, whereas the tissue-specific effects 

(in color) are not significantly different for any one tissue (Figure 2F). In contrast, MYH11 

is differentially overexpressed in cluster C13 for intestinal (log2 fold change = 3.7, p = 8.5 × 

10−16) and lung fibroblasts (log2 fold change = 2.6, p = 5.9 × 10−7) but not for synovial or 

salivary gland cells (Figure 2G). Because MYH11 is so strongly overexpressed in intestinal 

and lung fibroblasts, the mean log2 fold change is also significant (log2 fold change = 1.7, 

p = 5.7 × 10−9) and, therefore, is not a good metric alone to determine whether a marker is 

shared or tissue specific.
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We defined tissue-shared cluster markers conservatively by requiring a marker gene to be 

significantly overexpressed in all four tissues, such as ADAM12 above. With this criterion, 

we quantified the number of shared marker genes per cluster (Figure 2H). Clusters C0, C1, 

C2, C3, C6, C7, C10, C12, and C13 each had fewer than 20 shared markers. Based on 

this cutoff, we decided that these clusters had too little evidence of shared marker genes 

to be reliably called shared clusters. We assigned names for the remaining clusters based 

on their shared gene markers: SPARC+COL3A1+ C4, FBLN1+ C5, PTGS2+SEMA4A+ C8, 

CD34+MFAP5+ C9, and CXCL10+CCL19+ C11. We then plotted the log2 fold change 

values of all 1,524 shared markers for these clusters in Figure 2I and report the results of the 

full differential expression analysis in Table S8.

Testing for overintegration

Harmony integration of tissues and donors is necessary to find reproducible fibroblast 

clusters. Without Harmony, most clusters would be specific not only to each tissue but 

to a single donor (Figures S2B and S2C). We were concerned about the possibility of 

overintegration. We therefore performed rigorous analyses to address the potential for 

overintegration in our study.

Some algorithms are more prone to overintegration than others. We performed integration 

with three alternative algorithms, BBKNN,29 scVI,30 and Scanorama,31 recommended by 

a benchmarking study32 that ranked algorithms by their ability to removal technical noise 

and preserve biological variability. Unlike Harmony, these algorithms can only integrate 

over one variable at a time. Thus, we first tested the ability of each algorithm to integrate 

donors within each tissue separately. Scanorama introduced many outlier clusters that did 

not exist in the original data, suggestive of overfitting (Figure S3A). BBKNN failed to run 

altogether in the lung because of insufficient cell numbers and barely integrated donors in 

the remaining tissues (Figure S3B). Only scVI was able to adequately integrate donors 

within tissues (Figure S3C). Based on these results, we moved forward with scVI to 

integrate our full dataset, first integrating over donor (scVI-donor) and then over tissue 

(scVI-tissue). scVI-donor merged donors within tissue but kept each tissue separate (Figure 

S3D). Conversely, scVI-tissue merged cells across tissues but failed to merge donors within 

tissue (Figure S3E). Although scVI is sufficient to analyze datasets with only one major 

confounder (e.g., donor), it is insufficient to integrate cells in our multi-donor, multi-tissue 

dataset.

Another concern of integration lies in the ability of Harmony to integrate explicitly over 

two variables. If Harmony can model the effects of donor and tissue, then will Harmony 

always find shared clusters, even when none exist? To explore this, we first re-analyzed our 

datasets with Harmony integration over donor only. Integrating over donor yielded results 

similar to two-level integration in terms of the degree of mixing among tissues (Figure S3F) 

and separation among clusters (Figure S3G). The only difference is that we needed a more 

aggressive cluster diversity penalty in the donor-only integration (θdonor = 2), whereas we 

used very mild penalties in the donor and tissue integration (θdonor = 0.25, θtissue = 0.25). 

This reflects the fact that, if we correctly specify the sources of variation in our dataset, then 

we do not require strong statistical priors to enforce mixing. Next we wanted to determine 
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whether Harmony would always find shared clusters across donors and tissues. We first 

devised an extreme where we know the ground truth by attempting to integrate 10,000 

randomly selected fibroblasts from synovium with 10,000 epithelial cells from lung. Using 

the same pipeline we used in the cross-tissue analysis in Figure 3, Harmony correctly failed 

to integrate synovium with lung cells here, keeping the biologically distinct fibroblasts and 

epithelial cells in two separate clusters (Figure S3H). Next we took a less stark example and 

integrated lung, salivary gland, and gut epithelial cells, which we expect to have more tissue-

specific types than stromal or immune populations. Although we found some overlapping 

cells between lung and salivary gland fibroblasts, most cells failed to mix among tissues 

(Figure S3I). Thus, the cross-tissue integration we achieved with fibroblasts is not a priori 
guaranteed by Harmony and reflects a greater degree of shared transcriptional profiles than 

what we found in epithelial cells.

Finally, we evaluated the ability of Harmony to identify dataset-specific clusters in our 

study. This is critical for interpretation of our fibroblast atlas, particularly when we want 

to identify disease-specific and tissue-specific clusters. Because it is difficult to know when 

a cluster is truly dataset specific in real data, we performed this analysis by artificially 

removing pre-labeled clusters from our fibroblasts datasets, establishing a ground truth for 

evaluation. We chose six donors with UC from the intestinal datasets, artificially split the 

donors into two groups, and removed all WNT5B+ fibroblasts from group A (Figure S3J). 

We then integrated the down-sampled dataset with Harmony, which successfully mixed 

cells from the 6 donors (Figure S3K) while correctly separating the WNT5+ fibroblasts 

from group B from group A fibroblasts (Figure S3I). To further quantify these results, we 

performed de novo clustering of the down-sampled, integrated dataset to test whether we 

can find a cluster specific to group B (Figure S3M). Our unsupervised clustering results 

identified one cluster (denovo1) that is substantially over-represented in group B (Figure 

S3N). In group A, only 39 of 1,928 cells were assigned to cluster denovo1. Differential 

abundance testing confirmed that denovo1 as the only cluster significantly (adjusted p = 

0.003) differentially abundant between groups A and B. This analysis demonstrates the 

behavior of Harmony with condition-specific fibroblasts and shows that we can identify 

condition-specific fibroblasts with differential abundance testing.

Correspondence between fibroblast clusters defined in integrative analysis and single-
tissue analyses

We determined how the clusters labeled in the single-tissue analyses (Figure 1E) correspond 

to our new shared cross-tissue taxonomy. Because we used the same cells for within-tissue 

and cross-tissue analyses, we were able to directly observe the overlap of cross-tissue 

clusters with tissue-defined clusters in the tissue-defined UMAP projections (Figure S4A) 

and conditional co-occurrence bar plots (Figure S4B). For a more formal approach, we used 

a statistical test to quantify the enrichment of cross-tissue membership within each of the 

tissue-defined clusters (Figure S4C).

The CXCL10+CCL19+ C11 cluster overlapped significantly (FDR < 5%) with THY1+ 

sublining (OR = 3.8, 95% CI[2.2, 6.7]) and HLA-DRAhi synovial fibroblasts (OR = 39.2, 

95% CI[22.2, 69.0]), with CCL19+ fibroblasts in the salivary gland (OR = 9.1, 95% CI[6.3, 
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13.0]), with RSPO3+ (OR = 16.1, 95% CI[12.0, 21.7]) and WNT2B+Foshi (OR = 2.3 95% 

CI[1.7, 3.1]) fibroblasts in the intestine and did not overlap significantly with any one 

cluster in the lung. Here, odds ratio (OR) refers to the probability of a cell being in a cross-

tissue cluster (versus not), given that the cell belongs to some within-tissue clusters. The 

SPARC+COL3A1+ C4 cluster was split between DKK3+ and THY1+ sublining fibroblasts 

in the synovium, corresponded exclusively to myofibroblasts in the lung, split between 

inflammatory fibroblasts and myofibroblasts in the intestine, and corresponded to CD34+ 

fibroblasts in the salivary gland. None of these associations was one to one. HLA-DRA+ 

synovial fibroblasts, CCL19+ salivary gland fibroblasts, and RSPO3+ and WNT2B+Foshi 

intestinal fibroblasts corresponded to multiple clusters that were expanded in one or more 

tissues: C3 (lung and synovium), C2 (synovium), C12 (intestine), and C8 (salivary gland 

and synovium). Similarly, the myofibroblasts in the lung and intestine as well as DKK3+ 

synovial fibroblasts corresponded to C13 and vascular fibroblasts (C4).

Cluster C13 aligned strikingly with intestinal and pulmonary myofibroblasts. Although 

C13 contained cells from all tissues, it only expressed the canonical myofibroblast genes 

MYH11, MYL9, and ACTA2 in intestinal and pulmonary cells (Figure S4D). Although 

myofibroblasts are absent in synovium, synovial C13 cells may reflect an activated 

phenotype involved in tissue repair. This is supported by synovium-specific upregulation 

of the bone and cartilage repair genes TFF3, BMP6, HTRA1, and HBEGF (Figure S4E).

In the synovium and intestine, several clusters have been shown previously to be associated 

with distinct anatomical locations:2,3,6 PRG4+ synovial lining fibroblasts, THY1+ sublining 

synovial fibroblasts, WNT5B+ villus-associated fibroblasts, and WNT2B+ crypt-associated 

fibroblasts. Many of the integrated clusters we identified grouped along these anatomically 

defined lines. Clusters C0, C6, C10, and C12 were most associated with PRG4+ lining-

associated synovial and WNT5B+ villus-associated gut fibroblasts, whereas clusters C1, C2, 

C3, and C8 mapped to THY1+ sublining-associated synovial and WNT2B+ crypt-associated 

gut fibroblasts. Except for cluster C8, clusters that were strongly associated with anatomical 

locations in gut and synovium had fewer numbers of shared marker genes across tissues, 

potentially reflecting tissue-specific functions dictated by the specific anatomical constraints 

and physiological functions of the tissue.

FBLN1+ C5 and CD34+MFAP5+ C9 states mapped strongly to RSPO3+ intestinal, 

HAS1+PLIN2+ pulmonary, and CD34+THY1+ synovial fibroblasts. The remaining cluster, 

C7, did not correspond well to intestinal or synovial clusters. Subsequent analysis of marker 

genes within tissues suggested enrichment in doublets: the epithelial markers KRT7 and 

ADGRF5 in lung and the macrophage markers C1QB, C1QA, and SPP1 in the salivary 

gland. This suggests that, despite our best efforts to filter doublets during QC preprocessing, 

some contaminating doublets were retained. This makes further inference about cluster C7 

less reliable.

Comparison of cross-tissue clusters with independent fibroblast annotations

We next compared our cross-tissue clusters with cross-tissue fibroblast annotations defined 

in a similar study performed with publicly available mouse scRNA-seq datasets.21 Here 

the authors used Harmony to integrate public datasets into two study-integrated fibroblast 
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atlases: one with fibroblasts from healthy mice and one from perturbed tissues (i.e., disease 

models). Using gene set enrichment analysis with their published cluster marker sets, we 

found strong correspondence between our cluster definitions (Figure S2E). We observed 

the strongest correspondence with our C5, C9, C11, C4, C10, C0, and C12. The C5 and 

C9 clusters corresponded specifically to the Col15a1+ and Pi16+ clusters, respectively, both 

of which were confirmed experimentally to have the plasticity to give rise to multiple 

other fibroblast clusters in vivo in multiple organ systems. The SPARC+COL3A1+ (C4) 

cluster corresponded mostly to the Comp5+ cluster in healthy and perturbed tissue and 

the Lrrc15+ cluster only observed in perturbed tissue, which Buechler et al.21 associated 

with functions involved in fibrosis, wound repair, and muscle injury. The CXCL10+CCL19+ 

(C11) cluster corresponded to the healthy and perturbed CCL19+ clusters, which Buechler et 

al.21 labeled as specific to the lymph node and spleen. The C0 cluster corresponded to their 

Cxcl5+ cluster, only identified in perturbed tissue and associated with muscle injury. The 

C10 cluster corresponded to their Bmp4+ cluster, identified only in healthy large intestine 

samples. Finally, C12 fibroblasts corresponded to Adamdec1+ fibroblasts, identified only in 

perturbed gut tissue.

Identification of fibroblast states expanded in inflamed tissue

We next addressed which cross-tissue fibroblast states were expanded in inflamed tissues. 

To perform this association across tissues, we first needed to define a common measure of 

tissue inflammation. Although histology is often the gold standard to assess inflammation, 

histological features are inherently biased to tissue-specific pathology. Instead, we decided 

to define inflammation in a tissue-agnostic way, as the relative abundance of immune 

cells in each sample. Although immune cell abundance alone oversimplifies complex 

pathological processes, it is a ubiquitous and quantifiable measure of chronic inflammation. 

We quantified the fraction of immune cells based on previously labeled scRNA-seq clusters 

(Figure 1B) for salivary gland and lung samples and based on the proportion of CD45+ 

cells by flow cytometry (Figure S1F) for synovium and intestine (Figure 3A). These 

estimates are quantified with dissociated cells from cryopreserved tissue (STAR Methods) 

and thus lack granulocytes, such as neutrophils, which constitute an important part of 

tissue inflammation. To obtain comparable results across tissues, we standardized the raw 

tissue-specific immune cell frequencies to a common scale from 0 (not inflamed) to 1 

(inflamed) (Figure 3B). Importantly, this transformation (STAR Methods) removes the effect 

of distributional differences among tissues and preserves the order of scores within each 

tissue.

Using these standardized inflammation scores, we performed a separate association analysis 

with mixed-effects logistic regression for each tissue. This analysis provided, for each 

tissue and fibroblast state, the effect of increased inflammation on cluster abundance 

(Figure 3C). Positive log ORs denote expansion with inflammation, whereas negative ratios 

denote a diminishing population. Some clusters, such as C2, C3, C7, PTGS2+SEMA4A+ 

C8, and C12, were significantly (false discovery rate [FDR] < 5%, red) expanded in 

only one tissue. Others, such as CXCL10+CCL19+ C11 and SPARC+COL3A1+ C4, were 

significantly expanded in multiple tissues. We confirmed that association with normalized 

inflammation scores did not change the qualitative results within tissue but did make the 
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results more interpretable across tissues (Figure S5A). Within tissue, information about and 

individual’s treatment status (Tables S2, S3, S4, and S5) did not systematically explain the 

range of inflammation scores (Figure S5B). We then performed a meta-analysis of these 

tissue-specific effects (STAR Methods) to prioritize clusters expanded consistently across 

all tissues (Figure 3D). This meta-analysis identified two fibroblast states significantly 

expanded in inflamed samples from all 4 tissues (Figure 3E): SPARC+COL3A1+ (C4) 

(OR = 10.4, 95% CI[6.6, 16.2], p = 9.4 × 10−25) and CXCL10+CCL19+ (C11) fibroblasts 

(log OR = 32.7, 95% CI [11.4, 94.0], p = 9.6 × 10−11). The reported OR values denote 

the odds of a cell being in a cluster (versus not), given that it came from an inflamed 

sample. Because the effects for these clusters were similar across tissues, pooling in the 

meta-analysis increased the power to detect these abundance changes.

We noted that the associations of C4 and C11 clusters in the lung alone were not 

statistically significant. We hypothesized that this could arise from our overly simplistic 

inflammation score. For instance, the number of alveolar macrophages in lung can vary 

by anatomical region, and this anatomical variation could confound our scores based on 

the total percentage of CD45 cells. Thus, we quantified an alternative inflammation score 

for lung samples based on the proportion of lymphoid cells (Figure S5C), which was 

weakly correlated (r = 0.38, p = 0.07) to the scores based on CD45+ cells. We defined 

lymphocytes in our dataset as the aggregate of CD3+ T, CD20+ B, CD56+ natural killer 

(NK), and JCHAIN+ plasma cells, identified in a fine-clustering analysis of lung cells 

(Figures S5D and S5E). We then associated fibroblast cluster abundance with this targeted 

inflammation score and compared the results with association with the percentage of CD45+ 

cells (Figure S5F). Overall, the association of fibroblast cluster frequency with the two 

scores is correlated (r = 0.60, p = 0.02), and, in particular, the log ORs for the C4 and 

C11 clusters are consistent (βC4|%CD45 = 1.90 ± 1.43 versus βC4|%lymphocytes = 1.29 ± 0.86; 

βC11|%CD45 = 2.75 ± 1.90 versus βC11|%lymphocytes = 3.14 ± 1.41). Based on this analysis, the 

lack of statistical significance in the lung-only association of C4 and C11 clusters is not due 

to the coarse nature of the inflammation score and more likely due to the smaller number of 

fibroblasts profiled in the lung.

Distinct immune-interacting and vascular-interacting fibroblast states expanded in tissue 
inflammation

The two fibroblast states consistently expanded in inflamed tissue are characterized 

by distinct gene programs (Figure 3F) that reflect putative distinct functions during 

tissue inflammation. To explore these potential roles, we performed gene set enrichment 

analysis with 6,369 Gene Ontology (GO)33 and 50 MSigDB hallmark pathways (Table 

S9; Figure 3G).34 Marker genes for CXCL10+CCL19+ fibroblasts were enriched for 

pathways involved in direct interaction with immune cells, including lymphocyte chemotaxis 

(GO:0048247, adjusted p < 0.005; includes CCL19, CCL2, and CCL13), antigen 

presentation (GO:0019882, adjusted p < 0.005; includes CD74, HLA-DRA, and HLA-
DRB1), and positive regulation of T cell proliferation (GO:0042102, adjusted p < 

0.005; includes TNFSF13B, VCAM1, and CCL5). CXCL10+CCL19+ fibroblasts show 

broad evidence of response to the key pro-inflammatory cytokines interferon (IFN) 

γ (GO:0034341, adjusted p = 0.005), IFN α (GO:0035455, adjusted p = 0.02), TNF-
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α (GO:0034612, adjusted p < 0.005), IL-1 (GO:0070555, adjusted p < 0.005), and 

IL-12 (GO:0070671, adjusted p < 0.005). Although TNF-α, IL-1, and IL-12 responses 

are broadly enriched in several fibroblast populations, an IFN response (IFN α) is 

more specific to CXCL10+CCL19+ fibroblasts. In contrast to these cytokine signaling 

pathways, SPARC+COL3A1+ fibroblast marker genes were enriched in pathways centered 

around ECM binding (GO:0050840, adjusted p < 0.005; includes COL11A1, SPARC, 

and LRRC15) and disassembly (GO:0022617, adjusted p = 0.005; includes MMP13, 

MMP11, and FAP) and numerous developmental pathways (GO:0035904, GO:0060348, 

GO:0061448, and GO:0007492; adjusted p < 0.005; includes COL3A1, COL1A1, COL5A1, 

and TGFB1).

We performed transcription factor (TF) analysis to infer which TFs may be active in the 

C4 and C11 states. Following the recommend standards for TF analysis,35 we used the 

Viper algorithm36 and the TRRUST37 and DoRothEA38 databases. Examining the top 10 

TFs assigned to each of the C4 and C11 clusters, we found consistent results with the 

gene set analysis above (Figure S5G). C11 is most associated with TFs in inflammatory 

signaling pathways, such as RELA and NFKB1 in nuclear factor κB (NF-κ B) signaling; 

STAT1, STAT2, IRF1, IRF2, and IRF9 in IFN signaling; and RXFAP and RFXANK in 

major histocompatibility complex (MHC) class II signaling. C4 is most associated with TFs 

in morphogen signaling and developmental pathways, such as CREB3L1 and RUNX2, key 

TFs in bone development and homeostasis; HMBOX1 in developmental tissue patterning; 

MAZ in the MYC pathway; SMAD3 in transforming growth factor β (TGF-β) signaling, 

and HES1 in NOTCH signaling.

The pathway and TF analyses suggests that SPARC+COL3A1+ fibroblasts may be 

driven by conserved developmental pathways during tissue remodeling in chronically 

inflamed diseases. Given the extensive enrichment in developmental pathways in these 

fibroblasts, we hypothesized that this state could be driven by morphogens within the 

tissue microenvironment. Indeed, we observed enrichment in the key morphogen signaling 

pathways hedgehog (adjusted p = 0.005), TGF-β (GO:0007179, adjusted p < 0.005), WNT 

(canonical [GO:0060070, adjusted p = 0.007] and non-canonical [GO:0035567, adjusted p 

= 0.005]), BMP (GO:0071772, adjusted p = 0.01), and Notch (GO:0007219, adjusted p < 

0.005). Of these pathways, Notch signaling was the most specific to SPARC+COL3A1+ 

fibroblasts (Figure 3G), with non-significant (raw p > 0.20) enrichment in all other clusters. 

Because we previously identified Notch3 signaling as a key driver in differentiation of 

disease-associated perivascular fibroblasts in RA synovium,13 we predict that this cluster 

may represent a similar endothelium-driven, activated fibroblast state across inflammatory 

diseases involving other organ tissues. We explored this hypothesis with ligand receptor 

analysis (STAR Methods). We started with manually curated cognate ligand and receptor 

pairs39 and, for each pair, looked for high expression of one gene in endothelial cells 

within our libraries (Figure 1B) and its partner in each fibroblast state. Filtering for only 

differentially expressed genes, we found a total of 63 putative signaling interactions (Figure 

S5H). Notably, 19 of these interactions were between SPARC+COL3A1+ fibroblasts and 

endothelial cells, including Notch activation through the DLL4:NOTCH3 interaction, as 

described earlier for the synovium,13 as well as the morphogen TGF-β, the growth factor 

platelet-derived growth factor β (PDGF β), the angiogenic factors Ephrin-α and Ephrin-
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β,40 and the angiogenic and mitogenic factors MDK and PTN.41 This large variety of 

putative signaling interactions (Figure S5H) from and to endothelial cells suggests that 

SPARC+COL3A1+ fibroblasts participate in signaling cross-talk with endothelial cells. 

These pathway and cross-talk analyses suggest two independent, conserved populations that 

support tissue inflammation: immune cell-interacting CXCL10+CCL19+ immunofibroblasts 

and endothelium-interacting SPARC+COL3A1+ vascular-associated fibroblasts.

We next explored the possibility that disease-related genes may be upregulated within the 

C4 and C11 clusters and missed by using cluster marker analysis alone. Within each cross-

tissue cluster, we correlated gene expression with normalized inflammation score to find 

intra-cluster inflammation-associated signatures (Table S10). We found that the number of 

significantly associated genes largely depended on the number of cells in a cluster, reflecting 

increased power to find statistically significant associations in larger clusters (Figure S5I). 

When we examined the genes most associated with inflammation score within C4 and C11, 

they were markers for that cluster or associated with inflammation in multiple clusters. For 

instance, in synovium, among the top inflammation-associated genes were the cluster C11 

marker genes CCL19, CXCL9, and CD74 and DNAJB1, HSPH1, and MAFF, which were 

associated with inflammation in all synovial clusters. Thus, although our focus on cluster 

markers misses some inflammation-induced genes, these genes may represent a generic 

inflammatory response and do not help characterize distinct functional roles for distinct 

transcriptional states.

In situ localization of vascular and immuno-fibroblasts

The gene enrichment and ligand-receptor analyses suggest that the CXCL10+CCL19+ (C11) 

immuno-fibroblast and SPARC+COL3A1+ (C4) vascular fibroblast phenotypes are driven 

by distinct T lymphocyte- and vascular-derived signals in their microenvironments. We 

used high-dimensional imaging (STAR Methods) to determine the spatial co-localization 

of CCL19+ and SPARC+ fibroblasts with T lymphocytes and vascular endothelial cells, 

respectively, in inflamed synovium, lip, and gut tissue. We performed segmentation analysis, 

marker intensity quantification, and image-based quality control filtering (STAR Methods) 

to identify high-dimensional molecular profiles for 355,227 high-quality cells (Table S11): 

58,471 cells from 2 synovial samples, 195,617 cells from 1 lip sample, and 101,139 

cells from 3 gut tissue samples (Figure 4A). Within these cells, we identified fibroblasts 

based on expression of PDPN and/or PDGFRA, as in a previous study,21 and used 

clustering and gating strategies to identify SPARC+ and CCL19+ fibroblast subgroups. 

To facilitate statistical quantification of co-localization between fibroblasts and elements 

of their microenvironment, we analytically partitioned each tissue into anatomical niches. 

Here we consider a niche to be a spatially connected region with a well-defined cellular 

composition profile that reflects the function of the anatomical region (STAR Methods). 

When we identify such niches, we quantify co-localization as the frequency with which each 

fibroblast subtype is located inside versus outside of that niche.

We used spatial clustering analysis (STAR Methods) to identify 4 anatomical niches present 

in all samples (Figure S6A; Figure 4B). We then used differential expression analysis to 

associate each niche with its predominant cell types based on lineage markers (Figure S6B). 
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We labeled the lymphoid niche based on the abundance of CD45+CD3+ T lymphocytes, 

the vascular niche based on the abundance of CD31+CD146+ endothelial cells, and the 

mural niches based on abundance of CD146+ASMA+ mural cells. CD146+ mural cells, 

which include pericytes and vascular smooth muscle cells, are usually considered to be 

perivascular cells that play important roles in modulating vascular structure and growth.42 

This localization is consistent with our data, where each CD146+ASMA+ mural niche is 

usually adjacent to a CD31+ vascular niche, particularly in the synovial tissue samples 

(Figure 4B). However, ASMA also marks highly contractile cells, such as submucosal 

smooth muscle cells in the intestine, visible as large, expanded ASMA+ regions in the Gut1 

and Gut2 samples but not in the Gut3 sample, which lacks submucosal tissue (Figure 4B). 

All anatomical regions that did not fit into the lymphoid, vascular, or mural categories was 

labeled “other.” Although these regions likely contain functionally important niches, we 

chose to not label them to keep the focus of co-localization analyses based on lymphoid, 

vascular, and perivascular regions.

We next sought to identify CCL19+ and SPARC+ fibroblasts and test their co-localization 

within the lymphoid, vascular, and mural niches defined above. With manual inspection 

of the niches, we identified representative regions of interest in which (PDPN/PDGFRA)
+CCL19+ cells localized next to CD3+ T cell-enriched regions (Figure 4C). To quantify 

this relationship across all datasets, we identified (PDPN/PDGFRA)+CCL19+ cells using 

a two-step clustering analysis (Figure S6C): coarse-grained clustering to identify (PDPN/

PDGFRA)+ cells and then fine-grained clustering to identify CCL19+ fibroblasts (Figure 

S6D). The output of this analysis allowed us to map the location of all CCL19+ fibroblasts 

in the niche-annotated images (Figure 4D). We repeated the procedure to identify SPARC+ 

fibroblasts, which we manually identified near CD31+ vasculature in representative regions 

(Figure 4E). The same two-step clustering analysis described above also identified SPARC+ 

fibroblasts and mapped them into the niche-annotated images (Figure 4F). Finally, we 

quantified the statistical enrichment of co-localization between our fibroblast subsets and 

niches (Figure 4G). The results show that CCL19+ fibroblasts are significantly enriched 

in the lymphoid niche (log2 OR = 2.7 ± 0.53, p = 2.81 × 10−7). Although SPARC+ 

fibroblasts are nominally enriched in the vascular niche in some tissues (log2 OR = 0.88 

± 0.66, p = 0.09), the association between SPARC+ fibroblasts and the predominantly 

perivascular ASMA+CD146+ mural niche is considerably stronger (log2 OR = 1.5 ± 0.42, p 
= 1.54 × 10−4). These co-localization analyses confirm that CCL19+ fibroblasts localize 

to T lymphocyte-enriched anatomical regions, whereas SPARC+ fibroblasts localize to 

mural cell-enriched regions, which includes perivascular zones in all tissues as well as 

tissue-specific regions enriched for ASMA+ contractile cells.

We also performed these high-dimensional in situ experiments in inflamed lung tissue 

but were not able to robustly identify fibroblasts because of lack of PDGFRA staining. 

Qualitatively, these data show co-localization of SPARC and ASMA in the same regions in 

the lung (Figure S6E), consistent with the quantitative co-localization results above. These 

images also qualitatively confirmed that CCL19 is expressed by non-epithelial (CK8−), 

non-leukocytes (CD45−), non-perivascular (CD146−, CD31−) cells, suggesting the presence 

of CCL19+ fibroblasts around CD3+ T cells (Figure S6F).
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T cells and vascular endothelium induce convergence of fibroblast states

The co-localization data above show that immuno- and vascular fibroblasts co-localize with 

T cells and endothelial cells in inflamed tissue, respectively. However, physical proximity 

alone does not prove that signals from T cells and vascular cells are sufficient to polarize 

fibroblasts into the divergent phenotypes observed in our atlas. To test this hypothesis, 

we obtained fibroblasts from IPF/ILD lungs and RA synovia and stimulated them with 

supernatant from in-vitro-activated T cells or cultured in the presence of endothelial cells to 

mimic the tissue microenvironment in inflammatory diseases (Figure 5A). For consistency, 

we plated cells on a 2D hard surface under each condition and performed scRNA-seq 

profiling on 18,000 fibroblasts. To avoid confounding effects from experimental batches, 

we profiled fibroblasts from one tissue in a single 10X library, pooling cells from multiple 

donors (n = 3) and conditions within each tissue using cell-hashing-based multiplexing 

(STAR Methods). After demultiplexing and standard QC, we recovered a total of 22,473 

scRNA-seq profiles of cultured fibroblasts with more than 1,000 cells in most replicates 

(Figure 5B). Separate UMAP analyses of synovial and lung fibroblasts (Figure S7A) show 

that multiplexing successfully grouped cells primarily by culture condition and then by 

donor ID.

We first wanted to determine whether the effect of activation condition was similar 

across tissues or whether lung and synovium-derived fibroblasts responded with unique 

gene expression programs to the same conditions. Harmony and UMAP analyses of 

fibroblasts from lung and synovium together (STAR Methods) groups fibroblasts largely 

by culture condition (Figure 5C), suggesting that fibroblasts from different tissues share 

transcriptional profiles driven by experimental perturbations. To identify which genes are 

driven by shared responses to culture conditions and which are tissue specific, we performed 

differential expression analysis within each tissue to find response signatures to each 

activation condition (Figure 5D; Table S12). The immune-activated signature contains key 

IFN-responsive genes, such as CXCL10, CXCL11, and CCL19, whereas the endothelial-

activated signature contains genes related to cell cycle and differentiation pathways, such as 

IGFBP2, ZBTB16, and CCND2. To look for tissue versus condition specificity of signature, 

we directly compared these signatures across tissues. We found that genes upregulated in 

synovial fibroblasts were highly correlated with those upregulated in lung fibroblasts in 

response to both endothelial cell (EC) co-culture (ρPearson = 0.55, p < 10−16) and T cell 

supernatant culture (ρPearson = 0.79, p < 10−16) (Figure 5E). In contrast, within tissue, the 

response to different conditions induced less correlated (synovial fibroblasts ρ = 0.25, lung 

ρ = 0.07) gene expression programs (Figure S7B). These results suggest that responses to T 

cells or vascular ECs induce fibroblasts from different tissue sources to converge on shared 

phenotypes.

Next we wanted to determine whether in vitro activation by T cells or vascular ECs was 

sufficient to reproduce gene expression programs that define the immune-interacting and 

vascular-interacting phenotypes in our cross-tissue atlas. More concretely, we wanted to 

find out which atlas cluster markers are most enriched in each of the activation response 

signatures. Using correlation analysis on differentially expressed genes, we correlated the 

relative gene expression profiles in the fibroblast atlas clusters to those in the culture 
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experiments (Figure 5F). Genes that responded to T cell-derived signals under T cell culture 

conditions were specifically correlated with the immune-interacting CXCL10+CCL19+ 

cluster in lung (ρ = 0.35, 95% confidence interval [CI] = [0.31, 0.39]) and synovium (ρ 
= 0.45, 95% CI = [0.41, 0.48]). Marker genes for immune-interacting fibroblasts were 

upregulated in response to secreted signals from activated T cells (Figure S7C). This 

correlation plot also shows an important asymmetry; although most CXCL10+CCL19+ 

cluster markers are upregulated in response to activated T cell signals, the opposite is 

not true. That is, many genes upregulated by supernatant from activated T cells are not 

associated with CXCL10+CCL19+ fibroblasts, suggesting that the supernatant contains 

signals required for CXCL10+CCL19+ fibroblast activation in addition to those that are 

not. The gene signature for EC co-culture non-specifically and weakly (ρ ≤ 0.25) matched 

multiple clusters (C0, C10, and C12) but not the vascular SPARC+COL3A1+ cluster. 

Deeper pathway analysis with Gene Ontology shows upregulation of transcriptional and 

translational pathways in EC co-cultured fibroblasts (Table S13), suggesting that overall 

activation of gene and protein production, not a specific response to endothelial-derived 

signals, drives the similarity of these fibroblasts in 2D culture. The lack of enrichment 

of vascular signature in fibroblast co-cultured with ECs in a 2D system could reflect a 

requirement of vascular endothelial tubes to fully elicit a vascular fibroblast phenotype. 

Fibroblasts from a 3D synovial organoid system, in which spontaneously assembled into 

vascular tubules, exhibited enrichment of the SPARC+COL3A1+ vascular marker gene 

signature (Figure 5G), as reflected by the key signature genes SPARC, COL3A1, NOTCH3, 

and THY1 (Figure 5H).

Validation of lung results with independent cohorts

Given the small number of lung fibroblasts represented in our study, we were concerned 

about how our results would generalize to independent cohorts. In the following analyses, 

we compared our results with two independent studies, one of healthy lung fibroblasts43 and 

one in a study of late-stage IPF.5

The authors of the human healthy lung atlas identified 9 distinct non-endothelial stromal 

cells, of which 5 are fibroblasts (adventitial, alveolar, lipofibroblasts, fibromyocytes, and 

myofibroblasts), 2 are muscle (vascular smooth muscle and airway smooth muscle), 1 is 

mesothelial, and 1 is a pericyte population. Using the authors’ published marker gene 

profiles (Figure S8A), we re-analyzed the lung mesenchymal cells in our dataset and 

were able to label clusters (Figure S8B) that accounted for 97.5% of cells in the healthy 

atlas (Figure S8C). In our analysis, we did not discern two rare (≤ 2%) populations the 

authors had annotated: mesothelial cells and fibromyocytes. These annotations may not have 

been robust because both populations were present in only a single donor in the original 

publication (Figure S8C). Next we wanted to determine how the four fibroblast clusters 

defined in the healthy atlas compared with our cross-tissue clusters (Figure S8D). We found 

strong correspondence between the atlas-derived labels and the cross-tissue labels (Figure 

S8E); alveolar fibroblasts map to C1 and C3, adventitial fibroblasts map to FBLN1+C5 and 

CD34+MFAP+ C9, lipofibroblasts map to C2 and PTGS2+SEM4A+ C8, and myofibroblasts 

map to SPARC+COL3A1+ C4, C10, and MYH11+ C13. These results demonstrate that our 

lung dataset is sufficiently rich to capture reliably annotated states present in healthy lung.
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We next wanted to determine whether our cross-tissue clusters are informative in an 

independent lung cohort with healthy and diseased donors. Our dataset is the first scRNA-

seq study of lung tissue to describe early-stage, inflammatory ILD. Previous studies4,5,44 

compared non-diseased lungs with lungs from individuals with late-stage IPF, a disease 

defined more by fibrosis than active inflammation. We downloaded the data from one such 

study5 and mapped it into our cross-tissue atlas (Figure S8F). Among 5,380 fibroblasts 

from 58 donors, we recovered proportions of clusters comparable with those in our lung 

dataset (Figure S8G). We then looked for fibroblast clusters expanded in IPF-derived 

samples compared with non-IPF controls (Figure S8H). MYH11+ (C13) myofibroblasts and 

SPARC+COL3A1+ (C4) vascular fibroblasts were most expanded in IPF samples, whereas 

CXCL10+CCL19+ (C11) immuno-fibroblasts were not significantly expanded (Figure S8I). 

The expansion of fibrosis-associated (C13) myofibroblasts and collagen-enriched (C4) 

vascular fibroblasts and the absence of (C11) lymphocyte interacting immuno-fibroblasts 

are consistent with the non-inflammatory fibrotic pathology of the late-stage IPF individuals 

in this cohort.

Finally, we tested the reproducibility of our cluster marker results for lung fibroblasts in the 

cross-tissue atlas. We performed differential expression analysis in the IPF dataset described 

above and compared the cluster markers profiles between our data and this independent 

cohort. Using correlation analysis, we confirmed that the cluster marker profiles between 

the two cohorts are concordant (Pearson ρ ∈ [0.34, 0.83]) (Figure S8J). To illustrate these 

results, we focused on cluster markers for the two clusters expanded in individuals with 

IPF: MYH11+ (C13) myofibroblasts (Figure S8K) and SPARC+COL3A1+ (C4) vascular 

fibroblasts (Figure S8I). We found significant concordance between differentially expressed 

genes in the two cohorts (C4 ρ = 0.76, p = 1.06 × 10−139, C13 ρ = 0.69, p = 3.74 × 10−78), 

particularly among canonical genes we used to label the clusters: ACTA2 (βadams = 1.60 

± 0.23, βAtlas = 2.05 ± 0.49), MYH11 (βadams = 2.60 ± 0.24, βAtlas = 2.57 ± 0.53), and 

MYL9 (βadams = 0.78 ± 0.26, βAtlas = 0.60 ± 0.40) in myofibroblasts and THY1 (βadams 

= 0.54 ± 0.18, βAtlas = 0.71 ± 0.29), SPARC (βadams = 1.37 ± 0.19, βAtlas = 1.24 ± 0.30), 

and COL3A1 (βadams = 1.52 ± 0.24, βAtlas = 1.38 ± 0.30) in vascular fibroblasts. These 

results confirm that, even with small cell numbers, the disease-related clusters we identified 

in our lung disease cohort are defined by the same genes as the disease-related clusters in the 

independent IPF cohort.

Comparison of gut clusters with independent healthy adult atlas

We also performed a comparison with a non-diseased atlas within our gut cells, leveraging 

the recently published gut cell atlas by Elmentaite et al.45 The authors identified 8 types 

of fibroblasts with sufficient representation (>25 total cells) in large intestine tissues 

sampled from healthy adult donors: myofibroblast, myofibroblast (RSPO2+), stromal 1 

(ADAMDEC1+), stromal 1 (CCL11+), stromal 2 (NPY+), stromal 3 (C7+), T reticular, and 

transitional stromal 3 (C3+). We re-analyzed our gut fibroblasts and were able to identify all 

8 phenotypes described by Elmentaite et al.45 (Figure S9A). We next compared these cluster 

labels with our integrated fibroblast phenotypes. We found a strong correspondence between 

the two labels (Figure S9B): MYH11+ C13 maps to both myofibroblast clusters; C12, C0, 

C10, and C6 map to stromal 2 (NPY+); CXCL10+CCL19+ C11 maps to T reticular cells; 
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SPARC+COL3A1+ C4, C3, C2, and C1 map mostly to stromal 1 (CCL11+); CD34+MFAP5+ 

C9 and FBLN1+ C5 map to transitional stromal (C3+); and PTGS2+SEM4A1+ C8 maps to 

stromal 1 (ADAMDEC1+) and stromal 3 (C7+). Finally, we confirmed our labels by using 

the top 50 marker genes associated with the authors’ phenotypes (Figure S9C). These results 

confirm that our gut fibroblast dataset captures the heterogeneity identified in healthy tissue 

and that the healthy-gut classification system agrees with our cross-tissue clusters, although 

some cross-tissue clusters are coarser than the healthy-gut atlas phenotypes.

Validation in an alternative tissue: Dermal fibroblasts in atopic dermatitis

As a proof of principle, we next explored whether the fibroblast states discovered in the 

four tissues could generalize to a tissue not explored in this study by examining cells from 

an independent dataset. We analyzed data from a study by He et al.46 of atopic dermatitis 

(AD), a chronic inflammatory condition of the skin (Figure 6A). The authors performed 

droplet-based scRNA-seq on all cells from cryopreserved skin biopsies of 5 individuals with 

AD (4 samples from skin lesions and 5 samples from skin outside of lesions) and 7 healthy 

donors. After removing low-quality (STAR Methods) cells and 3 samples with fewer than 

500 high-quality cells, we clustered 29,625 cells from 13 samples to identify the following 

major cell types (Figures S10A and S10B): MLANA+ melanocytes, KRT15+ epithelial 

cells, CD3G+ T cells, C1QB+ myeloid cells, PROX1+ lymphatic ECs, ACKR1+ vascular 

ECs, ACTA2+ mural cells, and COL1A1+ fibroblasts. As before, we used immune cell 

abundance to quantify a relative inflammation score in each sample (Figure 6B). Immune 

cell abundance correlated with histological classification, highest in samples from skin 

lesions and lowest in samples from non-diseased controls (Figure 6B).

We wanted to compare dermal fibroblasts directly with clusters defined in our fibroblast 

atlas. To do this, we leveraged a novel algorithm, Symphony27 (STAR Methods), designed 

to quickly and accurately map new scRNA-seq profiles into a harmonized atlas to compare 

them with annotated reference cells. Using Symphony, we mapped dermal fibroblasts into 

our multi-tissue fibroblast atlas and projected them into the reference UMAP space for 

visual comparison (Figure 6C). For quantitative comparison of fibroblast subtypes, we 

labeled individual dermal fibroblasts by their most similar reference clusters (Figure 6D). 

Dermal fibroblasts from all donors (Figures 6E and 6F) mapped primarily to all clusters 

except C6, C12, and C13, three clusters we identified as more tissue specific (Figure 2G). 

We computed marker genes for these clusters in skin (Table S14) and compared them with 

the markers we computed in the cross-tissue analysis. The gene expression profile of each 

dermal fibroblast cluster most closely resembled that of its corresponding reference cluster 

(Figure S10C). As two examples of this expression concordance, we plotted gene expression 

of immune (C11) and vascular (C4) fibroblasts inferred in the skin dataset versus those 

labeled in the reference (Figure 6G), highlighting the top 10 marker genes upregulated in 

each of the fibroblast clusters in the reference.

We associated the abundance of inferred dermal fibroblast clusters with the sample-

level inflammation score (Figure 6H). CXCL10+CCL19+ (C11) fibroblasts were most 

significantly expanded in inflamed skin samples (OR = 57, 95% CI [6.5, 503], p = 2 × 10−4), 

even when performing the association within histological groups (OR > 1000, p = 1.8 × 
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10−11) (Figure S10D). SPARC+COL3A1+ fibroblasts, expanded in the original four tissues, 

were less abundant in inflamed skin. Given the previous association of SPARC+COL3A1+ 

fibroblasts with vasculature, we explored the relative degree of vascular cell types in each 

skin sample. Lesional samples had significantly fewer vascular ECs (one-tailed t test, p 
= 0.004) and perivascular mural cells (one-tailed t test, p = 0.07) (Figure 6I), compared 

with non-lesional and healthy samples together. The lack of vascular fibroblast expansion in 

inflamed samples from skin lesions is consistent with this decreased vascularization. In fact, 

the abundance of vascular fibroblasts is associated nominally with the abundance of vascular 

ECs (log OR = 2.5, p = 0.04) and strongly with perivascular mural cells (log OR = 3.2, p = 

1.8 × 10−5) when taking into account the histological status (Figure 6J).

The original analysis of dermal fibroblasts by He et al.46 identified a novel COL6A5+ 

COL18A1+ population expanded in lesional skin biopsies. This population contained 

inflammatory (e.g., CCL19, CCL2, IL32) and ECM remodeling (e.g., POSTN, COL3A1, 

TWIST2) genes and likely represents two distinct subpopulations, as reflected by the 

different anatomical localization of CCL19 and POSTN. We next wanted to determine 

where the signature for these COL6A5+COL18A1+ fibroblasts appears in our shared 

clusters. With gene set enrichment analysis, we found that clusters C0, C4, and C11 

were significantly enriched in COL6A5+COL18A1+ marker genes (Figure S10E). Genes 

that contributed to enrichment in C0 and C11 were more related to inflammation (e.g., 

CCL19, CCL2, IL32, and IFI27), whereas genes that contributed to enrichment in C4 

were more ECM modulatory (e.g., COL3A1, POSTN, and TWIST2) (Figure S10F). With 

further gene expression and pathway analysis, we found that C0 and C11 represent distinct 

inflammatory activation programs; C0-associated genes were more enriched in NF-κB 

signaling, whereas C11-associated genes were more enriched in IFNγ signaling (Figure 

S10G). Our analysis deciphered subtle heterogeneity of three potentially inflammation-

associated dermal fibroblast states that was previously described as one cluster.

Cross-species mapping identifies shared fibroblast activation states in disease animal 
models of pulmonary, synovial, and intestinal inflammation

Next we tested whether our two shared inflammation-associated fibroblast subtypes were 

identifiable in single-cell datasets from mouse models of tissue inflammation. By defining 

which aspects of fibroblast-driven pathology are reproduced in mouse models, it may be 

possible to elucidate which pathological processes in murine models best parallel human 

fibroblast cell states. We found three publicly available single-cell RNA-seq datasets that 

included inflamed and non-inflamed samples in matched mouse tissues, which we could use 

to analyze the conservation of cluster markers and the expansion of inflammation-associated 

immuno-fibroblasts and vascular fibroblasts (Figure 7A). Kinchen et al.8 profiled 8,113 

cells, CD45− gated to enrich for stroma, from 3 healthy and 3 mice with dextran sulfate 

sodium (DSS)-induced colitis. Tsukui et al.47 profiled 15,095 cells, Col1a1+ gated to 

enrich for fibroblasts, from 2 healthy and 2 bleomycin-induced lung injury mouse lungs, 

profiled 14 days after treatment. Wei et al.13 profiled 8,738 total synovial cells from 

mice with K/BxN serum transfer (ST)-induced arthritis, half with active inflammation 

and half with abated disease by inhibition of Notch3 signaling, by genetic knockout 

(Notch3−/−) and blocking antibody (anti-Notch3 monoclonal antibody [mAB]). Although the 
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K/BxN transgenic model generates autoreactive antibodies through a lymphocyte-mediated 

etiology, mice receiving those autoreactive antibodies through ST develop arthritis through 

a lymphocyte-independent etiology.48 Therefore, we did not expect to see changes in the 

frequency of T cell-interacting immunofibroblasts with this model. For this reason, we also 

generated a novel scRNA-seq dataset (STAR Methods) of collagen induced arthritis (CIA), 

an antigen-based model of arthritis that involves T cells49 and, thus, is more likely to involve 

immunofibroblasts.

Within each dataset, we identified fibroblasts (6,979 intestinal, 10,320 pulmonary, 5,704 

K/BxN ST synovial, and 15,965 CIA synovial) with clustering and marker analyses 

(Figures S11A and S11B). We then mapped these fibroblasts to our human cross-tissue 

reference with the Symphony pipeline (STAR Methods) and labeled mouse cells with the 

most similar reference fibroblast subtypes (Figure 7B). Although most clusters were well 

represented across tissues (Figure 7C), two appeared to be more tissue specific (Figure 

S11C). Myofibroblast-enriched C13 was mostly absent in both datasets for synovium, which 

is known to lack myofibroblasts. Cluster C12, which mapped well to the intestinal WNT5B+ 

2 cluster in our initial analyses (Figure S4B), was enriched in intestinal fibroblasts in this 

mouse analysis. To test the degree to which gene markers are conserved between mouse 

and human, we performed cluster marker analysis in the mouse fibroblasts (Table S15) and 

compared cluster expression profiles between mouse genes and human orthologs (Figure 

S11D). Importantly, the most similar gene expression profiles were between corresponding 

clusters in mouse and human. For most clusters, expression profiles were even more similar 

between matched tissues.

We next wanted to determine whether the same fibroblast subtypes were expanded in 

inflamed tissues in human disease and mouse models. Thus, we performed differential 

abundance analysis within each mouse dataset, comparing inflamed cases with matched 

controls (STAR Methods) to determine which populations expanded in human tissues were 

also expanded in mouse models (Figure S11E), focusing particularly on the inflammation-

associated SPARC+COL3A1+ and CXCL10+CCL19+ populations (Figure 7D). Overall, 

we found a high degree of concordance between expanded clusters in human and mouse 

tissues (Figure S11E). In bleomycin-treated lungs, the most expanded populations were 

SPARC+COL3A1+ (OR = 5.2, 95% CI [4.5, 6.0], p < 10−8) and CXCL10+CCL19+ 

(OR = 3.8, 95% CI[2.2, 6.6], p = 2.5 × 10−6) fibroblasts. The expansion of both 

populations is consistent with the known pathology of the bleomycin model,50 which is 

characterized by lymphocyte infiltration and fibrosis on day 14. In particular, the expansion 

of SPARC+COL3A1+ fibroblasts in the fibrotic mouse lungs is consistent with our results 

of fibrotic human disease in individuals with late-stage IPF (Figure S8I). In contrast to 

the C4 and C11 phenotypes, clusters C1 and C10, which are among the most expanded 

in inflamed human lungs, were not expanded in the mouse data (ORs 0.43 for C1 and 

0.24 for C10). Given the low statistical confidence in associations in the human lung 

dataset (Figure 3C), we were less confident which clusters that were nominally expanded 

in inflamed human lung tissue would generalize to mice. In the K/BxN ST arthritis model, 

the Notch signaling-enriched (Figure 7D) SPARC+COL3A1+ cluster was greatly diminished 

with therapeutic Notch3 inhibition (OR = 3.8, 95% CI[1.5, 9.4], p = 4.1 × 10−3). On the 

other hand, the frequency of lymphocyte-interacting CXCL10+CCL19+ fibroblasts was not 
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associated with disease activity (OR = 1.2, 95% CI[0.47, 3.3], p = 0.6). This result is 

consistent with the known lymphocyte independence of the ST model etiology.48 In contrast, 

in the CIA model of arthritis, which requires T cells, the SPARC+COL3A1+ (OR = 1.40, 

95% CI[1.31, 5.29], p = 0.003) and CXCL10+CCL19+ (OR = 1.34, 95% CI[0.79, 8.12], p = 

0.05) fibroblast clusters were expanded. The two transcriptionally related clusters C2 and C8 

were expanded (OR = 18.4, % CI[2.80, 121], p = 8.5 × 10−3) in human RA but not in either 

mouse model. In contrast, C0 fibroblasts were found to be depleted (OR = 0.18, % CI[0.002, 

0.13], p = 4.22 × 10−5) in human inflammatory arthritis but significantly expanded (OR 
= 2.52, % CI[1.89, 3.36], p = 1.08 × 10−10) in the mouse model. In DSS-induced colitis, 

CXCL10+CCL19+ fibroblasts were significantly expanded (OR = 6.1, 95% CI[1.9, 19.3], p 
= 2.3 × 10−3), as reported previously,8 whereas SPARC+COL3A1+ fibroblasts were actually 

diminished (OR = 0.5, 95% CI[0.4, 0.7], p = 9.2 × 10−7) in frequency.

Temporal ordering of C4 and C11 activation in DSS-induced colitis

We were surprised that SPARC+COL3A1+ fibroblasts were not significantly expanded 

in a DSS-induced colitis model despite their significance in the human cohorts. Further 

analysis of vascular ECs, lymphatic ECs, and mural cells in the same mice shows a lack 

of evidence of vascular expansion in this dataset (Figure S12A). The lack of vascular 

fibroblast signal in the diseased mice could mean that DSS-induced colitis utilizes an 

alternative inflammatory process. However, the difference may also reflect the kinetics of 

disease. Because DSS-induced inflammation is an acute process, reversible with removal 

of the chemical irritant, cross-sectional cellular compositions in that model may differ 

from compositions of chronically inflamed UC intestine. Specifically, if SPARC+COL3A1+ 

fibroblasts are responsible for tissue remodeling to enable leukocyte infiltration, then 

genes associated with SPARC+COL3A1+ fibroblasts should precede those associated 

with CXCL10+CCL19+ fibroblasts. To test this hypothesis, we used recently published 

time course transcriptional profiles of DSS-induced colitis, which tracks gene expression 

changes with the induction and resolution of inflammation.51 The authors induced intestinal 

inflammation in female 8- to 12-week-old C57BL/6J mice by putting DSS in their drinking 

water for 7 days and allowed resolution of inflammation by removing DSS for another 

7 days. Measuring gene expression profiles with RNA-seq approximately every 2 days, 

the authors defined gene modules M5 and M9, associated with early inflammation (2–

4 days); M1, M3, and M4, associated with acute inflammation (6–8 days); and M5 

and M6, associated with resolution (10–14 days). We analyzed the enrichment of these 

phase-associated modules in our fibroblast marker profiles to associate the expansion 

of fibroblast subtypes with distinct phases of DSS-induced inflammation and resolution 

(Table S16). Strikingly, CXCL10+CCL19+ fibroblasts exclusively mapped to the three 

acute-phase modules M1, M3, and M4, whereas SPARC+COL3A1+ fibroblasts mapped 

to two early-phase modules, M5 and M9, and only the M1 acute-phase module (Figure 

7E). Time course profiles of representative genes demonstrate the early- and resolution-

phase activation of SPARC+COL3A1+-associated genes and acute phase activation of 

CXCL10+CCL19+-associated genes (Figure 7F). Importantly, this temporal pattern was 

obscured in the single-cell DSS-induced colitis dataset analyzed above because all mice in 

that study were euthanized on day 7, at the height of the acute inflammation phase. Given 

our hypothesis that SPARC+COL3A1+ fibroblasts are involved in vascular remodeling, 
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whereas CXCL10+CCL19+ fibroblasts interact with infiltrating immune cells, the early 

upregulation of SPARC+COL3A1+-association gene suggests that vascular remodeling 

precedes leukocyte infiltration in the DSS colitis model.

We next wanted to determine whether these dynamic signatures were driven specifically 

by changes in fibroblasts or in another cell type because the analysis above was done 

with whole-tissue RNA-seq profiles. For instance, genes associated with CXCL10+CCL19+ 

immuno-fibroblasts include IFN response genes, such as Cxcl9 and Cxcl10, which are 

upregulated in stromal and immune cells downstream of IFNγ signaling. To look for 

changes in fibroblast-specific transcriptional profiles in the DSS model, we generated a 

novel time course RNA seq dataset of DSS mice (STAR Methods), profiling RNA from 

flow-sorted fibroblasts rather than from whole tissue. On days 2, 4, 7, 9, 11, and 14 of 

the model, we sacrificed 6 mice with DSS-induced colitis and 1 healthy control mouse, 

flow-sorted Epcam−Cd45−Cd31−Pdpn+Pdgfra+ disaggregated colon cells, and profiled 1,000 

sorted fibroblasts from each mouse with RNA seq. This novel fibroblast-specific dataset 

allowed us to identify dynamic patterns arising from changes in fibroblast states and rule out 

changes because of fluctuations in cell type abundance.

Dynamic expression analysis across time points (STAR Methods; Table S17) identified 52 

time-related genes that were also upregulated at least 1 time point versus healthy controls 

(Figure S12B). Expression levels for most of these genes peaked on days 7 and 9, at the 

height of leukocyte infiltration (Figure S12C), and on day 14, the onset of resolution. We 

compared these inflammation-phase and resolution-phase gene sets with our cluster markers 

using gene set enrichment analysis and found significant (FDR < 1%) enrichment with 

marker genes for clusters C2, C12, and C11 (Table S18), with the strongest association (p = 

1.3 × 10−20) for cluster C11 (Figure S12D), driven by inflammation-associated genes such 

as Ccl19, Cxcl9, and Gbp4 (Figure S12E). This enrichment supports our hypothesis that C11 

immuno-fibroblast abundance expands with the peak of leukocyte infiltration. We found no 

significant association at any time points with marker genes from the C4 cluster, which, as 

we know from our analysis of single-cell data, should be depleted on day 7 (Figure 7D). 

This lack of signal suggests that these data do not capture transcriptional changes arising 

from expansion or depletion of vascular fibroblasts, potentially because we excluded these 

cells with the double-positive sort for Pdpn+Pdgfra+ cells.

DISCUSSION

In this study, we sought to define whether shared fibroblast states exist across four diverse 

tissues affected by clinically distinct inflammatory diseases. We postulated that defining 

shared pathogenic, inflammation-associated fibroblast states across diseases will help inform 

common therapeutic strategies targeting fibroblasts across different inflammatory diseases. 

Comparison of pathogenic fibroblast phenotypes across diseases that manifest in different 

tissues is hampered by the lack of an accepted, tissue-independent taxonomy by immune and 

vascular cells. We thus approached this question by generating novel scRNA-seq profiles 

of fibroblasts and analyzing the fibroblasts together to identify shared phenotypes across 

diseases. Cross-tissue analysis of gene expression is a challenging task, as evidenced by 

the plethora of statistical methods introduced to analyze even non-single-cell, multi-tissue 
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data generated by the Genotype-Tissue Expression (GTEx) project.52 Using sophisticated 

statistical methods for cross-tissue analysis, we were able to identify fibroblast phenotypes 

that were shared by all tissues as well as fibroblast adaptations unique to a subset of tissues.

The lack of universal definitions for key concepts, such as fibroblast identity and 

inflammation scoring, that apply equally well to all tissues presented a major challenge 

to our effort to associate fibroblast phenotypes with inflammation. In particular, the 

lack of a universal, pan-fibroblast surface marker that is uniformly expressed on all 

fibroblasts prevented us from directly isolating fibroblasts with flow cytometry. We 

addressed this problem with negative selection, using specific markers to filter out non-

fibroblast populations, thus defining fibroblasts based on high-dimensional scRNA-seq data 

as non-epithelial, non-immune, non-endothelial, and non-mural cells with some known 

tissue-specific fibroblast markers, such as PDPN, PDGFRA, and COL1A1. The lack of 

a quantifiable score for inflammation prevented us from directly using standard tools 

from meta-analysis, which assume a standardized phenotype that can be measured equally 

well across all organ tissues. Inflammation in each disease is defined by disease-specific 

pathological processes, reflected in tissue-specific histological scores, such as the Krenn 

inflammation score in RA53 and the Nancy index in UC.54 We approached this challenge 

by intentionally selecting four chronic inflammatory diseases with distinct pathological 

and inflammatory processes. By analyzing fibroblasts from a range of diverse pathologies, 

we maximized the chances of identifying fibroblast phenotypes common to inflammation 

in four tissues. We chose the simplest aspect of inflammation that can be measured in 

all tissues: the proportion of immune cells infiltrating each tissue sample. Despite this 

simplicity, our definition robustly identified two shared fibroblast states, CXCL10+CCL19+ 

(C11) and SPARC+COL3A1+ (C4), associated with inflammation across tissues.

The presence of multiple inflammation-related fibroblast states suggests multiple distinct 

functions for fibroblasts during inflammation. Understanding this functional specialization is 

critical for accurate therapeutic targeting and is missed by studies that look for a single 

inflammatory fibroblast state. For instance, 47% of inflammation-associated fibroblasts 

(IAFs) identified by Smillie et al.3 to be expanded in UC map to two distinct clusters 

in our study: vascular-associated (C4) fibroblasts and the C12 cluster, which is uniquely 

expanded in the gut in our study. In the gut, C4 and C12 fibroblasts may be divided 

along anatomical lines because WNT2B (higher in C4) and WNT5B (higher in C12) have 

been associated with crypt-associated and villus-associated fibroblasts, respectively. C12 

has higher expression of IL11 and IL13RA2, two canonical markers of IAFs suggested 

by Smillie et al.3 The remaining 22% of IAFs map to our C2 and C3 clusters, which 

are enriched for pro-inflammatory cytokine signaling pathways (Figure 3G). IAFs have 

been localized to the ulcer bed in a subset of individuals with inflammatory bowel disease 

(IBD)11 and might exert multiple functions depending on their proximity to different niches; 

one highlighted by our C4 cluster is shared across multiple inflammatory tissue and involved 

remodeling of the ECM around vessels to facilitate immune cells recruitment. In individuals 

with IBD with ulcers, vessels are expanded, and some IAFs are found in close proximity to 

them.11 IAFs do not map to the immune-interacting (C11) cluster, which is better resembled 

by a CCL19+ subset of the RSPO3+ cluster defined in Smillie et al.3 and CCL19+CD74high 

fibroblasts identified by Kinchen et al.8 to be the primary stromal cluster associated with UC 
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in their cohort. A caveat of our definition of inflammation is that the other fibroblast clusters 

may be associated with distinct aspects of inflammation. For instance, PTGS2+SEM4A+ 

(C8) fibroblasts express the neutrophil-recruiting genes CXCL1 and CXCL2, are critical 

in a subset of IBD patient with ulceration,11 and are likely associated with neutrophil 

infiltration. In the same study, CCL19 was associated with another subset of individuals 

characterized by the presence of lymphoid aggregates in IBD but not with neutrophil 

infiltration and ulceration.11 Future studies with more nuanced definitions of inflammation 

could address the heterogeneous nature of inflammatory chronic diseases and may find 

additional pathological associations among our fibroblast clusters.

The complexity of our study design, with cells measured from multiple donors, tissues, and 

diseases, presented a second major challenge to our study. Algorithms to identify shared 

clusters in scRNA-seq datasets from multiple donors and tissues do not address key issues 

such as data imbalance or downstream analysis of gene expression in multi-tissue studies 

of human disease. Analyses that do not account for these factors in this complex setting 

may result in diminished power and spurious associations. Here we use weighted PCA and 

weighted Harmony to account for imbalanced datasets and mixed-effects Poisson regression 

to account for the effect of complex interactions between covariates on gene expression. 

Our analytical approach to decipher tissue-shared and tissue-specific gene expression serves 

as a template for well-powered and robust analysis of single-cell cluster markers, which is 

particularly relevant to the growing number of studies designed to identify shared etiology 

across tissues and diseases.28,55,56

Based on marker gene profiles, we believe that some of the clusters in our analysis 

have been previously described in single-cell and functional studies of individual tissues, 

potentially with the exception of pSS, in which a scRNA-seq atlas has not been described 

to date. For the first time, we provide a common frame of reference to cross-compare these 

diverse populations objectively across tissues. As a powerful corollary, we can draw upon 

functional studies performed in individual tissues to interpret the biological significance of 

our clusters.

CXCL10+CCL19+ (C11) fibroblasts closely resemble functionally well-characterized 

CCL19+PDPN+ immunofibroblasts in the salivary gland. These CCL19+ fibroblasts co-

localize with CD3+ T cells and underlie the formation of salivary gland tertiary lymphoid 

structures in human tissue and in an animal model.12 This putative interaction with T 

cells is suggested by the expression of HLA genes in the synovial fibroblasts expanded 

in individuals with RA.2 Here, HLA-DRA+ fibroblasts show strong evidence of response 

to IFN γ, and functional work demonstrated that IFN γ is mostly produced by CD8+ 

T cells in inflamed synovium. Kinchen et al.8 also identified CCL19+ fibroblasts in the 

inflamed UC intestine, and numerous studies57,58 have identified T cells as the primary 

source of IFN γ in intestinal inflammation. CXCL10+CCL19+ (C11) fibroblasts expressed 

IRF8, and TF enrichment score analysis (Figure S5G) was enriched for STAT2-regulated 

genes, particularly in this cluster. Those are downstream targets of IFNα, and GO analysis 

highlights a potential role of IFNα in driving this phenotype. This suggests that T cell 

recruitment driven by CCL19+ fibroblasts and IFN-activated fibroblasts is a shared feature 

of inflammation across multiple diseases, and further studies are required to distinguish the 
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activity of type I and type III IFN signaling in fibroblasts. Additional functional studies 

are required to investigate the complex interactions between T cells and fibroblasts in 

individual inflammatory diseases. Our integrative results provide generalizable markers that 

may identify such T cell-interacting fibroblasts across tissues.

SPARC+COL3A1+ (C4) fibroblasts closely resemble the CD90hi NOTCH3-activated 

synovial fibroblasts that are located near arterial blood vessels and pericytes and 

expanded in RA.13 Despite their perivascular location, NOTCH3+ fibroblasts, like our 

SPARC+COL3A1+ fibroblasts, are distinct from pericytes, as evidenced by their lack of 

the canonical pericyte genes ACTA2 and MCAM.59 Our cross-tissue analysis suggests 

that these vascular fibroblasts, which clustered separately from MCAM+ pericytes (Figure 

1B), may also play a role in vascular remodeling in the lung, intestine, and salivary 

gland. In the time-series analysis of acute inflammation in the mouse intestine, we found 

that expansion of vascular fibroblasts preceded expansion of CXCL10+CCL19+ immune-

interacting fibroblasts. If this temporal ordering holds tissues, then it suggests a two-

stage mechanism for fibroblast-mediated regulation of inflammation, initiated by vascular 

remodeling that enables greater leukocyte infiltration into the tissue. Further mechanistic 

studies are needed to elucidate the additional endothelium-derived or angiocrine factors60 

that mediate perivascular fibroblast differentiation and the mechanistic relationship between 

vascular and immune-interacting fibroblasts.

We focused on the histological characterization of the C4 and C11 cell clusters because 

we found them to be consistently expanded with inflammation across tissues. As a result, 

we focused less on three remaining clusters with a preponderance of shared genes: C8, 

C5, and C9. These clusters may be related to shared homeo-static functions or shared 

pathological functions not captured by our coarse-grained inflammation score based only 

on the percentage of CD45+ cells. Indeed, when we compared these shared clusters with 

previously defined fibroblast clusters in a cross-tissue study of mouse fibroblasts,21 we 

found a significant (p < 10−10) enrichment of genes from two experimentally validated 

universal progenitor states, Pi16+ and Col15a1+ fibroblasts, in our C5 and C9 clusters 

(Figure S2E). This comparison suggests a role of C5 and C9 fibroblasts as pluripotent 

progenitor states shared among our tissues. In contrast, our C8 cluster mapped well to 

multiple tissue-specific clusters: (perturbed and healthy) Cxcl12+ fibroblasts from joint 

tissue and Adamdec1+ and Fbln1+ fibroblasts from the intestine. Pathways analysis for 

cluster C8 suggested an inflammation-induced phenotype with evidence of response to 

TNF-α, IL-1, and IFNγ activation (Figure 3G). Upregulated genes included those associated 

with granulocyte recruitment, such as IL6, CXCL2, CXCL3, and ICAM1. Our study did 

not measure granulocyte abundance in tissue because neutrophils are poorly captured in 

scRNA studies. Thus, as mentioned earlier, if C8 is related to granulocyte trafficking, 

then our inflammation association test would not have picked up an expansion of this 

cluster. Finally, our C4 and C11 clusters were also described in the Buechler et al.21 

fibroblast atlas and associated with perturbed tissue states. However, their experimental 

characterization of fibroblast phenotypes focused on the Pi16+ and Col15a1+ phenotypes, 

which are not associated with tissue pathology. Thus, our study provides a complementary 

view of fibroblasts in human tissues, with a particular focus on states universally expanded 

in inflammatory conditions as opposed to homeostasis.
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When interpreting clusters with more tissue-specific than tissue-shared genes, we noticed 

that tissue-specific programs often express genes with tissue repair functions. This 

observation may reflect the tissue-specific needs for maintenance and repair, defined by 

that tissue’s unique anatomical structures.61 In contrast, clusters with more tissue-shared 

genes were enriched in biological processes, such as immune cell recruitment (C11 and 

C8), processes that are independent of tissue architecture, and interaction with blood vessels 

(C4), structures that are present in all tissues. This dichotomy between functions tailored to 

a tissue’s structural composition versus functions common to all tissues explains why some 

fibroblast phenotypes in scRNA-seq appear to be more tissue specific and others more tissue 

shared.

Although our analyses were focused on associations between tissue inflammation and 

fibroblast subtypes, we also found evidence to support the potential role of the 

inflammation-expanded C4 fibroblast cluster in fibrosis. Comparison of late-stage fibrotic 

disease in the lung with non-fibrotic lung found expansion of C4 but not C11 fibroblasts 

(Figure S8H). The C4 signature is enriched in the DSS-induced colitis model on day 14, 

which has been proposed as a model of intestinal fibrosis. Inflammation and fibrosis are 

tightly linked processes, but the cellular mechanisms that connect the two pathological 

processes are not well understood62 and may vary across diseases. For instance, although 

expansion of C4 and C11 fibroblasts may occur at different times in DSS-induced colitis 

(Figure 7E), our data on the mouse model of human IPF show concurrent expansion 

of C4 and C11 fibroblasts on day 14 (Figure 7D), consistent with the presence of 

fibrosis and lymphocyte infiltration at this time point. Finally, our C4 cluster shows 

evidence of perivascular localization and fibrosis-related genes (e.g., COL3A1). This 

combination makes C4 fibroblasts an attractive cellular phenotype to study the connection 

between vascular pathology and fibrosis. Multiple studies have noted that fibrosis occurs 

near vasculature63 and have suggested perivascular mesenchymal cells as precursors to 

profibrotic myofibroblasts.64,65 We also found that C4 cluster and SPARC expression was 

enriched around smooth muscle cell in the lung and in the intestine, two tissues prone to 

develop fibrosis. In future studies, we will investigate the role of C4 fibroblasts as a potential 

stromal mediator between pathological vascular processes and tissue fibrosis.

Our results suggest that distinct local microenvironments, some enriched for vascular cells 

and others for lymphocytes, are key to determining the fibroblast state. This would be 

impossible to determine from global clinical characteristics of individuals or even from 

non-anatomically matched molecular measurements. For instance, the proportion of CD45+ 

cells in several individuals with the more inflammatory RA diagnosis was lower than 

in those with the comparator diagnosis OA. The separation of CD45+ cells in inflamed 

versus control and non-inflamed gut samples was more concordant because inflamed 

samples were selected for evidence of local pathology. The frequency of immune cells 

in our lung cohort was the most diverse. Although we selected individuals with early-stage 

ILD to enrich for inflammatory disease, we found a wide variation in the frequency of 

CD45+ cells and lymphocytes among early-stage and end-stage disease. In the same tissue 

samples derived from affected individuals, we performed additional histopathological assays 

to obtain absolute quantification of lymphocytes (Table S19) identified by histological 

examination of formalin-fixed and paraffin-embedded (FFPE) lung tissue sections stained 
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with hematoxylin and eosin (STAR Methods). Because of the destructive nature of tissue 

disaggregation for scRNA-seq, these histology scores profile different anatomical regions 

and, thus, different local microenvironments. The number of lymphocytes counted in these 

is not correlated with the number of lymphocytes profiled by scRNA-seq (p = 0.34). Thus, 

if we had measured fibroblast profiles in one region and inflammatory status in a separate 

region of the lung, then we would have captured distinct microenvironments and missed 

the correlation between fibroblast and immune cell abundance. This point highlights the 

importance of paired molecular and spatial profiling to understand the functional roles of 

fibroblasts and motivates use of emerging spatial transcriptomics technologies in future 

studies. With these emergent technologies, we will be able to measure more clinically 

relevant local inflammation states that were not available to us during this study.

Our in vitro co-culture experiments with lung and synovial fibroblasts derived from 

affected individuals highlight key limitations of inducing fibroblast phenotypes ex vivo. 

We found that fibroblasts co-cultured with disaggregated ECs failed to reproduce the 

COL3A1+SPARC+ phenotype, whereas fibroblasts co-cultured with ECs in a 3D organoid 

were induced toward the COL3A1+SPARC+ phenotype. This discrepancy highlights the 

need for more realistic physical culture settings to faithfully reproduce some fibroblast 

phenotypes ex vivo. In contrast, the co-culture experiment with supernatant from stimulated 

T cells was able to polarize fibroblasts toward the CXCL10+CCL19+ (C11) phenotype 

without the need for a 3D system. This co-culture condition captures the response of 

fibroblasts to secreted inflammatory T cell-derived signals. We found enrichment of genes 

associated with response to inflammatory cytokine pathways in multiple clusters: C0, 

C2, C3, C8, C11, and C12 (Figure 3G). However, this co-culture condition specifically 

upregulated genes associated with cluster C11. Thus, although multiple fibroblast clusters 

show evidence of response to inflammatory signals, likely originating from different 

sources, only CXCL10+CCL19+ (C11) fibroblasts are specifically enriched for signals 

derived from stimulated T lymphocytes.

We used a novel type of analysis from single-cell analysis, Symphony reference mapping,27 

to compare human dermal fibroblasts and mouse lung, synovial, and lung fibroblasts with 

our annotated cross-tissue atlas. Reference mapping let us avoid intensive and error-prone 

manual interpretation steps in de novo analysis of the external datasets. We anticipate that 

this strategy can improve reproducibility in single-cell analysis in general and particularly 

in fibroblasts, whose phenotypes are often difficult to identify with one or two canonical 

marker genes. To promote reproducible research and cross-disease insights into fibroblast 

biology, we made the fibroblast atlas (github.com/immunogenomics/fibroblastlas) and the 

tools needed to map data (github.com/immunogenomics/symphony) publicly available.

Fibroblasts are essential players in inflammatory disease, fibrotic disease, and cancer. The 

potential to target fibroblasts therapeutically is growing with the number of single-cell 

and functional studies on fibroblast heterogeneity.66,67 Although early studies of fibroblast 

heterogeneity focused on positional identity, more recent studies have focused on functional 

states that mediate pathological processes. Our study provides the first cross-tissue analysis 

that rigorously distinguishes tissue-specific from tissue-shared identity in fibroblasts. We 

described two fibroblast states that may be universal to inflammatory disease across 
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tissues. We created the first single-cell reference atlas of fibroblast heterogeneity to unify 

fibroblast research and prevent a confusing sprawl of fibroblast names across disciplines. 

The next critical step is to define how these fibroblast states behave in different clinical 

contexts and how they respond to the wide range of therapeutic agents available for immune-

mediated inflammatory diseases. In our study, although many individuals were actively 

receiving immune-modulatory therapeutic agents (Tables S2, S3, S4, and S5), we did not 

have sufficient power in the design to look for systematic patterns with these therapeutic 

agents. Future studies that control for therapeutic intervention can use our atlas to identify 

which fibroblast states are associated with particular interventions and potentially find a 

stromal basis to explain the heterogeneous clinical response to immune-modulatory drugs. 

Moreover, our finding that C4 vascular fibroblasts are expanded in inflammation (Figure 

3D) in fibrosis (Figure S8I) suggests that the same fibroblast states in our atlas can be 

relevant to multiple pathological processes and targeted to treat multiple, diverse indications. 

Finally, we proposed an analytical pipeline for studying shared pathological processes across 

diseases that can readily be applied to all cell types and tissues.

Limitations of the study

We would like to emphasize several limitations of our study. First, as detailed above, 

our definition of inflammation score is based on total leukocyte frequency within each 

sample. Although this definition allowed us to create a tissue-independent score to perform 

cross-tissue meta-analyses, it also limits our ability to correlate fibroblast phenotypes with 

more subtle and functionally specific aspects of inflammation. The second limitation of our 

study arises from the inability of scRNA-seq to capture certain key populations of cells, such 

as neutrophils, mast cells, and adipocytes, which do not survive the tissue disaggregation 

and encapsulation procedures of the droplet-based scRNA-seq pipeline. It is also well known 

that large cells that cannot effectively fit into a droplet, such as muscle cells and nerves, are 

not captured by droplet-based scRNA-seq. It is possible that certain fibroblast states may fall 

into this category and are thus not represented in our fibroblast atlas. The third limitation 

of our study is in the sample size of our cohort. Although 74 donors represent a sizeable 

scRNA-seq resource, this sample size is not powered to correlate molecular results with 

demographic and clinical features, such as sex, age, and medication status.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Soumya Raychaudhuri soumya@broadinstitute.org.

Materials availability—This study did not generate new unique reagents.

Data and code availability

• RNA-sequencing data have been deposited in GEO, Broad’s Single Cell Portal, 

and NIAID ImmPort. High dimensional images for Cell Dive experiments have 

been deposited in NIAID ImmPort. Accession numbers are listed in the key 

resources table.
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• All original code has been deposited at Zenodo and is publicly available as of the 

date of publication. DOIs are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human research and sample acquisition—Synovial study samples for transcriptomic 

and imaging studies were obtained from Brigham and Women’s Hospital, Hospital 

for Special Surgery, and the University of Birmingham under IRB-approved protocols. 

Synovial tissue from patients with clinically diagnosed rheumatoid arthritis were obtained 

from ultrasound-guided joint biopsy (University of Birmingham, BEACON cohort ethics 

number 07/H1203/57) or arthroplasty or synovectomy procedures (Brigham and Women’s 

Hospital, Hospital for Special Surgery, and The Royal Orthopaedic Hospital (Birmingham)). 

For arthroplasty and synovectomy tissue samples, the diagnosis of rheumatoid arthritis 

was confirmed clinically through clinical chart review. Synovial tissue from patients 

with osteoarthritis were obtained from arthroplasty procedures. Synovial tissues were 

cryopreserved on-site in Cryostor CS10, then shipped to BWH under a BWH IRB-approved 

protocol PROSET for tissue dissociation and single-cell transcriptomic analysis.

Intestinal samples were obtained from Ulcerative colitis (UC) or from healthy individuals 

by endoscopic biopsy. Healthy patients were recruited as a part of the research tissue 

bank ethics 16/YH/0247 and Inflammatory Bowel Diseases (IBD) patients among the 

Inflammatory Bowel Cohort 09/H1204/30 by the Translational Gastroenterology Unit 

Biobank at the John Radcliffe Hospital in Oxford. All patients gave informed consent 

and collection was approved by NHS National Research Ethics Service. Samples were 

immediately placed on ice (RPMI1640 medium) and processed within 3 h.

Labial minor salivary gland samples were obtained from patients recruited in the Optimising 

Assessment in Sjögren’s Syndrome (OASIS) cohort69 which recruits new patients attending 

the multidisciplinary Sjögren’s clinic at the Queen Elizabeth Hospital Birmingham, UK for 

assessment. Sjögren’s syndrome patients had a physician diagnosis of primary Sjögren’s 

syndrome and fulfilled the 2016 ACR/EULAR classification criteria. Participants with 

non-Sjögren’s sicca syndrome had signs and/or symptoms of dryness but did not have 

a physician diagnosis of SS or fulfill 2016 classification criteria. Salivary gland biopsy 

samples were divided in two: one for the scRNAseq study and the second for histological 

analysis to confirm diagnosis. Histological diagnosis is summarized in Supplemental Data: 

Table S4 and reported as presence of focal lymphocytic sialadenitis (FLS, suggestive of 

Primary Sjögren’s Syndrome, PSS) or non-specific chronic sialadenitis (NSCS), in the case 

of non-Sjögren’s sicca syndrome. Focus score (FSC, number of inflammatory foci/4mm2 

of tissue) is also reported in Table S1. All OASIS participants provided written informed 

consent and the study was approved by the Wales Research Ethics Committee 7 (WREC 7) 

formerly Dyfed Powys REC; 13/WA/0392.

Lung samples were obtained from patients recruited at the Brigham and Women’s Hospital 

with informed consent under MGB IRB protocols 2014P002558 and 2019P003592 approved 
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by the Mass General Brigham IRB (PROSET). As enumerated in Supplemental Data: 

Table S2, samples coded Lung1–15, which included control donor lung and later-stage 

ILD diagnoses (IPF, Rheumatoid Arthritis [RA]-ILD) were explants from lung transplant 

surgery. Samples coded Lung 16–23 (unclassifiable (u)ILD, IPF, NSIP), which constitute 

the earlier-stage ILD subcohort, were from Video-assisted thoracoscopic surgical (VATS) 

lung biopsies for diagnosis of ILD. No patients with earlier-stage ILD (n = 8) had a clinical 

requirement for supplemental oxygen, whereas all patients with late-stage ILD (n = 11) 

required supplemental oxygen at time of enrollment. Earlier disease defined as requirement 

of VATS for diagnosis of ILD and no requirement for supplemental O2. Later disease is 

defined as lung explanted for lung transplantation. For patients with pulmonary function 

testing within six months prior to enrollment, TLC and DLCO statistics were collected. 

The patient condition is the diagnosis determined by clinical providers after their inter-

disciplinary review of patient history, exam, clinical laboratory testing (e.g., serologies), 

imaging and histopathology of the explanted or biopsied lung tissue. The presence or 

absence of anti-CCP antibodies is noted.

Where possible, patient data on sex, gender, and age were gathered from clinical records. 

Data on socioeconomic status, race/ancestry, and ethnicity were not reported in this study.

METHOD DETAILS

Cell isolation for single-cell RNA-sequencing—Synovial tissues were cryopreserved 

on site, thawed and disaggregated into single-cell suspension as previously described.70 

Four pairs of intestinal biopsies were pooled, minced and frozen in 1 mL of CryoStor® 

CS10 (StemCell Technologies) at −80°C then transferred in LN2 within 24 h. Single-cell 

suspensions from these endoscopic biopsies were then prepared by thawing, washing and 

subsequent mincing of the tissue using surgical scissors. Minced tissue was then subjected 

to rounds of digestion in RPM-1640 medium (Sigma) containing 5% Fetal Bovine Serum 

(FBS, Life Technologies), 5 mM HEPES (Sigma), antibiotics as above, and Liberase TL 

(Sigma), with DNAse I. After 30 min, digestion supernatant was taken off, filtered through 

a cell strainer, spun down, and resuspended in 10 mL of PBS containing 5% BSA and 5 

mM EDTA. Remaining tissue was then topped up with fresh digestion medium until no 

more cells were liberated from the tissue. Cells were then stained and FACS-sorted for live 

EPCAM−CD45− cells, before being taken for microfluidic partitioning.

Lung tissues were cryopreserved on site, thawed and disaggregated into single-cell 

suspension. Each lung tissue was frozen in 1 mL of CryoStor CS10 in −80 °C with a 

controlled rate of freezing and then transferred to LN2 within two weeks. On the day of 

single-cell analysis, the cryopreserved lung tissue was rapidly thawed, serially rinsed with 

DMEM (GIBCO) supplemented with 10% FBS and then DMEM with 2% FBS on ice. 

Lung tissue was minced using surgical scissors and then transferred to a polypropylene 

tube with digestion media containing Liberase TL, hyaluronidase (Worthington Biochemical 

Corporation), Elastase (Worthington Biochemical Corporation), DNAse (Sigma) and 1% 

FBS. The addition of FBS improved cell viability without reducing yield of viable stromal 

cells. After 20 min of incubation at 37° C warm room with agitation by stir bar, the 

supernatant containing single cells was collected, and fresh digestion media was added. 
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After 20 min of addition digestion, the tissue and supernatant were filtered through a 70 

micron cell strainer and washed in DMEM with 2% FBS twice. Dead cells were removed 

using a magnetic column based method per manufacturers protocols (Dead Cell Removal 

kit, Miltenyi Biotec). Then single cells were taken for microfluidic partitioning.

Minor salivary gland biopsies were taken surgically from the lip and frozen in 1 mL 

of CryoStor® CS10 (StemCell Technologies) at −80°C. For preparation of single-cell 

suspension, firstly the frozen tissue sample in Cryotube were quickly thawed in water bath 

at 37° C and washed twice in pre-warmed 5%FBS RPMI media. The salivary gland biopsies 

were then enzymatically digested as previously described (PMID: 31213547). Dead cells 

were removed using the EasySepTM Dead Cell Removal (Annexin V) kit from the digested 

samples following manufacturer’s instructions before proceeding for the scRNA sequencing 

using the 10× platform.

RNA-sequencing—Single-cell RNA-sequencing experiments for lung, intestine, and 

synovium samples were performed through the Brigham and Women’s Hospital Single 

Cell Genomics Core. Viable cells in single-cell suspension were resuspended in 0.4% BSA 

in PBS at a concentration of 1,000 cells per ul. 7,000 cells were loaded onto a single 

lane (Chromium chip, 10X Genomics) followed by encapsulation in lipid droplet, with 

the 10× Genomics Single-Cell 3′ kit (Version 2 for synovium and intestine, Version 3 for 

lung) followed by cDNA and library generation per manufacturer protocol. cDNA libraries 

were sequenced to an average of 50,000 reads per cell using Illumina Nextseq 500. Single-

cell RNA-sequencing experiments for salivary gland samples were performed at Oxford 

University. For each library, 10,000 cells were counted using the automated cell counter 

Bio-Rad TC20 and loaded onto a single 10× lane and processed with the 10× Genomics 

Single Cell 3′ kit (Version 3). Sequencing was done using Illumina NovaSeq 6000 and 

libraries were sequenced to a minimum of 50000 reads/cell.

In vitro fibroblast studies—Early passage synovial and lung fibroblast cell lines 

(passage 3 to 5) derived from rheumatoid arthritis and ILD patients, respectively, were used 

for in vitro functional experiments. Human Umbilical Vein Endothelial Cells (HUVECs) 

were purchased from Lonza and expanded in the presence of growth factors (EGM-2, 

Lonza). Unmanipulated non-naïve human T cells were isolated using a Miltenyi Pan T Cell 

Isolation Kit supplemented with CD45RA MicroBeads, yielding >95% CD45RO+ T cells. 

T cells were resuspended in DMEM media containing 1% fetal calf serum and transferred 

to multiple wells of a 96-well flat-bottom plate at 100,000 cells/well. The cells were then 

stimulated for 16 h with Dynabeads Human T-Activator CD3/CD28 beads (ThermoFisher) 

at a 1:1 ratio of beads to cells. Supernatants were harvested and pooled, and any remaining 

T cells were removed by centrifugation. For fibroblast-endothelial co-culture experiments, 3 

synovial fibroblasts cell lines and 3 ILD fibroblast cell lines were co-cultured with HUVECs 

at a 2:1 ratio for 7 days. Fibroblasts were serum-starved for 24 h followed by incubation 

with undiluted supernatants from activated T cells for 24 h prior to harvest for sorting and 

single-cell RNA-seq.

Single cell RNA-seq experiments were performed by the Brigham and Women’s Hospital 

Single Cell Genomics Core. Cells were trypsinized and stained with Fixable Viability 
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dye (ThermoFisher), anti-CD31 (clone wm59, Biolegend), anti-CD3 (clone UCHT1, 

Biolegend), and a unique barcoded antibody (Cell-hashing antibody, TotalSeq-A, Biolegend) 

as previously described. For scRNAseq analysis of the fibroblasts, viable, CD31−, and CD3− 

cells from organoids were isolated by FACs. Next, 3,000 CD31−CD3− cells from each 

condition were resuspended in 0.4% BSA in PBS at a concentration of 1,000 cells per μL, 

pooled together, then loaded onto a single lane (Chromium chip, 10X Genomics) followed 

by encapsulation in a lipid droplet (Single Cell 3′kit V3.1, 10X Genomics) followed by 

cDNA and library generation according to the manufacturer’s protocol. mRNA libraries 

were sequenced to an average of 50,000 reads per cell and HTO (Cell Hashing antibodies) 

libraries sequenced to an average of 5,000 reads per cell, both using Illumina Novaseq. ADT 

reads from scRNA-seq reads were processed with Cell Ranger v3.1, which demultiplexed 

cells from different samples. Gene quantification was performed using the kallisto and 

bustools pipeline, as described above.

Collagen-induced arthritis mouse model—For collagen induced arthritis, bovine type 

II collagen (CII; generously provided by Prof. Richard Williams, Kennedy Institute Oxford) 

was dissolved in 0.1 M acetic acid at 4 mg/mL. Complete Freund’s adjuvant (CFA) was 

generated using incomplete Fruend’s adjuvant (IFA; BD Difco, #BD263910) containing 

Mycobacterium tuberculosis H37Ra (4 mg/mL; BD Difco, #BD231141). Male DBA/1 mice 

were immunised with 200 μg of CII emulsified 1:1 in CFA and were boosted 21 days 

later with 200 μg CII in IFA. Onset of arthritis was determined by a paw score ≥2. 5–7 

days following onset, mice were culled and inflamed rear limbs were harvested. Mouse 

rear limb were dissected and bones (including femur, tibia, fibular; and rear foot bones 

calcaneus, tarsals, metatarsals and phalanges) with intact joint tissue were transferred into 

RPMI-1640 media (+2% FCS) containing 0.1 g/mL Collagenase D (Roche), 0.01 g/mL of 

DNase I (Sigma-Aldrich). Samples were incubated at 37° C, 45 min, followed by a second 

incubation with RPMI-1640 media (+2% FCS) containing 0.1 g/mL Collagenase Dispase 

(Roche) and 0.01 g/mL DNase I at 37° C for 30 min. Cells were labelled with anti-mouse 

CD45 APC-cy7 (1/500, 30-F11; BioLegend, #103116) and 7-AAD (7-Aminoactinomycin 

D, 1/1000; ThermoFisher, #A1310) viability dye. From this, live, CD45 negative cells were 

sorted using a MoFlow Astrios EQ (100 μM nozzle size). Cells were counted and loaded 

into 10X chromium controller for a 5000 cell target recovery.

DSS colitis time course—Animal experiments were carried out under the relevant 

Home Office license at the University of Oxford (PPL: P508FFA1F). Female 7-week–old 

C57BL/6J mice were obtained from The Jackson Laboratory and housed in ventilated cages 

with 12-h light cycles under specific pathogen-free conditions (SPF). They received food 

and water ad libitum. For induction of colitis, 2.5% w/v dextran sulfate sodium (DSS; MP 

Biomedicals) was supplemented in drinking water and given to mice for six consecutive 

days, with renewal on day three. After the treatment was ceased, mice returned to receiving 

standard water for the remaining time. Mice were monitored every day for alterations in 

body weight and clinical disease scores, until euthanised with carbon dioxide. Colons were 

resected, cleaned and washed in RPMI1640 supplemented with 5% fetal calf serum (FCS), 

1% Penicillin-Streptomycin and 5 mM EDTA for two total washes of 30 and 20 min 

respectively at 37° C to remove bulk epithelium. This was followed by tissue digestion using 
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100 μg/mL Liberase TL and 40 μg/mL DNAse for 3 × 1-h cycles to dissociate all tissue 

into single-cell suspension. These were then stained with relevant reagents and antibodies 

(below) and FACS sorted (BD FACSAria III and BD FACSDiva 8.0.1) for live fibroblasts 

on CD45 −ve, EpCAM −ve, CD31 −ve, Podoplanin +ve, Pdgfra +ve cells at the time points 

described. Cells were directly sorted into RNA lysis buffer and RNA was isolated using 

Zymo Quick RNA 96 kits as per the manufacturer’s instructions. Libraries were prepared 

using NEBNext ultra-low input RNA library prep with 1 ng of RNA per sample and 

sequenced on a NovaSeq6000 (150 paired-end).

High-dimensional proteomics imaging using cell DIVE

Slide clearing and blocking.: Formalin-Fixed Paraffin Embedded (FFPE) tissues slides 

from synovium, intestine, salivary glandy, and lung were deparaffinised and rehydrated. The 

slides were then permeabilised for 10 min in 0.3% Triton X-100 and washed further in 

1× PBS for 5 min. Antigen retrieval was performed using the NxGen decloaking chamber 

(Biocare Medical, Pacheco, CA, USA) in boiling pH6 Citrate (Agilent, S1699) and pH9 

Tris-based antigen retrieval solutions for 20 min each. Tissue slides were blocked in 

1xPBS with a 3% BSA (Merck, A7906), 10% Donkey serum (Bio-Rad, C06SB) and FcR 

Blocking Reagent, human (Miltenyi, 130-059-901, 1:200 dilution) solution for 1 h at room 

temperature. Slides were washed in 1xPBS for 10 min and then stained with DAPI (Thermo, 

D3571) for 15 min. Slides were washed in 1xPBS for 5 min and coverslipped with mounting 

media (50% glycerol – Sigma, G5516 and 4% propyl gallate – Sigma, 2370).

Scan plan and background acquisition.: The GE Cell DIVE system71 was used to image 

all FFPE slides. A scan plan was acquired at 10X magnification to select regions of interest 

followed by imaging at 20X to acquire background autofluorescence and generate virtual 

H&E images. Background imaging is used to subtract autofluorescence from all subsequent 

rounds of staining. Slides are decoverslipped in 1xPBS prior to staining.

Staining and bleaching.: Each staining round consisted of a mix of 3 antibodies prepared 

in blocking buffer (PBS, 3% BSA, 10% donkey serum, FcR blocking Re-agent). The initial 

round used primary antibodies which were incubated overnight at 4C° followed by 3× 

washes in 1xPBS and 0.05% Tween20 (Sigma P9416). Secondary antibodies raised in 

Donkey were then incubated for an additional hour at room temperature which were either 

conjugated to Alexa Fluorophore 488, 555 or 647 (Invitrogen). Each subsequent staining 

round used directly conjugated antibodies to either of these dyes (Antibodies list in table 

below) and were incubated overnight at 4C° or for an hour at room temperature. Antibodies 

manually conjugated were purchased in a BSA-AZIDE free format and conjugated using 

antibody labelling kit (Invitrogen).

Fluorophores were bleached between each staining round using NaHCO3 (0.1 M, pH 11.2. 

Sigma - S6297) and 3% H2O2 (Merck – 216763) (Gerdes, Sevinsky et al. 2013). Fresh 

bleaching solutions were prepared and slides were bleached 2 times (15 min each) with a 

1 min 1xPBS wash in between bleaching rounds. Slides were re-stained for DAPI for 2 

min and washed in 1xPBS for 5 min before imaging the dye-inactivated round as the new 

background round (for subsequent background subtraction). DAPI staining between imaging 

Korsunsky et al. Page 35

Med (N Y). Author manuscript; available in PMC 2022 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rounds assists in image registration and alignment. Slides were multiplexed with the next 

panel of three markers with iterative staining, bleaching and imaging.

Lung slides histopathology scoring—The presence and quantity of interstitial 

lymphocytes were assessed using a standard Olympus Bx50 microscope on 4 uM 

hematoxylin and eosin-stained sections prepared from formalin-fixed paraffin-embedded 

tissue. Interstitial lymphocytes only were counted manually using a cell counter in 50 high 

power fields (HPF; 400× magnification), by a pathologist with expertise in pulmonary 

pathology and idiopathic interstitial lung diseases. Total lymphocytes in 50 HPF were 

averaged to number of lymphocytes per 2mm2 for comparison between samples.

QUANTIFICATION AND STATISTICAL ANALYSIS

scRNAseq gene quantification—For all scRNAseq datasets analyzed in this 

manuscript, we quantified gene expression ab initio from FASTQ files. Human reads were 

mapped to the GRCh3872 reference and genes annotated with Gencode73 v33. Mouse reads 

were mapped to mm10 reference and genes annotated with Gencode v25. For both human 

and mouse data, we filtered transcripts for the annotation “protein_coding” and ignored 

the rest. Reads from distinct transcripts of the same gene were collapsed by summation. 

We used kallisto74 v0.46.0 to map reads to transcriptomes and bustools75 v0.39.3 to 

collapse duplicate reads by UMI and return gene-cell count matrices. We downloaded read 

level data for the following publicly available scRNAseq datasets: PRJNA61453946 (atopic 

dermatitis), PRJNA5423508 (DSS model), and PRJNA54894747 (Bleomycin model). After 

contacting the authors, the PRJNA542350 data turned out to be BAM files rather than 

FASTQ. Per their suggestion, we used the 10X Cell Ranger76 bamtofastq utility (version 

1.3.2), with default parameters, to convert the BAMs back into FASTQs for remapping. doc. 

The code to perform all steps of this mapping are implemented as functions in the github 

repository for this manuscript.

scRNAseq quality control, pre-processing, and normalization—After quantifying 

gene count matrices with kallisto and bustools (above), we filtered out poor quality cells 

with three metrics. (1) Cells must have at least 500 unique genes. (2) Cells must have 

more than 20% of the total UMIs mapped to non-mitochondrial genes. (3) Cells must be 

inferred as singlets by algorithmic doublet identification. For doublet identification, we used 

the scDblFinder algorithm, with default parameters, separately within each 10X library. We 

normalized for read depth with the standard logCP10K normalization procedure for gene g 
and cell i:

Ygi = log 1 + 104 ×
Ugi

∑ℎUℎi

Inflammation score normalization across tissues—Inflammation scores computed 

within each tissue had ranges and distributions. To be able to compare inflammation 

associated phenotypes across tissues, we normalized the distributions by performing quantile 

normalization. Because the number of samples was relatively small, we did not use an 

empirical distribution. Instead, we normalized to the quantiles of a parametric distribution. 
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We chose the beta distribution (α = 3, β = 3) to map the scores to an interpretable interval, 

between 0 (low inflammation) and 1 (high inflammation).

Gene selection—For analyses with one tissue, we used the VST method for variable 

gene selection, reimplemented from the Seurat package24 as a stand along function in our 

github at immunogenomics/singlecellmethods. We used default parameters and kept the 

top 2000 genes, ranked by standardized variance. For the multi-tissue integrated analysis, 

we used genes that we found informative in at least one of the tissue-specific analyses 

of lung, salivary gland, intestine, and synovium. We defined informative genes with two 

analyses. The first analysis is differential expression of cluster-markers for tissue-specific 

fibroblast subtypes (Figure 4A). We kept cluster-informative genes with p < 0.05 and |β| ≥ 

0.5. The second analysis found broadly inflammation associated genes by fitting a Poisson 

log-normal GLMMs to each gene. We kept inflammation associated genes with p < 0.05 and 

|β| ≥ 0.1.

Weighted PCA—We implemented principle components analysis that gives equal weight 

to each tissue while preserving the total cell number ∑iwi = N . The weights given to each 

cell were determined to meet this equal weight condition. These weights were then used in 

the scaling and SVD steps. For scaling, we computed weighted means and variance with 

the following formulas: μg =
∑iwiygi

N − 1 , σg2 =
∑iwi ygi − μg

2

N − 1 . For SVD, we modified the PCA 

covariance decomposition formula to allow for observation weights with a diagonal matrix 

W : XWXT = UDUT. This decomposition is achieved by performing SVD on the weighted 

matrix XW1/2 = UDVT. Because W is diagonal, its square root is the element-wise square 

root. This SVD solution now represents the original data as X = UDVTW−1/2, with gene 

loadings U and cell embeddings VTW−1/2. Weighted PCA is implemented on our github at 

immunogenomics/single-cellmethods with the weighted_pca function.

Weighted Harmony—We modified the Harmony algorithm to include observation 

weights. To achieve this, we modified the clustering objective function and 

rederiving the optimization steps for this function. The new objective function 

modifies the original only by multiply the per-cell cost (inside the summation) by 

wi: min
R, Y

∑i, kwi Rki2 1 − Y k
TZi + σRki log Rki + wi σθRki log

Oki
Eki

φi . The rest of the formula 

is unchanged and described in detail in the original Harmony manuscript.22 This modified 

Harmony implementation is available on our github at immunogenomics/harmony, under the 

weights branch.

UMAP visualization—We used the UMAP algorithm to visualize cells in two dimensional 

embeddings. We used the uwot R package with parameters n_neighbors = 30L, metric = 

‘Euclidean’, init = ‘Laplacian’, spread = 0.3, min_dist = 0.05, set_op_mix_ratio = 1.0, 

local_connectivity = 1L, repulsion_strength = 1, and negative_sample_rate = 1. For all other 

parameters, we used default values. In the symphony pipeline, we visualized mapped query 

cells by using the UMAP object learned for the reference analysis. The umap reference 

projection was done with the umap_transform function in uwot.
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Clustering—We performed graph based clustering with the Louvain algorithm,77 

implemented in Seurat.24 Instead of constructing the kNN and sNN graphs from scratch, we 

used the uniform manifold graph estimated in the UMAP algorithm. In the uwot package, 

this data structure is directly available in the fgraph field when umap is run with option 

ret_extra = c(‘fgraph’).

Hierarchical gene expression modelling

Statistical model.: We modeled the expression of each gene using Poisson lognormal 

GLMM regression. This framework allows us to model the hierarchical design in our multi-

tissue, multi-donor dataset. We fit the following GLMM for the integrated, multi-tissue 

analysis, regressing to the frequency of gene g in observation i.

log μgi β0 + βCluster + βDonor + βDonor:Cluster + βTissue

+ βTissue:Cluster + offset log∑
ℎ

Uℎi

We chose to model the cluster interaction terms with donor and tissue. As many papers have 

observed,22,78 the effect of biological and technical covariates are often cell type specific. 

This is why integration algorithms cannot adjust every cell type by the same amount to 

account for batch, donor, or tissue variability. Unfortunately, the absence of some donors 

and tissues in some clusters means that interaction terms may be very poorly estimated. To 

address this issue, we model all terms except for the global intercept (β0) with Gaussian 

priors, allowing each effect to have a different size, denoted by τ2, the variance of the priors. 

These priors shrink β s toward zero, stabilizing estimation for terms with little data to draw 

from.

We performed cluster marker analysis with the estimated β s, estimating both 

marginal effects and tissue-specific effects. Marginal cluster effects are only concerned 

with the βCluster term. For instance, the differential expression for cluster 3 is 

βC = 3 − 1
n − 1 × βC = 1 + βC = 2 + βC = 4 + …  + βC = n . This comparison can be compactly 

repre sented with the contrast vector Δ = − 1
n − 1 , − 1

n − 1 ,  1,   − 1
n − 1 ,  … ,   − 1

n − 1  such that 

the differential expression can be computed with the linear operation βC = 3
DGE = ΔβCluster. 

Following the example of significance testing in DESeq2, the standard errors of contrasts 

are in the diagonal elements of ΔΣΔ⊤, in which Σ is the covariance matrix of β 
levels. In our example, Σ is a cluster by cluster covariance matrix and the standard 

error for cluster 3 would be σC = 3
DGE = Δ∑ClusterΔT

3, 3. There is generally no analytical 

way to compute Σ for random effects, so we estimate it with simulation, using 

the arm R package,79 with 1000 simulations. Tissue-specific cluster effects take into 

account both the cluster and tissue-cluster interaction term. For instance, if we wanted 

to know how a gene is associated with cluster 3 in the lung, we would compute 
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βC = 3,  T =  Lung
DGE = βC = 3 − 1

n − 1 × βC = 1 + βC = 2 + βC = 4 +  …  + βC = n + βC = 3,  T = Lung 

− 1
n − 1 × βC = 1,  T = Lung + βC = 2,  T = Lung + βC = 4,  T = Lung +  …  + βC = n,  T = Lung

. 

The contrast vector now includes terms that represent the β s estimated for lung tissue 

as well. The statistical procedures to compute βC = 3,  T =  Lung
DGE  and σC = 3,  T = Lung

DGE  are 

the same as before. For both marginal and tissue-specific effects, we use a Gaussian 

approximation to estimate p values for each effect: βDGE ~ N(Δβ, ΔΣClusterΔT).

Implementation.: We fit GLMMs with the glmer function in the lme4 R package80 

and estimated random effect covariance with the sim function in the R arm package.79 

Initially, we found it difficult to tie model fitting and simulation seamlessly with differential 

expression analysis. For instance, building contrasts for nested effects and estimating 

significance for multiple gene queries was difficult to do. Moreover, the memory footprint of 

lme4 models makes it impractical to fit and save models for 1000 s of genes for downstream 

inference. To make lme4 and arm more accessible for gene expression analysis, we created 

the Presto package. Presto extracts the necessary components from lme4 models, saves them 

in efficient data structures, and has all necessary functions to do efficient contrast analysis 

for differential expression. We made Presto available as an R package, available on github at 

immunogenomics/presto under the GLMM branch.

To make the models more numerically stable, we enforced a minimum value for the size 

of random effects: σ ≥ 0.5. This prevented degenerate solutions with σ = 0, local minima 

which may arise in GLMM optimization. As a side effect, this Bayesian variance prior also 

enforces a conservative null model on random effects, effectively setting the null effect size 

to 0.5 rather than 0. This results in higher estimated uncertainty thus more conservative p 

values. In developing this software, QQ plot analysis was deflated and resembled post-hoc 

adjusted (e.g. Bonferroni) p values more than nominal p values from independent tests. 

Others have noted a similarity between post hoc correction and shrinkage integrated into the 

model.81 For our analyses, we consider significance with respect to these shrunken p values, 

estimated with random effects, without doing additional post hoc shrinkage.

We made two decisions to make Presto scale to large datasets. First, we fit the model with 

pseudobulk, rather than single-cell RNAseq profiles. Note that in the formula above, the 

cluster, tissue, and donor covariates are not unique to single cells. Therefore, we collapse 

reads from cells with same cluster, donor, and tissue identity into one observation. This 

approach has strong precedent.82 It is important to note that in this strategy, the number 

of parameters to estimate is equal to the number of observations. With fixed effects, this 

model is under-determined. However, because we shrink estimates to 0 with Gaussian 

priors, the effective number of independent parameters shrinks too. The second decision is 

with the choice of generative model. Many RNAseq differential expression tools used the 

Negative Binomial distribution, which uses Gamma rather than lognormal priors to model 

over-dispersion. For completeness, we also included negative binomial GLMMs in Presto. In 

practice, we found that this error model yielded almost identical results but took ten times 

longer to run.
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Tissue heterogeneity.: We took a very simple approach to labeling genes as conserved 

or heterogeneous cluster makers. Conserved markers were significantly (p < 0.05) 

overexpressed (β > 0) in all four tissues. If a gene was not upregulated in at least one tissue, 

we considered it to be a heterogeneous marker. Effect heterogeneity has a rich statistical 

treatment, especially in meta-analysis. We decided to not use these more sophisticated 

techniques, although the parameters learned in Presto could be used for such analyses.

Analyses.: To find marker genes for dermal fibroblasts, we fit the same model as above but 

omitted the Tissue terms: log μgi β0 + βCluster + βDonor + βDonor: Cluster + offset log∑ℎUℎi . 

For the mouse scRNAseq analyses, we used the same hierarchical formula with all Tissue 

terms.

Pathway analysis—All formal geneset enrichment was done with the GSEA algorithm, 

implemented in the fgsea R package.83 To enrich pathways for marker analyses (Figure 

5D), we used the H (hallmarks) and C5 (Gene Ontology) genesets from MSigDB, accessed 

with the msigdbr R package. To enrich for different phases of inflammatory response in 

DSS-induced colitis (Figure 7E), we used the published genesets, provided as supplemental 

materials in the manuscript.51

Abundance modeling—We associated inflammation score with cluster abundance 

using logistic regression, following the MASC method,85 with the following formula: 

logPr Cluster = k
Pr Cluster ≠ k 1 + Score + 1 Library + MT+DS LibraryID . As in MASC, the response 

variable models the log odds of being in cluster k vs not, to test for which factors contribute 

to cluster k abundance. This probability is a function of (1) an intercept, which reflects 

the average abundance of cluster k in the data, (2) fixed effect for Score, the normalized 

inflammation score for each sample, (3) random effect for 10X library, to account for 

dependence of cells within a library, and (4) cell quality statistics MT (percent mitochondrial 

reads) and DS (doublet score), separately within each library. The association between 

inflammation and cluster abundance is captured in the β statistic. We computed significance 

for each β with the following Gaussian approximation, using the standard error σ provided 

by lme4: β ~ N(0, σ2): To combine MASC results from individual tissue analyses, we used 

inverse variance weighted meta analysis with random effects. The variance from random 

effects was estimated with the DerSimonian and Laird (DL) method.86,87

Cluster correspondence analysis—To compare the co-occurrence of the 

fibroblast cluster labels, within-tissue (Figure 3) and integrative (Figure 4), we 

used a similar framework to abundance modeling above. We used the following 

formula: log
Pr ClusterIntegrated = k
Pr ClusterIntegrated ≠ k

1 + 1 ClusterTissue + 1 Library + MT+DS LibraryID . 

The contrast term of interest is the random effect (1|ClusterTissue), a categorical variable that 

encodes the within-tissue cluster identity. We chose to model this with a random effect for 

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.1016/j.medj.2022.05.002.
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numerical stability. To estimate significance, we used Wald’s approximation and simulated 

covariance for the levels of (1|ClusterTissue) with the R arm package.

Symphony projection—The Symphony pipeline is described in detail in a separate 

manuscript.27 To infer reference cluster identity in query cells, we used a k-NN classifier. 

K = 10 nearest neighbors were estimated with Symphony projected low dimensional 

embeddings, based on cosine distance (σ = 0. 1).

Ligand receptor analysis—We started with a curated list of known interacting ligand-

receptor pairs, from.39 To predict putative interactions between endothelial cells and 

fibroblast subsets, we performed differential expression on the pooled dataset of endothelial 

cells and fibroblasts. We filtered for differentially expressed genes and kept interaction pairs 

in which the ligand was overexpressed (p < 0.05, β > 0) in endothelial cells and the receptor 

in a fibroblast subset, or vice versa. For these pairs, we computed the interaction scores 

(Figure 4E) as the mean of the ligand’s and receptor’s z-scores.

Integration with alternative algorithms—We used the python packages Scanorama 

v1.7.1, bbknn v1.5.1, and scvi-tools v0.6.8 to integrate over donor effect within each 

tissue. We imported data and performed appropriate pre-processing with scanpy v1.7.188 

and used default parameters for each integration method. Reproducible code for these 

analyses is available on the github repository associated with this manuscript (github.com/

immunogenomics/fibroblastatlas2022).

Dynamic expression analysis of sorted fibroblast DSS time-course dataset—
We identified genes with significant associations with time point using spline regression 

analysis. Specifically, we used the R VGAM package89 to construct a natural spline basis 

function with 4 degrees of freedom and used this non-linear expanded basis to perform 

association testing with linear regression using the limma package.90 Significant values were 

assessed with the F-statistic computed in limma, with a cutoff of FDR<20%. To identify 

association of gene expression with each time point, we repeated limma regression analysis, 

using time point as a categorical variable to compute log fold change at each time point 

versus healthy controls.

Cell Dive analysis

Segmentation and quantification.: We performed cell segmentation using the Deep Cell 

model, a pre-trained neural network specialized in segmentation of cytoplasm and nucleus 

of cells in tissue.91 For image-preprocessing, we used the CLAHE histogram normalization 

method recommended in91 and implemented in the python scikit-image library.92 We then 

produced two-channel images, one with nucleus intensity and one with cytoplasm and 

membrane intensity. For nucleus intensity, we used the DAPI intensity at the final round of 

imaging. For cytoplasm and membrane intensity, we averaged all remaining channels. After 

segmentation, we used the regionprops function from scikit-image to quantify cell location, 

cell area, and total intensity per cell. We removed cells whose area was too small (<50 

pixels) and cells whose DAPI intensities at the first and last rounds of imaging were >50% 

discordant.
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Spatial niche identification.: To identify spatial niches, we quantified the average 

intensity of each marker in each cell’s local neighborhood. The local neighborhoods were 

computed with Delaunay triangulation. These neighborhood-averaged marker intensities 

were normalized by cell area, z-scored with marker, processed with PCA, and projected 

into 2D space with UMAP. The neighborhood graph computed in UMAP was then used 

to perform graph-based clustering with the Louvain algorithm. Area-normalized marker 

intensities were associated with cluster identity using the Wilcoxon rank sum test. Cells 

from each tissue were analyzed separately. For tissues with more than 1 dataset (i.e. gut and 

synovium), we used Harmony to integrate over dataset identity after PCA.

Fibroblast subtype identification.: Cells were clustered with the same pipeline described 

above, using area-normalized cell marker intensities instead of neighborhood-averaged 

intensities. The first pass of clustering was used to separate fibroblasts using lineage 

markers PDGFRA and PDPN. For each tissue, we then isolated fibroblasts and repeated 

the full clustering procedure (from normalization to Louvain) to find fine-grained fibroblast 

clusters. We identified fine-grained clusters enriched in CCL19 (and SPARC) and performed 

additional gating based on CCL19 (and SPARC) to identify CCL19+ (and SPARC+) 

fibroblasts.

Colocalization enrichment.: With the analyses above, each cell is annotated with a cell 

type (fibroblast, CCL19+ fibroblast, SPARC+ fibroblast, or other cell) and a spatial niche 

(lymphoid, vascular, mural, and other). Within each dataset, we tested for the association 

between cell type and spatial niche using logistic regression, implemented in the R lme4 

package80 with the formula: CellType ~ 1 + (1|Niche). Here, the CellType variable is used to 

test each of the four cell types, one at a time. We decided to model Niche as a random effect 

to avoid unstable model estimates. P-values were estimated using posterior simulation with 

the R arm package79 and the Wald test on the simulation-estimated confident intervals.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Cross-disease single-cell RNA sequencing study of human inflammatory fibroblasts

CXCL10+CCL19+ inflammatory fibroblasts localize to a T cell-enriched niche

SPARC+COL3A1+ fibroblasts localize to a perivascular niche

Both inflammatory fibroblast phenotypes were confirmed in mouse models
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Context and significance

Tissue-resident cells called fibroblasts orchestrate immune and repair functions in 

multiple organ systems. Signaling failures between immune cells and fibroblasts cause 

diverse inflammatory diseases.

Researchers from Brigham and Women’s Hospital, the University of Oxford, and the 

University of Birmingham conducted a study to determine whether disease-related 

fibroblasts share common features across diverse diseases.

The authors studied fibroblasts from target tissues from individuals with rheumatoid 

arthritis, ulcerative colitis, interstitial lung disease, and Sjögren’s syndrome and found 

two types of fibroblasts associated with inflammation in all diseases. The authors then 

showed that two shared fibroblast states present across all four organ types play distinct 

roles: one communicates with immune cells, and the other communicates with blood 

vessels.
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Figure 1. scRNA-seq profiles of and fibroblast heterogeneity within intestine, lung, salivary 
gland, and synovium
(A and B) Surgical samples were collected from intestine, lung, salivary gland, and 

synovium from individuals with inflammatory disease and appropriate controls (A). After 

tissue disaggregation, all cells from lung and salivary gland and CD45−EpCAM− cells 

from synovium and intestine were profiled with scRNA-seq and (B) analyzed to identify 

fibroblasts and other major cell types.

(C) Total cell numbers per donor per major cell type in log scale.

(D) Cell type annotation was performed with known markers for each major population.

(E) Fine-grained clustering within fibroblasts was performed for each tissue and plotted with 

tissue-specific UMAP projections.

(F) Total cell numbers per donor per fibroblast cluster in log scale.
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(G) All (n = 894) genes upregulated in a group and shared among tissue clusters in 

that group were plotted in a heatmap. Color denotes the log fold change, normalized by 

estimated standard deviation, of a gene in a cluster (versus other clusters in that tissue). The 

top five genes for each cluster are named above the heatmap. Each row denotes a fibroblast 

cluster, colored according to the tissue in which it was identified. Rows are clustered into 

five groups to highlight the similarity of tissue-defined clusters across tissues.
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Figure 2. Integrative clustering and differential expression across tissues
(A) We developed a pipeline to integrate samples from multiple donors and multiple tissues 

with unbalanced cell numbers. The pipeline starts with gene selection, pooling genes that 

were informative in single-tissue analyses. With these genes, we performed weighted PCA, 

reweighting cells to computationally account for the unbalanced dataset sizes among the 

tissues. These principal components are adjusted with a novel formulation of the Harmony 

integration algorithm and used to perform graph-based clustering. We applied this pipeline 

to all fibroblasts across tissues.

(B) The integrated UMAP projection shows cells from all tissues mixed in one space. For 

clarity, we down-sampled each tissue to the smallest tissue, the lung, choosing 1,442 random 

fibroblasts from intestine, synovium, and salivary gland.
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(C) Graph-based clustering proposed 14 fibroblast clusters in the integrated embedding.

(D) Total cell numbers per donor per integrated cluster in log scale.

(E–G) Gene-level analysis to find upregulated marker genes for clusters was done with 

hierarchical regression to model complex interactions between clusters and tissues (E). 

This strategy distinguishes cluster marker genes that are (F) shared among tissues, such as 

ADAM12 in C4, from those that are (G) tissue-specific, such as MYH11 in C13. Points 

denote log fold change (cluster versus other fibroblast), and error bars mark the 95% CI for 

the fold change estimate.

(H) The number of shared genes (x axis) as well as the percentage of shared over total 

marker genes (y axis) for each cluster, ranked from most to least, prioritizes clusters with 

large evidence of shared gene expression (red) from those with little evidence (black).

(I) Marker genes for the 5 shared clusters plotted in a heatmap. Each block represents the 

(differential) gene expression of a gene (column) in a cluster for a tissue (row).
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Figure 3. Identification of inflammation-associated clusters
(A) We computed the relative abundance of CD45+ immune cells among all cells in each 

sample.

(B) We standardized these frequencies across tissues into an inflammation score that ranges 

from 0–1 and removes distributional differences.

(C) Association analysis results between fibroblast cluster abundance and standardized 

inflammation scores. Each point represents the log fold change in fibroblast cluster 

abundance with increasing inflammation, and the line represents that point’s 95% CI. Red 

denotes estimates with one-tailed FDR < 5%.

(D) The tissue-specific results were summarized using meta-analysis.
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(E) For CXCL10+CCL19+ (C11) and SPARC+COL3A1+ (C4) fibroblasts, scatterplots 

relating to standardized inflammation scores (x axis) to relative fibroblast frequency (y axis). 

The colors in each panel refer to the clinical status of each donor, as denoted in (A) and 

(B). Reported p values were computed from logistic mixed-effects regression test and R2 

statistics using McKelvey’s method.

(F) Comparison of differential gene expression between CXCL10+CCL19+ and 

SPARC+COL3A1+ fibroblasts shows that these two inflammation-expanded clusters are 

characterized by distinct genes. The top 10 markers for each cluster are named.

(G) Gene set enrichment analysis (GSEA) with Gene Ontology and MSigDB hallmark 

pathways shows distinct functions for the C4 (orange) and C11 (lime) states. These 

states may be explained by response to distinct sets of signaling molecules: inflammatory 

cytokines for C4 (brown) and tissue modeling morphogens for C11 (tan). The heatmap 

shows normalized enrichment scores from GSEA, focusing only on positive enrichment for 

clarity.
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Figure 4. Quantitative co-localization of inflammation-expanded fibroblast phenotypes in 
vascular and lymphoid niches
(A) Normalized intensities of the representative markers CD45, ASMA, CD3, CD146, 

and CD31 in segmented cells from surgical tissues samples of UC gut, pSS lip, and RA 

synovium.

(B) Visualization of molecularly distinct anatomical niches based on the 5 markers in (A).

(C) Manually selected regions of interest from the images in (A) highlight a region with 

abundance of CD3+ T lymphocytes next to (PDPN/PDGFRA)+CCL19+ fibroblasts.

(D) The same tissues from (B), colored to highlight lymphoid regions (black) and CCL19+ 

fibroblasts (green).
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(E) Manually selected regions of interest from the images in (A) highlight a region with 

abundance of CD31+ vascular and CD146+ perivascular mural cells near (PDPN/PDGFRA)
+SPARC+ fibroblasts.

(F) The same tissues from (B), colored to highlight vascular regions (black) and SPARC+ 

fibroblasts (orange).

(G) Heatmap depicting results of co-localization analysis between niches (columns) defined 

in (B) and three fibroblast subtypes (rows). Color in the heatmap denotes the log2 OR from 

the logistic regression test. Color bars for rows specify the tissue and fibroblast subtype of 

each test.
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Figure 5. Convergence of fibroblasts from distinct tissues with in vitro activation
(A) Study design with three conditions: fibroblasts cultured alone (control), with an equal 

mixture of endothelial cells (ECs), and in supernatant extracted from activated T cells 

(T cells). Each condition was repeated in three lung-derived and three synovium-derived 

fibroblast cell lines.

(B) Total cell numbers per donor per condition in log scale.

(C) scRNA-seq profiles of cultured cells were visualized in 3D with integrative analysis and 

UMAP projection. Each subpanel highlights the location of fibroblasts from the control, T 

cell, and EC conditions and colors fibroblasts by tissue.

(D) Within each tissue, activation signatures were derived for the EC and T cell conditions 

and plotted in a heatmap of pseudobulk samples (rows) by genes (columns), colored by 
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centered and scaled log2 fold change (versus control). Three representative genes were 

selected for each activation signature.

(E) For each condition, we plotted the per-gene changes for synovial fibroblasts (x axis) 

against lung fibroblasts (y axis) and highlighted the three representative genes from (D).

(F) We compared the in vitro activation changes with cluster marker signatures from the 

cross-tissue atlas with correlation analysis. Error bars denote 99% CI for the Pearson 

correlation statistic.

(G) Correlation analysis of fibroblasts cultured with ECs in a 3D culture system.

(H) Magnification of the correlation of SPARC+COL3A1+ (C4) cluster markers (x axis) 

with the 3D EC synovial activation signature (y axis). Genes significantly (p < 0.01, log2 FC 
> 1) upregulated on either axis are colored red, and canonical markers of the C4 cluster are 

highlighted with text.
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Figure 6. Dermal fibroblast scRNA-seq profiles mapped to the cross-tissue fibroblast atlas
(A) To validate our results, we mapped scRNA-seq profiles of dermal fibroblasts from 

lesion biopsies from individuals with atopic dermatitis (AD), non-lesional biopsies from 

individuals with AD, and control skin biopsies from healthy donors.

(B) Based on the relative frequency of immune cells in each biopsy, we computed 

standardized inflammation scores from 0–1.

(C–F) We mapped dermal fibroblasts to our fibroblast atlas (C) and labeled dermal 

fibroblasts according to their most similar atlas cluster (D). Shown are per-donor (E) 

absolute and (F) relative frequencies of all reference-mapped inferred clusters. Clusters are 

colored according to the names in (D).

(G) We confirmed that the gene expression profiles of inferred dermal fibroblast clusters 

correlated with expression profiles of their reference fibroblast clusters. This is demonstrated 

for clusters C4 and C11 by plotting the (differential) gene expression in dermal (x axis) 

versus reference (y axis) clusters and calling out the top marker genes identified in the 

reference clusters.

(H) Only CXCL10+CCL19+ (C11) fibroblast frequency was significantly (FDR < 5%) 

associated with dermal inflammation.
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(I) Cells from skin with lesions (blue) had considerably less evidence of vasculature, 

measured by the abundance of perivascular mural cells and vascular ECs.

(J) Relative abundance of mural cells and ECs was most strongly associated with cluster C4. 

Red denotes one-tailed FDR < 5%.
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Figure 7. Replication in disease models of pulmonary, intestinal, and synovial inflammation
(A) We collected studies of inflammation in mouse models of human disease: bleomycin-

induced ILD, DSS-induced colitis, ST arthritis, and CIA.

(B) Fibroblasts from each study were mapped to the human fibroblast atlas and labeled with 

their most closely mapped clusters.

(C) Total cell numbers per replicate per integrated cluster in log scale. Each panel 

corresponds to the aligned tissue in (B).

(D) Frequencies of the human inflammatory states C4 and C11 in each study sample, 

colored to denote samples from animals with high (red) and low (black) inflammation.

(E) GSEA with modules associated with early, acute, and recovery phases of DSS-

induced colitis shows that C4 and C11 gene signatures are activated at distinct stages of 

inflammation.
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(F) Time course expression profiles of key C4 and C11 marker genes that overlap with the 

early (yellow) and acute (orange) phase-associated modules. A dotted line denotes the time 

point (day 7) when DSS was removed from mice.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

EPCAM/CD326, clone 9C4, Mouse IgG2b Biolegend Cat# 324233

CD45, clone HI30, mouse IgG1 Biolegend Cat# 304005

CD31, clone WM59, mouse IgG1 Biolegend Cat# 303133

CD146, clone P1H12, Mouse IgG1 Biolegend Cat# 361003

PDPN, clone NZ-1.3, rat IgG2a eBioscience/ThermoFisher Cat #46-4321-82

CD90, clone 5E10, mouse IgG1 Biolegend Cat# 328109

Alexa Fluor® 647 - Mouse monoclonal (D2-40) anti-
Podoplanin (Lymphatic Endothelial Marker) antibody

Biolegend Cat# 916610
RRID : AB_2810816

BSA and Azide free -Recombinant Rabbit monoclonal 
[EPR5480] Anti PDGFR alpha

Abcam Cat# ab248689
RRID : N/A

Alexa Fluor® 488 - Recombinant Rabbit monoclonal 
[EPR3208] Anti-CD146 antibody

Abcam Cat# ab196448; RRID:AB_2868591

BSA and Azide free – Recombinant Rabbit 
monoclonal [EPR3132] Anti CD90 / Thy1 antibody

Abcam Cat# ab181885
RRID : N/A

Alexa Fluor® 555 – Recombinant Rabbit monoclonal 
[EPR20545] Anti-CD68 antibody

Abcam Cat# ab280860
RRID : N/A

BSA and Azide free - Recombinant Rabbit 
monoclonal [SP162] Anti-CD3 antibody

Abcam Cat# ab245731
RRID : N/A

Alexa Fluor® 647 – Mouse monoclonal (JC/70A) anti 
CD31/PECAM-1 antibody

Novus Cat# NB600-562AF647
RRID: N/A

Alexa Fluor® 647 – Mouse monoclonal (C31.3) anti 
CD31/PECAM-1 antibody

Novus Cat# NB P2-33154AF647
RRID: N/A

BSA and Azide free – Recombinant Rabbit 
monoclonal [SP205] Anti-SPARC antibody

Abcam Cat# ab245733
RRID: N/A

Unconjugated - Goat Polyclonal Anti-Human Ccl19 / 
mip-3 beta antibody

R and D systems Cat# AF361; RRID:AB_355323

Alexa Fluor® 488 – Mouse monoclonal [1A4] Anti-
alpha smooth muscle Actin antibody

Abcam Cat# ab184675; RRID:AB_2832195

Alexa Fluor® 647 Mouse monoclonal (2D1) anti-
human CD45 antibody

BioLegend Cat# 368538; RRID:AB_2716028

Alexa Fluor® 647 Mouse monoclonal (C8/144B) anti-
human CD8a antibody

BioLegend Cat# 372906; RRID:AB_2650712

Alexa Fluor® 488 Recombinant Rabbit monoclonal 
[EP1628Y] Anti-Cytokeratin 8 antibody

Abcam Cat# ab192467; RRID:AB_2864346

Alexa Fluor® 555 Recombinant Rabbit monoclonal 
[EPR3776] Anti-Vimentin antibody - Cytoskeleton 
Marker

Abcam Cat# ab203428
RRID : N/A

Alexa Fluor® 488 Mouse monoclonal (TAL 1B5) 
Anti-HLA-DR Antibody

Santacruz Cat# sc-53319AF488
RRID N/A

Donkey anti-Goat IgG (H + L) Cross-Adsorbed 
Secondary Antibody, Alexa Fluor 647

Thermo Fisher Scientific Cat# A-21447; RRID:AB_2535864

Donkey anti-Rabbit IgG (H + L) Highly Cross-
Adsorbed Secondary Antibody, Alexa Fluor 555

Thermo Fisher Scientific Cat# A-31572; RRID:AB_162543

CD16/CD32 Monoclonal Antibody (93) (FcR block) 
1:200

ThermoFisher Scientific 14-0161-86

FITC EpCAM (G8.8) 1:200 Biolegend 118208

PE-Cy7 Podoplanin (8.1.1) 1:200 Biolegend 127412
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REAGENT or RESOURCE SOURCE IDENTIFIER

APC CD140a (APA5)1:200 Biolegend 135907

BV605 CD31 (390) 1:200 Biolegend 102427

BV711 CD45 (30-F11) 1:200 Biolegend 103147

BV711 CD45 (30-F11) 1:200 Biolegend 103147

Bacterial and virus strains

Mycobacterium tuberculosis H37Ra BD Difco BD 231141

Chemicals, peptides, and recombinant proteins

Glycerol Sigma-Aldrich Cat# G5516
RRID N/A

Trizma®base Sigma-Aldrich Cat# T6066
RRID N/A

Sodium bicarbonate Sigma-Aldrich Cat#S6297
RRID N/A

Tween20 Sigma-Aldrich Cat#P9416
RRID N/A

Triton X-100 Sigma-Aldrich Cat#T9284
RRID N/A

Propyl gallate Sigma-Aldrich Cat#02370
RRID N/A

Bovine Serum Albumin Sigma-Aldrich Cat#A7906
RRID N/A

Target Retrieval Solution 10X Concentrate Dako Cat#S1699

Ethylenediaminetetraacetic acid Sigma-Aldrich Cat#E9884

eBioscience Fixable Viability Dye eFluor 780 1:1000 ThermoFisher Scientific 65-0865-18

DAPI Solution 50 pg/mL ThermoFisher Scientific 62248

2.5% w/v dextran sulfate sodium MP Biomedicals 216011080

Liberase TL Roche 5401020001

DNase 1 Sigma 11284932001

Quick-RNA 96 Kit Zymo Research R1052

Donkey Serum Biorad Cat# C06SB
RRID N/A

Hydrogen Peroxide Solution Sigma-Aldrich Cat#216763
RRID N/A

FcR Blocking Reagent Miltenyi Cat# 130-059-901;
RRID:AB_2892112

Bovine Tyope II Collagen Richard Williams
https://doi.org/
10.1385/1-59259-771-8:207

N/A

Critical commercial assays

Dynabeads Human T-activator CD3/CE28 for T cell 
expansion and activation

ThermoFisher Cat# 11132D

10× Genomics Chromium Single Cell 3’ (v2 and v3 
chemistry)

10× Genomics https://support.10xgenomics.com/single-cell-
gene-expression/library-prep/doc/technical-
note-assay-scheme-and-configuration-of-
chromium-single-cell-3-v2-libraries

Cell Dive General Electric https://www.ge.com/research/project/
multiplexed-tissue-imaging-platform

CD45RA MicroBeads (human) Miltenyi Cat# 130-045-901

Pan T Cell Isolation Kit (human) Miltenyi Cat# 130-096-535
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REAGENT or RESOURCE SOURCE IDENTIFIER

LS columns Miltenyi Cat# 130-042-401

Deposited data

CellDive imaging data: https://www.immport.org/
shared/study/SDY1765

This paper ImmPort:SDY1765

Human fibroblast atlas: https://sandbox.zenodo.org/
record/772596#.YGsi6BRKg-Q

This paper https://doi.org/10.5072/zenodo.772596

Atopic dermatitis scRNAseq He et al., 2020a GSE147424

Serum transfer arthritis scRNAseq Wei et al., 2020 GSE145286

DSS induced colitis scRNAseq Kinchen et al., 2018 GSE114374

bleomycin induced lung injury scRNAseq Tsukui et al., 2020 GSE132771

Adult human cell atlas He et al., 2020b GSE159929

Tabula sapiens: https://figshare.com/projects/
Tabula_Sapiens/100973

The Tabula Sapiens Consortium and 
Quake, 2021

N/A

Healthy lung atlas scRNAseq Travaglini et al. Synapse:syn21041850

IPF lung cohort scRNAseq Adams et al. GSE136831

Healthy gut atlas scRNAseq Elmentaite et al., 2021 E-MTAB-9536

Raw human sequencing data: https://
www.immport.org/shared/study/SDY1765

This paper ImmPort:SDY1765

Processed human sequencing data:https://
singlecell.broadinstitute.org/single_cell/study/SCP738

This paper BroadSingleCellPortal:SCP738

Raw and processed mouse sequencing data This paper GSE185711

Experimental models: Cell lines

Primary lung fibroblast cell lines from earlier-stage 
fibrotic interstitial lung disease

This paper Lung fibroblast cell lines named V3, V6, V7, 
V11.

Primary Synovial fibroblasts This paper synovial fibroblast cell lines named: 
STB-009, RA200212, AMP-005

Primary human T cells isolated from leukopak 
mononuclear cells

This paper N/A

Collagen Induced Arthritis https://doi.org/
10.1385/1-59259-771-8:207

N/A

Experimental models: Organisms/strains

Mouse: C57BL/6J Jackson Laboratory RRID:IMSR_JAX:000,664

Mouse: DBA/1J MRC Harwell N/A

Software and algorithms

Code to Reproduce Analyses and Figures for 
Fibroblast Atlas 2022

This Paper https://doi.org/10.5281/zenodo.6510339

Symphony v1.0 Kang et al., 2021 https://github.com/immunogenomics/
symphony

DeepCell Greenwald et al., 2021 https://github.com/vanvalenlab/deepcell-tf

uwot v0.1.10 Melville et al., 202068 https://github.com/jlmelville/uwot

arm v1.11.2 Gelman and Su, 202093 https://github.com/gelman/arm

lme4 v1.1.27.1 Bates et al., 2015 https://github.com/lme4/lme4

presto This paper https://github.com/immunogenomics/presto/
tree/glmm

fgsea v1.18.0 Sergushichev, 2016 https://github.com/ctlab/fgsea

msigdbr v7.4.1 Dolgalev, 201894 https://github.com/igordot/msigdbr
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REAGENT or RESOURCE SOURCE IDENTIFIER

scanorama v1.7.1 Hie et al., 2019 https://github.com/brianhie/scanorama

bbknn v1.5.1 Polański et al., 2020 https://github.com/Teichlab/bbknn

scvi-tools v0.6.8 Lopez et al., 2018 https://github.com/scverse/scvi-tools

scanpy v1.7.1 Wolf et al., 2018 https://github.com/scverse/scanpy

VGAM v1.1.5 Yee, 2010 https://github.com/cran/VGAM

limma v3.48.3 Ritchie et al., 2015 https://github.com/cran/limma

kallisto Bray et al., 2016 https://github.com/pachterlab/kallisto

bustools Melsted et al., 2019 https://github.com/BUStools/bustools

harmony v1.0 Korsunsky et al., 2019 https://github.com/immunogenomics/
harmony/tree/weights
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