Skip to main content
. 2022 Jun 27;13:897597. doi: 10.3389/fphar.2022.897597

TABLE 3.

ACC and AUC of ensemble models.

Classifier Voting method Validation set Test set
ACC (Mean ± Std) AUC (Mean ± Std) ACC AUC
LR 0.7944 ± 0.0542 0.8607 ± 0.0547 0.7647 0.7885
SVM 0.7942 ± 0.0503 0.8634 ± 0.0517 0.7647 0.7885
RF 0.7744 ± 0.069 0.7815 ± 0.0741 0.7647 0.8269
XGBoost 0.7744 ± 0.078 0.7911 ± 0.1129 0.7647 0.8269
RF + XGBoost + LR soft 0.7944 ± 0.0653 0.8465 ± 0.0659 0.8824 0.8654
XGBoost + SVM + LR soft 0.8275 ± 0.0264 0.8632 ± 0.0559 0.8235 0.8462
RF + XGBoost + SVM soft 0.8011 ± 0.0480 0.8453 ± 0.0684 0.8235 0.8654
RF + XGBoost + LR hard 0.7811 ± 0.0695 0.8235
All hard 0.8211 ± 0.0456 0.7647
all soft 0.8144 ± 0.0275 0.8587 ± 0.0550 0.7647 0.8654

The best performance in the models is highlighted in bold.