TABLE 3.
ACC and AUC of ensemble models.
| Classifier | Voting method | Validation set | Test set | ||
|---|---|---|---|---|---|
| ACC (Mean ± Std) | AUC (Mean ± Std) | ACC | AUC | ||
| LR | — | 0.7944 ± 0.0542 | 0.8607 ± 0.0547 | 0.7647 | 0.7885 |
| SVM | — | 0.7942 ± 0.0503 | 0.8634 ± 0.0517 | 0.7647 | 0.7885 |
| RF | — | 0.7744 ± 0.069 | 0.7815 ± 0.0741 | 0.7647 | 0.8269 |
| XGBoost | — | 0.7744 ± 0.078 | 0.7911 ± 0.1129 | 0.7647 | 0.8269 |
| RF + XGBoost + LR | soft | 0.7944 ± 0.0653 | 0.8465 ± 0.0659 | 0.8824 | 0.8654 |
| XGBoost + SVM + LR | soft | 0.8275 ± 0.0264 | 0.8632 ± 0.0559 | 0.8235 | 0.8462 |
| RF + XGBoost + SVM | soft | 0.8011 ± 0.0480 | 0.8453 ± 0.0684 | 0.8235 | 0.8654 |
| RF + XGBoost + LR | hard | 0.7811 ± 0.0695 | — | 0.8235 | — |
| All | hard | 0.8211 ± 0.0456 | — | 0.7647 | — |
| all | soft | 0.8144 ± 0.0275 | 0.8587 ± 0.0550 | 0.7647 | 0.8654 |
The best performance in the models is highlighted in bold.