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Summary
Background The prognostic value of tumor-infiltrating lymphocytes (TILs) assessed by machine learning algo-
rithms in melanoma patients has been previously demonstrated but has not been widely adopted in the clinic. We
evaluated the prognostic value of objective automated electronic TILs (eTILs) quantification to define a subset of mel-
anoma patients with a low risk of relapse after surgical treatment.

Methods We analyzed data for 785 patients from 5 independent cohorts from multiple institutions to validate our
previous finding that automated TIL score is prognostic in clinically-localized primary melanoma patients. Using
serial tissue sections of the Yale TMA-76 melanoma cohort, both immunofluorescence and Hematoxylin-and-Eosin
(H&E) staining were performed to understand the molecular characteristics of each TIL phenotype and their associa-
tions with survival outcomes.

Findings Five previously-described TIL variables were each significantly associated with overall survival (p<0.0001).
Assessing the receiver operating characteristic (ROC) curves by comparing the clinical impact of two models sug-
gests that etTILs (electronic total TILs) (AUC: 0.793, specificity: 0.627, sensitivity: 0.938) outperformed eTILs
(AUC: 0.77, specificity: 0.51, sensitivity: 0.938). We also found that the specific molecular subtype of cells represent-
ing TILs includes predominantly cells that are CD3+ and CD8+ or CD4+ T cells.

Interpretation eTIL% and etTILs scores are robust prognostic markers in patients with primary melanoma and may
identify a subgroup of stage II patients at high risk of recurrence who may benefit from adjuvant therapy. We also
show the molecular correlates behind these scores. Our data support the need for prospective testing of this algo-
rithm in a clinical trial.
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Research in context

Evidence before this study

TIL scores visually assessed by the pathologists have not
been broadly clinically implemented due to the lack of
reproducibility caused by subjective assessment
between pathologists and institutions. Automated TIL%
(eTILs%) score, defined by the machine learning algo-
rithm NN192, developed using open-source software,
QuPath, has been shown to be prognostic in mela-
noma1 but its clinical utility has not yet been broadly
proven.

Added value of this study

This study pools patients with melanoma from a series
of international cohorts and supports the previous find-
ing that automated TIL score (eTIL%) is an independent
prognostic marker in primary melanoma patients.

Implications of all the available evidence

we additionally show that the prognostic performance
of eTIL% is stage specific. The use of NN192 machine
learning algorithm could be a valuable and easy-to-
implement tool for prospective testing of patients with
early-stage melanoma and could be validated as a
selector for patients that can safely omit immunother-
apy in the adjuvant setting.
Introduction
Melanoma is considered a highly immunogenic tumor
and is responsive to immunotherapy.2 Checkpoint
inhibitor immunotherapies targeting programmed cell
death protein 1 (PD-1) or cytotoxic T-lymphocyte-associ-
ated protein 4 (CTLA-4) have been shown to signifi-
cantly improve the overall survival of patients with
advanced stage metastatic disease.3,4 Furthermore, adju-
vant treatment with immune checkpoint blockade (or
BRAF pathway targeted therapy in BRAF mutant mela-
noma patients) improved relapse-free survival (RFS)
compared to placebo in phase 3 clinical trials5,6 and is
now regarded as standard of care in high-risk stage III
melanoma patients. Furthermore, it was recently
reported that adjuvant anti-PD1 immunotherapy
improved relapse-free survival in high-risk stage II mel-
anoma patients. However, up to 30% of stage III
patients treated with adjuvant immunotherapy devel-
oped disease recurrence. Furthermore, treatment-
related adverse events occur in at least one in five
patients, and treatment related fatalities have been
reported in up to one in one hundred patients.5,7 There
is therefore an urgent need to identify patients at high
risk of disease relapse who may benefit from adjuvant
therapies and those patients at low risk of relapse who
can be safely spared further treatment and the concomi-
tant risks of treatment related adverse events.

Tumor-infiltrating lymphocytes (TILs) reflect the host's
immune response against cancer cells.2,8 Correlation
between different TILs infiltrates and improved survival in
melanoma patients has been reported in multiple stud-
ies.9-12 Traditionally, TIL scores have been visually assessed
by the pathologists, but due to the lack of reproducibility
caused by subjective assessment between pathologists and
institutions, TIL scoring techniques have not been broadly
clinically implemented.13 To increase objectivity, a machine
learning algorithm developed using open source software,
QuPath, has been shown to facilitate the investigation of
complex spatial patterns by firstly classifying four cell
types, including tumor cells, TILs, stromal cells, and
“other” cells, for the assessment of the proportion TILs
within different cell populations.1,14 Acs et al. highlighted
the robustness of the NN192 machine learning algorithm
by comparing the performance between eTIL scores and
pathologist TIL scores.1 The latter study also showed that
TILs score assessed by the NN192 algorithm was an inde-
pendent prognostic marker in melanoma.

Here, we used the same cell classifier to validate the
association of percent electronic TILs (eTIL%) with dis-
ease-specific survival in patients with melanoma in a
broad set of cohorts from melanoma centers around the
world. For this effort, we used the previously established
cut-point of eTIL%1 to test The Cancer Genome Atlas
(TCGA) melanoma cohort and four other melanoma
cohorts from Yale School of Medicine, Melanoma Insti-
tute Australia, Tubingen University, and New York Uni-
versity. Furthermore, we also tested both cell types and
area, variables that pathologists cannot easily calculate,
for their prognostic significance. The goal of this effort
is not to help pathologists more accurately assess TIL,
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but to validate this prognostic assay for potential pathol-
ogist-independent use in future prospective trials to
determine which melanoma patients might be spared
immunotherapy in the adjuvant setting. We aimed to
specify the most reliable operator-independent identifi-
cation of eTIL%, which can be prospectively validated in
future studies. Finally, we assessed the prognostic role
of the immunophenotypic subtypes of TILs, as defined
by CD45+, CD3+, CD4+, CD8+, CD56+, CD20+, and
FOXP3+ cells, using the Yale cohort to better under-
stand the TIL subsets/phenotypes and their associations
with patients' survival. Our ultimate goal was to deter-
mine the best approach for utilizing TIL infiltrates to
predict disease outcome in melanoma patients that can
be validated prospectively with the goal of proving clini-
cal utility to select the high-risk subset of melanoma
patients that are likely to not require immunotherapy in
the adjuvant setting.
Methods

Study population
We assessed retrospectively collected samples from 5
independent cohorts from: (1) the Department of
Pathology, Yale University, (2) the Melanoma Institute
Australia (MIA), (3) Tubingen University, (4) TCGA
and (5) Langone Medical Center, New York University
(NYU). Two cohorts were in tissue micro-array (TMA)
format and 3 in Whole Tissue Sections (WTS) format.
The Yale University cohort comprised tissues from 187
stage I and II patients diagnosed between 1998 and
2011 with a median follow-up of 64 months. The Tubin-
gen University TMA cohort consisted of 231 stage I and
II and 20 stage III and IV melanoma patients diagnosed
between 1992 and 2000 with 97 months median fol-
low-up. The MIA WTS cohort consisted of 55 stage I
and II patients and 41 stage III and IV patients diag-
nosed between 1998 and 2019 with 70.3 months
median follow-up. The NYU WTS cohort consists of 88
high-staged patients diagnosed between 2009 and 2019
with 2.3 months median follow-up. The publicly avail-
able WTS-TCGA melanoma cohort comprised 139 stage
I and II patients diagnosed between 1994 and 2013
with 38.6 months median follow-up (https://portal.gdc.
cancer.gov/repository). Patients in the TCGA cohort
were classified according to the 4th, 5th, 6th, and 7th Edi-
tions of the American Joint Committee on Cancer
(AJCC) tumor, node, metastasis (TNM) staging system.
All other cohorts were classified according to the 8th edi-
tion of the AJCC tumor,15,16 node, metastasis (TNM)
staging system (Table 1).
Ethics
All tissue samples from Yale cohorts were collected with
approval from the Yale Human Investigation Commit-
tee protocol #9505008219. Written informed consent,
www.thelancet.com Vol 82 Month August, 2022
or waiver of consent in some cases, was obtained from
Yale cohort patients with the approval of the Yale
Human Investigation Committee. Tissue samples from
MIA cohort were collected with approval from the Syd-
ney Local Health District (RPAH Zone) protocols #X17-
0312 & 2019/ETH07604 and #X15-0311 & 2019/
ETH06854. Tissue samples from Tuebingen cohort
were collected with approval protocol #883/2019BO2.
Tissue samples from NYU cohort were collected from
the NYU Interdisciplinary Melanoma Cooperative
Group: A Clinicopathological Database protocol #
C10362. To ensure scientific integrity, the investigator
was blinded to the clinical information during image
processing.
Digital image analysis using NN192 algorithm
H & E images for the Yale cohort TMA, and the WTS H
& E slides from the Sydney and NYU cohorts were digi-
tised using the Aperio ScanScope XT platform (Leica
Biosystems, Wetzlar, Germany) slide scanner at 20x
with a pixel size of 0.4986 µm x 0.4986 µm. The WTS
digital TCGA images were downloaded from the NIH
CDC porta specimen repository (https://portal.gdc.can
cer.gov/repository). The H & E-stained TMA slide of the
Tubingen cohort was digitised using Hamamatsu Nano-
zoomer HT slide scanner at 20x with a pixel size of
0.4986 µm x 0.4986 µm. QuPath open-source software
(version 0.1.2)7 based NN192 melanoma machine learn-
ing algorithm with neural network method1 was applied
for cell classification in this study. For WTS, the tumor
and a 1�2-millimeter (mm) diameter surrounding
tumor microenvironment to be analysed were carefully
selected for accurate prediction of TILs. The area selec-
tion was reviewed by a pathologist. Due to the varying
intensity both between and within cohorts, the
“estimate stain vectors”, ESV, function in QuPath was
used to refine the H&E stain for each digitised slide.
The workflow for stain normalisation using ESV func-
tion was shown in Supplementary Figure 2. The num-
ber of cells identified as tumor and immune cells (in %)
across multiple centers were shown in Supplementary
Figure 3. Cell segmentation and classification were per-
formed using the parameters previously described.1
Assessment of eTILs using five variables
The machine-defined TILs variables were constructed
using five different methods, as previously described.17

The first and established method was to calculate eTIL%
representing the proportion of TILs over tumor cells,
calculated as (TILs/TILs + tumor cells) x 100.1 Four
additional methods were used to measure TILs as
follows:

1) Measurement of the proportion of TILs over total
cells: etTIL % = (TILs/total cells) x 100
3
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Characteristic Sydney Cohort
(n=97)

Tubingen Cohort
(n=253)

Yale Cohort
(n=202)

NYU Cohort (n=88) TCGA Cohort
(n=139)

N (%) N (%) N (%) N (%) N (%)

Age NA NA

Median (Range) 63 (6-98) 69.7 (24.5-89.5) 63 (15-90)

Gender NA NA

Male 116 (60.7) 54 (61.4) 53 (38.1)

Female 76 (39.3) 34 (38.6) 86 (61.9)

Morphology NA NA NA

Superficial spreading 21 (21.6) 200 (79.1)

Lentigo maligna 3 (3.2) 20 (7.9)

Nodular 40 (41.2) 17 (6.7)

Other 33 (34.0) 14 (5.5)

Breslow depth

Median (Range) 3.30 (1.05-50.00) 0.70 (0.13-20.00) 1.40 (0.50-16.00)

Ulceration

Yes 42 (43.3) 23 (9.1) 37 (19.4)

No 46 (47.4) 228 (90.1) 154 (80.6)

Stage (8th Edition) Stage (4th, 5th, 6th,

7th Edition)

I 0 (0) 202 (79.8) 124 (66.3) 0 (0) 41 (29.5)

II 56 (57.7) 25 (9.9) 63 (33.7) 0 (0) 98 (70.5)

III 41 (42.3) 17 (6.7) 0 (0) 27 (30.7) 0 (0)

IV 0 (0) 7 (2.8) 0 (0) 61 (69.3) 0 (0)

Clark’s level NA NA NA

I 0 (0) 1 (0.6)

II 0 (0) 2 (1.1)

III 11 (11.3) 30 (16.6)

IV 62 (63.9) 144 (79.6)

V 22 (22.7) 4 (2.2)

BRAF status NA NA NA

Wild type 0 (0) 61 (69.3)

Mutant 0 (0) 22 (25)

Not Assessed 72 (74.2) 5 (5.7)

BRAF positive 8 (8.2) 0 (0)

NRAS positive 3 (3.1) 0 (0)

Both Negative 14 (14.4) 0 (0)

Treatment NA NA NA NA

Ipilimumab (Ipi) 8 (9.1)

Nivolumab (Nivo) 6 (6.8)

Ipi+Nivo 16 (18.2)

Ipi/(Ipi/Nivo) 20 (22.7)

Pembrolizumab 30 (34.1)

Other treatment 8 (9.1)

Dead of disease NA

Yes 38 (39.2) 28 (11.1) 54 (26.3) 28 (31.8)

No 59 (60.8) 225 (88.9) 148 (73.7) 60 (68.2)

Dead of any cause NA NA

Yes 46 (47.4) 49 (19.4) 26 (18.7)

No 51 (52.6) 204 (80.6) 113 (81.3)

Table 1: Clinicopathological features of five cohorts from multiple institutions.
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2) Measurement of the proportion of TILs over stro-
mal cells: esTIL % = (TILs/total cells � tumor cells)
£ 100

3) Measurement of the density of TILs over tumor
region: eaTILs (mm2) = TILs/sum of tumor region
areas analysed (mm2)

4) Measurement of the density of TILs over stromal
area: easTIL % = [sum of TIL area (mm2) /stroma
area (sum of tumor region areas analysed (mm2) �
sum of tumor cell area (mm2))] £ 100

The last method mimics the manual pathologist
scoring of stromal TILs according to the International
Immuno-Oncology Biomarker Working Group on
Breast Cancer.18 The variables are shown schematically
in Figure 3a.
Immunofluorescence staining for immunophenotypic
subtyping of TILs
Eleven commercially available antibodies including
CD34 (1:4500; clone: QBE10, Dako), CD56 (1:200;
clone: 123C3, Cell Signaling Technology), CD66b
(1:500; clone: 80H3, LifeSpan Biosciences), FOXP3
(1:100; clone: D2W8E, CST), CD8 (1:250; clone: 144B,
Dako), CD14 (1:500; clone: D7A2T, Cell Signaling Tech-
nology), CD3 (1:100; clone: SP7, Novus Biologicals),
CD45 (1:200; clone: 2B11 + PD7/26, Dako), CD68
(1:200; clone: C8/144B, Dako), CD20 (1:150; clone: L26,
Dako) and CD4 (1:100; clone: SP35, SpringBio) were
tested in four multiplex panels including: (1) CD14/
CD66b/CD68/S100/DAPI, (2) CD14/CD45, CD34/
S100/DAPI, (3) CD3/CD56/CD20/S100/DAPI and (4)
CD4/CD8/FOXP3/S100/DAPI. Multiplexed immuno-
fluorescent (IF) staining on four serial sections of Yale
TMA 76 (YTMA-76) was performed as described previ-
ously for simultaneous detection of multiple markers.19

Briefly, formalin-fixed paraffin-embedded (FFPE) TMA
sections were deparaffinised and incubated using xylene
and ethanol. The pretreatment heating device PT Mod-
ule (Lab Vision, Thermo Fisher Scientific) was used for
antigen retrieval in EDTA buffer pH 8 at 97°C for 20
minutes. To block endogenous peroxidase activity, 2.5%
hydroxyl peroxide in methanol was used, and incubated
the TMA slides for 30 minutes at room temperature.
Non-specific antigens were then blocked with 0.3%
Bovine Serum Albumin in 0.1 mol/L of Tris-buffered
saline with 0.05% Tween 20 for 30 minutes. TMA sec-
tions were then incubated with the primary antibodies
of interest. Primary monoclonal antibodies for cell pro-
filing were co-incubated or sequentially incubated one
after the other at room temperature for 1 hour, followed
by the incubation of three horseradish peroxidase
(HRP)-conjugated secondary antibodies at room tem-
perature for 1 hour before tyramide-based labeling for
10 min. To quench HRP activity, the sections were
www.thelancet.com Vol 82 Month August, 2022
incubated with 1 mM benzoic hydrazide solution with
0.15% hydrogen peroxide for 10 minutes. The secondary
antibodies used in this study were anti-rabbit EnVision
(Dako), anti-mouse EnVision (Dako), anti-mouse IgG3
(1:700; Abcam), and anti-mouse IgG2a (1:200; Abcam).
The substrates were biotin tyramide (1:50; Perki-
nElmer), TSA Plus Cy3 tyramide (1:100; PerkinElmer),
and Cy5 tyramide (1:50; PerkinElmer), respectively. Sec-
tions were then treated with streptavidin�Alexa Fluor
750 conjugate (1:100; Invitrogen) for 1 hour. Finally, to
identify melanoma cells, sections were incubated with
mouse anti-S100 (1:100; 15E2E2; BioGenex) and goat
anti-mouse Alexa 488 (1:100; Invitrogen) for 1 hour.
The slides were then counterstained with 40,6-diami-
dino-2-phenylindole (DAPI) and mounted with ProLong
Gold Mounting Medium (Invitrogen) to visualise
nuclei.
Multispectral image acquisition and cell counting on
serial sections YTMA-76
Image acquisition of the stained slides was performed
using Vectra/Polaris (Akoya Biosciences, Marlborough,
MA) microscope to obtain MSIs (multispectral images).
Briefly, a low magnification scan of the whole TMA
slide was performed at 4£. The regions of interest
(ROI) scan were then selected from a low-resolution
using the Phenochart viewer (Akoya Biosciences), and
the ROIs were subsequently acquired at the higher reso-
lution MSIs at 20£. To analyse the MSIs, the spectra
were extracted from acquired images to build the spec-
tral library consisting of all fluorophores using inForm
image analysis software version 2.4.9 (Akoya Bioscien-
ces), and the absence of spectral overlap between chan-
nels was checked by evaluating the unmixed images.
The acquired multispectral images were then decom-
posed using a spectral library. Tumor, stroma, and back-
ground were identified using the trainable tissue
segmentation option in InForm. Cell segmentation
within tumor and stroma regions was performed using
the parameters including minimum nuclear size and
splitting sensitivity and the signals of the nuclei, cyto-
plasm, and membrane components as individual cells.
Once the machine learning cell segmentation algorithm
was optimised, cells were then phenotyped. CD34+,
CD68+, CD56+, CD66b+, FOXP3+, CD8+, CD14+,
CD3+, CD45+, CD20+ and CD4+ cells from MSIs were
counted. Finally, the phenotype counts, density, and
mean expression data were analysed using phenoptrRe-
ports (Akoya Biosciences) in R to generate the data for
cell densities/area (mm2).
Hematoxylin & Eosin (H & E) staining for serial sections
of YTMA-76
To count total TILs in the same TMA sections where
molecular subtypes of cells were determined, coverslips
5
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were removed, and H & E staining was performed. The
fluorescently stained YTMA-76 serial sections were
incubated overnight with gentle shaking in 10X TBST
to remove the coverslips. The YTMA-76 sections were
stained with Hematoxylin (Dako) for 5 minutes, fol-
lowed by Eosin Y for 60 seconds. The brightfield H & E
images were digitised at 20X using the ScanScope AT2
platform (Leica Biosystems, Wetzlar, Germany).
Statistical analysis
Statistical analyses were performed using GraphPad
Prism 9.1.0 (GraphPad Software Inc., CA, USA) and R.
studio 1.4.1106 (Inc., Boston, MA). The cut-points for
cell types and area variables were determined using X-
tile cut-point finder.20 Kaplan�Meier plots for disease-
specific survival (DSS) and overall survival (OS) were
computed and comparisons were made by the log-rank
test using survival and survminer packages in R studio.
Post hoc Benjamini-Hochberg (BH) multiple compari-
sons test was performed when the results for each vari-
able in survival analyses were significant. ROC curves
were constructed from logistic regression models for
the prediction of DSS. All statistical tests were two-
sided, and significance was represented as (*) p<0.05,
(**) p<0.01, (***) p<0.001, (****) p<0.0001, or not
significant (ns). To perform univariable analyses of each
factor, a Cox proportional hazards model was fitted to
predict survival from each factor in turn. For the multi-
variable analysis, a Cox proportional hazards model was
learned using eTIL%, age, gender and stage as predic-
tors. These variables were chosen, since they were all
present in a common group of 3 cohorts. For each test,
we quote the hazards ratio associated with each level of
a factor compared to the base reference level, and the
associated p-values.
Role of funding source
None of the funders were directly involved in the study
design, data collection, analyses, interpretation, or writ-
ing of the manuscript. The corresponding author (David
L Rimm) has full access to all the data and the final
responsibility for the decision to submit for publication.
Results

Measurement of eTIL% as a prognostic variable in
cohorts from multiple-institutions
Assessment of eTIL% using the NN192 machine learn-
ing cell classifier and the established cut-point of 16.6
% in the five cohorts from multiple institutions showed
that high eTIL% was associated with longer overall sur-
vival in TCGA cohort (hazard ratio (HR) = 0.1, p <

0.0001), better disease-specific survival in Tubingen
cohort (HR = 0.31, p = 0.013), and Yale cohort
(HR = 0.37, p = 0.005) (Figure 1c, 1e, 1f), but not in the
NYU or Sydney cohorts (Figure 1a, 1b). However, the
assessment of visual pathologist-read TILs in Yale
Cohort showed no significant association with disease
specific survival (Log-Rank p = 0.39, Figure 1g). Evalua-
tion of the stage distribution of these cohorts showed
that approximately 98% of patients in the NYU cohort
and 43 % of patients in the Sydney cohort were stage III
and IV patients, whereas stage III and IV patients in the
Tubingen, Yale and TCGA cohorts were 6%, 0% and
0% respectively (Figure 1d). The results indicated that
assessing eTIL% scores as a prognostic factor for
patients with melanoma may be stage dependent as
high eTIL% were associated with better prognosis
mainly in patients with stage I and II disease. We gener-
ated a combined cohort containing 764 patients from
Yale, Tubingen, Sydney, TCGA, and NYU cohorts. Uni-
variable and multivariable analyses were performed to
assess the association of eTIL% and the clinical patho-
logical features with survival (Table 2). eTIL% (with a
predefined 16.6 % cut-point), Stage, Breslow, ulceration
and histogenesis were all significantly associated with
survival in univariable analyses. The multivariable anal-
ysis showed that eTIL% was a significant predictor,
even when combined with the other pathological fea-
tures in a single model. Further, in an analysis of stage
2 only patients of the combined cohort with the 16.6 %
cut-point, the results showed that higher eTIL% is asso-
ciated with better prognosis (HR = 0.45, p = 0.00068)
(Figure 2a), but not stage III and IV (HR = 1.48,
p = 0.14) (Figure 2b). Our results could support the pre-
vious finding that patients with eTIL% >=16.6 have a
significantly better prognosis.
Assessment of five TIL variables in multi-institutional
stage I and II combined cohort
To identify the best approach to measure eTILs for
potential future clinical adoption, we tested five differ-
ent methods to assess the densities and proportions of
eTILs based on the cell types and the area analyzed. We
used the TCGA cohort as a training set to find every pos-
sible cut-point and the association of each TIL variable
with patient outcome. The optimal cut-points defined in
the TCGA cohort for each variable, the p-values, and
HRs derived for measurement of the cohorts from
assessing the optimal cut-points are shown. Since the
purpose of this assessment was to compare the perfor-
mance of five variables, it is statistically unsound to
compare the p-values of each variable but ok to compare
the HRs to determine relative prognostic strength. We
compared the estimated difference between the HRs,
with confidence intervals (CIs), between variables, and
reported the p-value evaluating the null hypothesis of
no association between the prognostic variable and out-
come. Our results show a significant association of all
variables with OS (Figure 3b). The HRs between all five
TIL variables are similar, but eTILs (HR=0.31, 95% CI
www.thelancet.com Vol 82 Month August, 2022



Figure 1. Assessment of eTIL% using the NN192 machine learning cell classifier and the established cut-point of 16.6% in the five
cohorts from multiple institutions. (a) Kaplan-Meier curves of DSS in WTS NYU validation cohort (b) DSS in WTS Sydney University
cohort, (c) OS in WTS TCGA cohort, (e) DSS in TMA Tubingen University Cohort, (f) DSS in TMA Yale University Cohort by eTIL%
dichotomised at 16.6 % (G) pathologist’s TIL scores. (d) Bar plot depicting the stage distribution of each cohort.
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(confidence interval) =0.19-0.5, p < 0.0001) and etTILs
(HR=0.29, 95% CI=0.18-0.44, p < 0.0001) appeared to
be more robust methods in the combined cohort
(although not statistically significantly better). This indi-
cates that eTILs and etTILs might be better performing
methods than the remaining three methods in large
future cohorts. This is concordant with the prognostic
results with eTIL% previously reported in melanoma.1
Identification of molecular subtypes of TILs
Lymphocytic subtypes of TILs were identified by multi-
plexed IF on the serial sections of a Yale melanoma
www.thelancet.com Vol 82 Month August, 2022
cohort (YTMA-76). Representative multispectral IF
(MIF) images of the first panel (CD14/CD45/CD34)
were shown in Figure 4a and of the panel (CD4/CD8/
FOXP3/S100B) were shown in Supplementary Figure
4. The representative image of H & E staining on the
same tissue section and cell classification using NN192
is shown in Figure 4b. In addition to the lymphoid line-
age markers including CD3, CD4, CD8, CD20, CD45,
CD56, and FOXP3, we also examined myeloid lineage
markers such as CD14, CD68, CD34 to accurately iden-
tify the specific cell types within the tumor microenvi-
ronment of YTMA-76. The relationship between each
molecular subtype of cell and TILs% was assessed by
7



Variables Univariable Analysis Multivariable Analysis

HR (95% CI) P value HR (95% CI) P value

eTILs% 0.4 (0.29-0.55) <0.001 0.5 (0.30-0.75) 0.001

Age 1.0 (0.99-1) 0.63 1.0 (0.98-1.01) 0.751

Gender (M vs F) 0.7 (0.46-1.1) 0.11 0.7 (0.46-1.09) 0.116

Stage (vs I)

II 3.0 (2.1-4.3) 0.001 1.5 (0.87-2.41) 0.153

III 5.3 (3.4-8.1) 0.001 3.1 (0.98-9.91) 0.055

IV 19.9 (10.2-38.8) <0.001 6.0 (2.56-14.12) <0.001

Breslow (vs <0.8)

1>4.0 8.1 (4.5-14.6) <0.001

10.8-1.0 3.2 (1.5-6.7) 0.002

11.0-2.0 2.4 (1.4-4.4) 0.003

12.0-4.0 4.3 (2.4-7.7) <0.001

Ulceration (Yes vs No) 2.0 (1.2-3.2) 0.01

Histogenesis (11 Categories)

Max: 2.90E+07 (NA) <0.001

Min: 9.97E-01 (NA)

Table 2: Univariable and multivariable Cox-proportional Hazards Regression analyses to assess the association of eTIL% and the clinical
pathological features regarding disease-specific overall survival in all stage multi-institutional combined cohort.
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Pearson linear regression which showed a high positive
correlation of TILs with cell types including CD45
(R = 0.83, p < 2.2e-16), CD3 (R =0.78, p = 8.6e-15), CD8
(R =0.76, p = 8e-14), CD20 (R =0.62, p = 1.4e-08), CD4
(R =0.52, p = 6.8e-06) and a weak correlation with cell
types such as FOXP3 (R = 0.3), CD56 (R = 0.12) and
CD66b (R = 0.02) (Figure 4c). These results indicate
that the lymphocytic phenotypic marker most highly
Figure 2. Assessment of eTIL% in stage specific combined cohorts
and (b) Kaplan�Meier curve of OS in stage III and IV combined coho
correlated to TILs is CD45 (leukocyte common antigen),
and the specific phenotypic subtype of cells represent-
ing TILs may be CD3+ or CD8+ or CD4+ T cells. This
was similarly reported previously in melanoma.1,21

These findings were corroborated by the cell type-spe-
cific survival analyses, which showed similar profiles
(Supplementary Figure 1). The Kaplan�Meier estimates
of survival test using the median as a cut-point showed
. (a) Kaplan-Meier curve of OS in stage II only combined cohort
rts by eTIL% dichotomised at 16.6 %.

www.thelancet.com Vol 82 Month August, 2022



Figure 3. Assessment of five TILs variables including eTILs, etTILs, esTILs, eaTILs and easTILs. (a) Schematic diagram illustrating the
variables (created with BioRender.com). (b) Forest plot of DSS in stage I and II combined discovery set. The optimal cut-points
defined in the TCGA cohort as a training set for each variable, the p-values (log-rank) and HRs with 95% CI derived for measurement
of the cohorts from assessing the optimal cut-points were shown.

Articles
that patients with high cell counts of CD3 (HR = 0.21,
p = 0.015) and CD8 (HR = 0.2, p = 0.015), as well as
myelocytic macrophage marker CD68 (HR = 0.33,
p = 0.015) have significantly improved DSS (Figure 4d).
As accumulated evidence showed that CD3+ and CD8+
lymphocytic cell infiltration is the primary determinant
of immunotherapy outcome, evaluating the combina-
tion of both TILs and a group of specific molecular
www.thelancet.com Vol 82 Month August, 2022
subtypes of TILs in association with the clinical out-
come might assist in defining a subset of patients that
might respond to immunotherapy.

Next, we assessed the utility of TILs and specific
molecular subtypes of cells to predict event risk. We
generated the area under the receiver operating charac-
teristic (ROC) curves (C-statistic) for TILs variables such
as eTILs and etTILs, and all lymphocytic markers
9



Figure 4. Identification of molecular subtypes of TILs. (a) Representative multispectral IF images of the panel (CD14/CD45/CD34)
profiling in YTMA-76, tissue block 2, cut-64. (b) The representative H & E image and cell classification on the same tissue section
using NN192. (c) Pearson linear regression between each molecular subtype of cells and TILs. (d) Forest plot of DSS in stage YTMA-
76. The predefined cut-point 16.6% for eTILs, the optimal cut-point 14.3 defined in the TCGA cohort for etTILs and the median cut-
points for all other cell types were used to stratify the patients. The adjusted p-values (log-rank, adjusted by Benjamini and Hoch-
berg, BH) and HRs with 95% CI derived for measurement of the cohorts from assessing the optimal cut-points were shown.
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including CD4, CD3, CD8, CD45, CD20, FOXP3 and
CD56 (Figure 5) to measure the risk prediction associ-
ated with these markers. eTILs achieved a favorable
prognostic performance where the area under the curve
(AUC) value for DSS was 0.77 (CI: 0.642-0.894). Of
seven markers tested for AUC, CD4 (AUC: 0.723, CI:
www.thelancet.com Vol 82 Month August, 2022



Figure 5. Identification of TIL variables for use as clinical utilities. (a) ROC curves indicating predictive accuracy of the markers: eTILs,
CD3, CD8, CD4, CD45, CD20, CD56 and FOXP3. (b) ROC curves showing predictive accuracy, sensitivity, and specificity of eTILs and
etTILs variables.
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0.593�0.853) showed the highest prognostic perfor-
mance (Figure 5a). In agreement with the prior work,21

our results suggested that the prognostic value of TILs
appeared to be driven by CD4+ T cells. The AUC of
myelocytic macrophage marker CD68 was 0.678 (CI:
0.535-0.823), exhibiting a higher prognostic value. Our
AUC analysis of etTILs variable predicting event risk in
YTMA-76 showed that etTILs (AUC: 0.793, CI: 0.672-
0.914, specificity: 0.627 and sensitivity: 0.938) outper-
formed eTILs (AUC: 0.77, CI: 0.642-0.897, specificity:
0.51 and sensitivity: 0.938) which validated our finding
in a low-stage combined cohort from multiple institu-
tions (Figure 5b). Taken together, assessment of ROC
curves by comparing the clinical impact of two variable
models (i.e., eTILs and etTILs) suggests that etTIL%
might be a more robust variable to use clinically.
Discussion
The use of immunotherapies, including Pembrolizu-
mab and Ipilimumab in the adjuvant setting, has been
shown to successfully manage stage III melanoma.5,7

However, since more patients with stage I or II mela-
noma are diagnosed than stage III,22 it is important to
evaluate the role of these agents as adjuvant therapies in
patients with early-stage melanoma. This is especially
important because only one in five of stage III mela-
noma patients benefit from immunotherapy, and 50%
are cured by surgery alone as seen in the placebo arm.5

These data suggest that we could identify the subset of
patients that could potentially be spared immunother-
apy toxicity since they are unlikely to benefit.1 Our study
pools patients with melanoma from international
cohorts and supports the previous finding that eTIL%
score is an independent prognostic marker in
www.thelancet.com Vol 82 Month August, 2022
melanoma and shows that the effect is seen only in low
stage patients, the population containing the stage 2
patients that receive adjuvant therapy.

A highly reproducible estimate of the TIL calculation
is needed to use the machine learning TIL score in the
clinic. Unlike the NN192 algorithm, which relies on cell
detection and classification, there are many machine
learning models that train with patches rather than with
cell detection to generate a TIL map that characterises
lymphocytic infiltrates in intra-tumoral, peri-tumoral,
and adjacent stromal regions.23 To identify the best
approach for calculating TILs, we considered using mul-
tiple variables based on both the cell types (tumor cells,
immune cells, fibroblasts, or other cells) and the area of
interest (tumor and adjacent 1,2 mm diameter stroma).
The test of five TIL variables in the low stage multi-insti-
tutional combined cohort showed that all TIL variables
had comparable prognostic value; but eTIL% and etTILs
% had the best performance. We note that TILs can also
be predictive for immunotherapy, but evaluation of
these variables in the context of immunotherapy is
beyond the scope of this work.

A key limitation of our work is that we have used a
machine learning algorithm that is susceptible to cell
assignment error during cell classification. Another lim-
itation is that melanoma cells have uneven membrane
patterns and highly irregular cell shapes. Since mela-
noma cells change their shape and can adopt the
appearance of other cells to invade any tissue in the
body,24 it is often difficult to accurately classify tumor
cells resulting in misclassification of malignant mela-
noma cells as the fibroblasts or other cells. As etTIL%
was calculated using total cells as the denominator, the
likelihood of incorrect percentage automated TIL calcu-
lation due to assignment error might be reduced as
11
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opposed to eTIL% method, which used the sum of only
immune and tumor cells as its denominator. As a
result, etTIL% may have higher reproducibility than
eTIL% in patients with melanoma. However, we found
no statistically significant difference between our two-
best model variables. Finally, the use of 0.6-mm diame-
ter tissue cores TMAs is an additional limitation of this
study. The advantage of large numbers of cases accessi-
ble by TMA is the trade-off between assessing the frac-
tion of the tumor and maximizing the number of
samples. As such, the evaluation of TILs in both TMA
and WTA formats show significant association with sur-
vival. Further we note the the TILs quantification done
here is to illustrate the heterogeneity of the immune
infiltrate that is recognized as eTIL. We do not attempt
to validation the prognostic value of molecularly defined
TIL in this work.

TILs comprise a heterogeneous cell population
including natural killer (NK) cells, B cells and various
subsets of T cells with complex functional states (e.g.,
naive, effector, memory, and dysfunctional) and thus,
the prognostic value of the automated TIL may arise
from the unbiased combination of distinct molecular
subtypes.25 Here, we evaluated various molecular sub-
types of lymphocytes within the TILs population and
their prognostic values assessed by DSS. Concordant
with the study by Piras, et al.,26 our results show that
high CD8+ and CD3+ cells were associated with favor-
able DSS though the hazard ratio was higher than that
of eTIL% and etTIL% variables (0.2 versus 0.13 and
0.075). In the study of Acs, et al., only a weak-fair corre-
lation was reported between eTILs and CD4 and CD8
expression.1 The inherently subjective nature of the
user-supervised training process for cell segmentation
of IF images using cell segmentation algorithm might
be a major contributor to this variation. The cell count
analyses using IF cell segmentation platforms can lead
to inconsistent outcomes, especially if the assessed
cohort is not statistically powered. The provisional solu-
tion might be to use a combined application of both IF
and H & E that are sufficiently generic to be easily train-
able while consistently achieving high sensitivity and
specificity with validation.

In summary, we validated that eTIL% score is a
robust prognostic marker in patients with early-stage
melanoma and identified distinct TIL subpopulations
that carry the prognostic value. Pending prospective val-
idation, the use of the NN192 machine learning algo-
rithm might evolve into a useful and easy-to-implement
tool that will aid in risk stratification of patients with
early-stage melanoma. In the future, the use of eTILs
might be complemented with molecular subtyping of
cells for more discriminating analyses. The use of a
combined marker signature may be proven to be the
best approach to define a subset of patients that will not
benefit from immunotherapy or might develop signifi-
cant toxicities.
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