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Abstract

Many monogenic disorders cause craniofacial abnormalities with characteristic facial morphology. 

These disorders can be diagnosed more efficiently with the support of computer-aided next-

generation phenotyping tools, such as DeepGestalt. These tools have learned to associate facial 

phenotypes with the underlying syndrome through training on thousands of patient photographs. 

However, this “supervised” approach means that diagnoses are only possible if the disorder was 

part of the training set. To improve recognition of ultra-rare disorders, we created GestaltMatcher, 

which uses a deep convolutional neural network based on the DeepGestalt framework. We used 

photographs of 17,560 patients with 1,115 rare disorders to define a “Clinical Face Phenotype 

Space”. Distance between cases in the phenotype space defines syndromic similarity, allowing 

test patients to be matched to a molecular diagnosis even when the disorder was not included in 

the training set. Similarities among patients with previously unknown disease genes can also be 

detected. Therefore, in concert with mutation data, GestaltMatcher could accelerate the clinical 

diagnosis of patients with ultra-rare disorders and facial dysmorphism, as well as enable the 

delineation of novel phenotypes.
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Introduction

Rare genetic disorders affect more than 6.2% of the global population1. Because genetic 

disorders are rare and diverse, accurate clinical diagnosis is a time-consuming and 

challenging process, often referred to as the “diagnostic odyssey”2, and all informative 

clinical features have to be taken into consideration. A large fraction of patients, particularly 

those with neurodevelopmental disorders, exhibit craniofacial abnormalities3. If the facial 

phenotype (“gestalt”) is highly recognizable, such as in Down syndrome, it may also play 

an important role in establishing the diagnosis. Sometimes the gestalt is so characteristic or 

distinct that it reduces the search space of candidate genes or can be used to delineate novel 

phenotype-gene associations4. However, the ability to recognize these syndromic disorders 

relies heavily on the clinician’s experience. Reaching a diagnosis is very challenging if 

the clinician has not previously seen a patient with an ultra-rare disorder or if the patient 

presents with a novel disorder, both of which are increasingly common scenarios.

With the rapid development of machine learning and computer vision, a considerable 

number of next-generation phenotyping tools have emerged that can analyze facial 

dysmorphology using two-dimensional (2D) portraits of patients5–13. These tools can aid 

in the diagnosis of patients with facial dysmorphism by matching their facial phenotype with 

that of known disorders. In 2014, Ferry et al. proposed using a clinical face phenotype space 

(CFPS) formed by facial features extracted from images to perform syndrome classification; 

the system in that study was trained on photos of more than 1,500 controls and 1,300 

patients with eight different syndromes5. Since then, facial recognition technologies have 

improved significantly and constitute the core of the deep-learning revolution in computer 

vision14,15. The current state-of-the-art framework for syndrome classification, DeepGestalt 

(Face2Gene, FDNA Inc, USA), has been trained on more than 20,000 patients and currently 

achieves high accuracy in identifying the correct syndrome for roughly 300 syndromes12,16. 

DeepGestalt has also demonstrated a strong ability to separate specific syndromes and 

subtypes, surpassing human experts’ performance12. Hence, pediatricians and geneticists 

increasingly use such next-generation phenotyping tools for differential diagnostics in 

patients with facial dysmorphism. However, most existing tools, including DeepGestalt, 

need to be trained on large numbers of photographs and are therefore limited to syndromes 

with images of at least seven different patients. The number of submissions to diagnostic 

databases of pathogenic variants, such as ClinVar17, has become a good surrogate for the 

prevalence of rare disorders. When submissions to ClinVar of disease genes with pathogenic 

mutations are plotted in decreasing order, most of the supported syndromes are on the left, 

indicating relatively high prevalence (Figure 1). For instance, Cornelia de Lange syndrome 

(CdLS), which has been modeled by multiple tools5,12, is caused by mutations in NIPBL, 

SMC1A, or HDAC8, as well as in other genes, and has been linked to hundreds of reported 

mutations. However, more than half of the genes in ClinVar have fewer than ten submissions 

each (Figure 1). As a result, most phenotypes have not been modeled because sufficient data 

are lacking. Thus, the need to train on large numbers of photographs is a major limitation for 

the identification of ultra-rare syndromes.
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A second limitation of classifiers such as DeepGestalt is that their end-to-end, offline-trained 

architecture does not support new syndromes without additional modifications. In order to 

model a new syndrome in a deep convolutional neural network (DCNN), the developer 

has to go through six separate steps (Supplementary Figure 1), including collecting images 

of the new syndrome; changing the classification head, which is the last layer of the 

DCNN; retraining the network; and more. In addition, the model cannot be used to 

quantify similarities among undiagnosed patients, which is crucial in the delineation of 

novel syndromes.

A third shortcoming of current approaches is that they are not able to contribute to the 

longstanding discussion within the nosology of genetic diseases about distinguishability. 

Syndromic differences have been hard to measure objectively18, and decisions to “split” 

syndromes into separate entities on the basis of perceived differences or to “lump” 

syndromes together on the basis of similarities have been made subjectively. Current tools 

are unable to quantify the similarities between syndromes in a way that could shed light on 

the underlying molecular mechanisms and guide classification.

Our objective is to improve phenotypic decision support for rare disorders. Here we describe 

GestaltMatcher, an innovative approach that uses an image encoder to convert all features 

of a facial image into a vector of numbers. The encoder can also be thought of as the 

penultimate layer of a DCNN that was trained on known syndromes, such as DeepGestalt. 

The vectors resulting from the encoder are then used to build a CFPS for matching a 

patient’s photo to a gallery of portraits of solved or unsolved cases. The distance between 

cases in the CFPS quantifies the similarities between the faces, thereby matching patients 

with known syndromes or identifying similarities between multiple patients with unknown 

disorders and thereby helping to define new syndromes. Because GestaltMatcher quantifies 

similarities between faces in this way, it addresses all three of the limitations described 

above: (1) it can identify “closest matches” among patients with known or unknown 

disorders, regardless of prevalence; (2) it does not need new architecture or training to 

incorporate new syndromes; and (3) it creates a search space to explore similarity of 

facial gestalts based on mutation data, which can point to shared molecular pathways of 

phenotypically similar disorders.

Results

The feature encoder of GestaltMatcher computes a Facial Phenotypic Descriptor (FPD) for 

each portrait image (Figure 2a). Each FPD can be thought of as one coordinate in the CFPS 

(Figure 2b). The distances between the FPDs in the CFPS form the basis for syndrome 

classification, delineation of novel phenotypes, and patient clustering. All benchmarking 

results described in this section, as well as those available through the web service, are based 

on data from Face2Gene (F2G). The F2G dataset was used to construct a CFPS consisting 

of 26,065 images from 17,502 subjects who had been diagnosed with a total of 1,115 

different syndromes, each supported by at least two cases. We divided the dataset into two 

categories, the rare dataset consisting of 816 ultra-rare and novel syndromes, representing 

syndromes that we aim to identify, and the frequent set, consisting of 299 syndromes 

already identified by DeepGestalt. The latter set of known syndromes was also used to 
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train the encoder. Each category was further split into a gallery (90% of each syndrome) 

and a test set (the remaining 10% of each syndrome) (see the Online methods for details). 

The performance of the three use cases described below, that is matching patients with 

diagnosed or undiagnosed individuals, and quantifying syndromic similarity, depends on the 

composition of the training set and the gallery.

Because F2G data cannot be shared, we also compiled the GestaltMatcher database 

(GMDB), consisting of 4,306 images from 3,693 subjects with 257 different syndromes. 

This second data set is based on 902 publications and additional unpublished cases for 

which we obtained consent for sharing. All findings described in this section that are based 

on the F2G data can be reproduced qualitatively on the GMDB data; results obtained with 

the GMDB data are included in the Supplemental Material.

Training on images of dysmorphism improves the performance of the FPD

To investigate the importance of using a syndromic features encoder rather than a normal 

facial features encoder, we compared FPDs that are based on the same architecture, but 

trained on different data. The first encoder, which we refer to as Enc-healthy, was only 

trained on data from healthy individuals in CASIA-WebFace19. The second encoder, which 

we refer to as Enc-F2G, was first trained on the faces of healthy subjects and then fine-tuned 

by training on dysmorphic faces from the gallery of patients with frequent syndromes. All 

images were encoded separately for each encoder. We then evaluated the performance of 

the encoders on test sets of syndromes from the frequent set and from the rare set. The 

performance metric was the percentage of test cases (with known diagnosis) for which an 

FPD with the matching disorder was within the k closest diagnoses in the CFPS (the top-k 
accuracy). The features created by Enc-F2G performed better in the matching process than 

those created with Enc-healthy (Table 1). The features created by Enc-F2G improved the 

accuracy of matching within the top-10 closest images from 31.46% to 49.12% for the 

frequent category and from 21.77% to 29.56% for the rare syndromes, which do not overlap 

with the frequent syndromes. This emphasizes the importance of training the encoder on 

data from faces with dysmorphic phenotypes and not only on healthy faces. The larger 

relative improvement of 56% on the frequent test set versus 36% for the rare set could 

possibly be explained as Enc-F2G being better suited to encode syndromes of the frequent 

set because it was previously trained on these disorders. Likewise, for some of the 816 novel 

disorders, the characteristic features were not yet optimally represented by Enc-F2G because 

features of these disorders were not part of the training set.

The same trend of improvement by fine-tuning on a diverse but smaller set of syndromic 

photos is also seen with the public GMDB dataset (Enc-GMDB vs. Enc-F2G in 

Supplementary Table 1). These results suggest that an encoder that is fine-tuned on as many 

syndromic faces as possible, such as DeepGestalt, is a better fit for the task of syndrome 

classification than one trained only on healthy faces. Moreover, for rare syndromes not 

previously seen by the encoder, DeepGestalt’s FPD provides a better generalization or 

clustering than the FPD encoded by CASIA.

Hsieh et al. Page 5

Nat Genet. Author manuscript; available in PMC 2022 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Syndromic diversity improves the performance on novel disorders

Earlier definitions of the FPD were mainly based on training a network with a small 

selection of common and highly characteristic syndromes5,9. In principle, we could train 

GestaltMatcher’s encoder on all 1,115 different syndromes in our dataset. However, most of 

the facial phenotypes that have recently been linked to a gene are either ultra-rare or less 

distinctive, and using a very unbalanced training set with many ultra-rare disorders linked to 

only few cases may add noise without substantial additional benefit. We therefore analyzed 

the influence of the number of syndromes on the encoder’s fine-tuning by incrementally 

increasing their number starting with the most frequent ones. Due to the imbalance in 

prevalence among the disorders added each time, the improvement could be affected by the 

additional number of training subjects. Therefore, we used the same number of subjects for 

each syndrome. In this section, the test set consists only of disorders from the rare set that 

the encoder has not seen. The training procedure and averaging of the readout is described in 

detail in the Online methods.

When we increased the number of training syndromes, the accuracy increased (Figure 3). In 

general, the performance was also higher when more individuals per syndrome were used 

for training. Particularly when more than 50 syndromes are used, the curve for training with 

20 subjects/syndrome was above the curve for 10 subjects/syndrome, and so on. The same 

trend is also shown in the public GMDB dataset (Supplementary Figures 2 and 3).

Moreover, using double the number of syndromes is better than using double the number of 

subjects for most of the combinations (Supplementary Figure 4), and the effect of doubling 

the number of syndromes used for training is greater when the base sample size is larger 

than 1200 subjects (Supplementary Figures 5 and 6). Both of these findings suggest that 

increasing the syndromic diversity in the training set improves the performance on novel 

disorders.

Top-10 accuracy plateaus when encoders are fine-tuned on more than 150 

syndromes

In the previous section, we analyzed the impact of syndromic diversity in a balanced setting, 

that is, the dynamics of increasing the number of syndromes while keeping the size of the 

increments (the number of added subjects) equal. In this section we analyze the influence of 

the number of syndromes on model training in the real-world scenario; that is, when using 

all of the subjects per syndrome (Supplementary Figure 7). The top-10 accuracy improved 

considerably until about 150 syndromes, representing roughly 90% of the subjects in the 

entire training set. Almost doubling the number of syndromes to 299 with the remaining 

10% of subjects only increases the performance marginally. From these dynamics, we can 

conclude that including additional syndromes beyond 299 for defining the FPD will provide 

little benefit, and we decided to proceed in the following section with the Enc-F2G encoder, 

which is based on these 299 syndromes.
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Performance comparison between GestaltMatcher and DeepGestalt

To validate the GestaltMatcher approach for the first use case (matching to known 

syndromes), we first worked with the 323 images of patients with 91 syndromes from 

the London Medical Database (LMD)20 that were already used for benchmarking the 

performance of DeepGestalt12. When using the frequent gallery, which contains syndromes 

that DeepGestalt currently supports, GestaltMatcher achieved 64.30% and 86.59% accuracy 

within the top-10 and top-30 ranks, respectively, which was lower than the 81.28% top-10 

accuracy and 88.34% top-30 accuracy achieved by DeepGestalt with a Enc-F2G softmax 

approach (Supplementary Table 2 and 3). However, when we used the gallery of all 1,115 

syndromes for GestaltMatcher (frequent + rare), which is a search space that is roughly 

four times larger, the top-10 and top-30 dropped by only 2.40 percentage points and 5.17 

percentage points, respectively (Supplementary Table 2). Moreover, we performed the same 

evaluation on the F2G-frequent test set and the GMDB-frequent test set, and obtained 

similar results. When the number of syndromes in the gallery was increased from 299 to 

1,115, the top-10 and top-30 also dropped slightly, by 2.27 and 3.77 percentage points, 

for the F2G-frequent test set (Table 1). The results with the GMDB-frequent test set 

also dropped only slightly while supporting more than twice the number of syndromes 

(Supplementary Table 1). These results indicate that the GestaltMatcher clustering approach 

is highly scalable and robust to adding new disorders, without the limitations of a 

classification approach.

Matching undiagnosed patients from unrelated families

In the second use case, we envision GestaltMatcher as a phenotypic complement to 

GeneMatcher21. To prove that we can match patients from unrelated families who have 

the same disease by using only their facial photos, we selected syndromes from 15 

recent GeneMatcher publications with titles containing the phrase “facial dysmorphism”. 

In contrast to the benchmarking of the previous section, the gallery now consists of subjects 

with rare syndromes to simulate undiagnosed subjects and, as a consequence, ranks refer to 

individuals and not disorders. For the evaluation, we still have to reveal in the end whether 

or not an individual from the gallery is a match for a test case, and non-matching cases 

can harm the performance more when matching to individuals rather than disorders. For 

instance, if the first matching individual is at rank 30, but the 29 non-matching individuals 

with higher similarity to the test case together have only four non-matching disorders, 

then this match would contribute to the top-5 accuracy in matching on disorders, as in the 

previous section, but to the top-30 accuracy in matching to individuals, as in this section. 

Only the top-1 accuracy remains the same in both benchmarks.

In this scenario, we matched 30 of 91 subjects and connected 26 of 79 families when using 

the top-10 criterion (Table 2 and Supplementary Figure 8). When using the top-30 rank, 48 

of 91 subjects were matched, and 40 of 79 families were connected. Enc-healthy, which is 

trained only with healthy subjects, matched only 40 out of 91 subjects and connected 34 

out of 79 families using the top-30 rank (Supplementary Table 4). Hence, using the encoder 

trained with facial dysmorphic subjects improves the matching considerably.
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As an example, in a study of TMEM9422, eight of the ten photos in six different families 

were matched, and five of six families were connected within the top-10 rank. When the 

three test images in family 2 (F-2-5, F-2-7, F-2-9) were tested, the other five families were 

among those in the top-30 rank (Figure 4). The youngest brother, F-2-5, matched families 

1, 3, 5, and 6, and one sister, F-2-7, matched families 1, 4, and 6. Another sister, F-2-9, 

matched families 1, 4, 5, and 6. The six families were recruited at five different institutes 

in India, Qatar, the United States (NIH Undiagnosed Diseases Network), and Switzerland, 

indicating that GestaltMatcher can also connect patients of different ethnic origins. However, 

a more systematic analysis of pairwise distances still revealed considerably smaller distances 

between subjects with de novo mutations and their affected family members than between 

these subjects and unrelated individuals (Supplementary Figure 9). This reflects similarities 

in the nonclinical features of the face, which is also higher within the same ethnicity and is 

a known confounding factor for the GestaltMatcher approach. However, it is a bias that can 

be attenuated23 and will also diminish over time when more diverse training data become 

available24.

GestaltMatcher and human experts agree on syndrome distinctiveness

We hypothesized that some of the ultra-rare disorders that were linked to their disease-

causing genes early on, such as Schuurs-Hoeijmakers syndrome in 2012,25 have particularly 

distinctive facial phenotypes. To systematically analyze the dependence of disease-gene 

discovery on the distinctiveness of a facial gestalt, we asked three expert dysmorphologists 

(S.M., N.E., and K.W.G.) to grade 299 syndromes on a scale from 1 to 3. The more 

easily they could distinguish the diseases, and the more characteristic of the disease 

they deemed the facial features, the higher the score. All three dysmorphologists agreed 

on the same score for 195/299 syndromes, yielding a concordance of 65.2%. We then 

selected 50 syndromes as a test set and trained the model with the remaining 249 

syndromes. We analyzed the correlation of the mean of the distinctiveness score from human 

experts with the top-10 accuracy that GestaltMatcher achieves for these syndromes without 

having been trained on them (Figure 5a, Supplementary Table 6). The Spearman’s rank 

correlation coefficient was 0.400 (P = 0.004), indicating a clear positive correlation between 

distinctiveness score and top-10 accuracy. Syndromes with a higher average score tended 

to perform better, with Schuurs-Hoeijmakers syndrome being amongst the best-performing 

syndromes in GestaltMatcher. The analysis on 20 selected syndromes from the GMDB 

dataset also showed a positive correlation between distinctiveness score and top-5 accuracy 

(Supplementary Figure 10 and Supplementary Table 7).

The correlation for GestaltMatcher accuracy and disease prevalence was not significant (P 
= 0.130; Figure 5b). This also means that ultra-rare disorders share a similar distribution 

of distinctiveness with more common ones, which is important for estimates about the 

performance of GestaltMatcher on novel phenotypes in the real world.

Characterization of phenotypes in the CFPS

When syndromologists cannot find a molecular cause for a patient’s phenotype in 

diagnostic-grade genes after extensive work-up in the lab, it becomes a research case, and 
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they may compare the patient’s condition to known disorders. For example, a potentially 

novel phenotype could be described as “syndrome XY–like” to build a case group for further 

molecular analysis through genome sequencing. In GestaltMatcher, this is the third use case, 

and such comparisons can be supported by cluster analysis in the CFPS with the cosine 

distance as a similarity metric (Supplementary Table 8).

If a novel disease gene has been identified and the similarities of the patients to known 

phenotypes outweigh the differences, OMIM groups them into a phenotypic series. On 

the gene or protein level, such phenotypic series often correspond to molecular-pathway 

diseases, such as GPI-anchor deficiencies for hyperphosphatasia with mental retardation 

syndrome (HPMRS) or cohesinopathies for CdLS. For our cluster analysis, we sampled 

subjects in our database with subtypes of four large phenotypic series and found high 

intersyndrome separability in addition to considerable intrasyndrome substructure in Noonan 

syndrome, CdLS, Kabuki syndrome, and mucopolysaccharidosis. A t-SNE26 projection 

of the FPDs into two dimensions yielded the best visualization results (Supplementary 

Figure 11). Although any projection into a smaller dimensionality might cause a loss of 

information, the clusters are still clearly visible for the 743 subjects sampled from these four 

phenotypic series. This observation provides further evidence that characteristic phenotypic 

features are encoded in the FPDs.

To demonstrate the separability of syndromes with facial dysmorphism, we also used 

t-SNE to project 4,353 images of the ten syndromes from the frequent set with the largest 

number of subjects and 872 images of ten non-distinct syndromes (syndromes without facial 

dysmorphism) into 2D space. In addition, we calculated the Silhouette index27 for both of 

these datasets. The FPDs of the frequent syndromes showed ten clear clusters of subjects, 

but the t-SNE projection of subjects with non-distinct syndromes created no clear clusters 

(Supplementary Figure 12). Moreover, the Silhouette index of the frequent syndromes (0.11) 

was higher than that of the non-distinct syndromes (−0.005); the negative Silhouette index 

indicates poor separation of the non-distinct syndromes.

GestaltMatcher as a tool for clinician scientists

The transition of a research case to a diagnostic case is best described by the process 

of matching unrelated patients in the CFPS who share a molecular abnormality until 

statistical significance is reached. We illustrate this process for the novel disease gene 

PSMC3 in a demonstration on the GestaltMatcher web service (Supplementary Figure 

13, www.gestaltmatcher.org). Ebstein et al. (not yet published) report 18 patients with a 

neurodevelopmental disorder of heterogeneous dysmorphism that is caused by de novo 
missense mutations in PSMC3, which encodes a proteasome 26S subunit. Although not all 

PSMC3 patients have the same facial phenotype, the proximity of two unrelated patients 

in the CFPS who share the same de novo PSMC3 mutation is exceptional. Their distance 

is comparable to the pairwise distances of patients with the recurring missense mutation 

R203W in PACS1, which is the only known cause of Schuurs-Hoeijmakers syndrome. On 

the one hand, the high distinctiveness of these two PSMC3 cases with the same mutation 

allows direct matching by phenotype. On the other hand, the pairwise similarities of 10 

out of 18 patients in the CFPS for which portraits were available also hints that the 
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protein domains have more than one function. The previously described scalability of 

GestaltMatcher makes an exploration of such similarities in the CFPS possible for any 

number of cases as soon as they have been added to the gallery of undiagnosed patients.

Discussion

GestaltMatcher’s ability to match previously unseen syndromes, that is, those for which no 

patient is included in the training set, distinguishes it from other approaches. Matching of 

unseen syndromes is not only of importance for identifying ultra-rare disorders but can also 

be useful for the discovery of novel diseases. Thus, GestaltMatcher could also speed up the 

process of delineating new disorders.

Importantly, GestaltMatcher provides the flexibility to easily scale up the number of 

supported syndromes or the number of unsolved cases without substantial loss in 

performance. The LMD validation analysis revealed that the use of the softmax approach, 

that is, classification based on the values of the last layer representing disorders, 

outperformed GestaltMatcher. However, the GestaltMatcher encoder, that is, clustering in 

the CFPS with values of the penultimate layer representing features, demonstrated high 

scalability by yielding similar performance when the number of supported syndromes was 

increased from 299 to 1,115. Furthermore, the distinctiveness of a syndrome correlated 

with the performance (Figure 5a), whereas syndrome prevalence did not (Figure 5b). Thus, 

GestaltMatcher can match a syndrome with a distinguishable facial gestalt even if it is of 

extremely low prevalence. This enables us to avoid the long development flow currently 

required to support and discover novel syndromes (Supplementary Figure 1). Instead, 

matching can be offered instantly for all unsolved cases with available frontal images, as 

long as consent has been provided for inclusion in the tool. If the gallery is populated 

by cases with a disease-causing mutation in a diagnostic-grade gene, we consider this a 

diagnostic work-up. In contrast, if the gallery is populated by further undiagnosed cases, it is 

a use case comparable to GeneMatcher.

GestaltMatcher’s framework also allows us to abstract the encoding of a dataset away 

from the classification task. For example, one can evaluate both phenotypic series and 

pleiotropic genes within a single CFPS, or obtain the most-similar patients for each of 

the matched syndromes, with minor computational cost (i.e., in real time). Furthermore, 

the GestaltMatcher framework computes the similarity between each of the test set images 

across the entire dataset of images. This similarity can be computed using different metrics, 

e.g., cosine or Euclidean distance. The results are then aggregated according to the chosen 

configuration. For example, image similarity can be aggregated at the patient level or the 

syndrome level. Furthermore, the dataset can be filtered according to different parameters 

(such as ethnicity, disease-causing genes, or age) to further customize the evaluation.

One of the key features of GestaltMatcher is the ability to match patients and quantify 

their syndromic similarity. Clinician scientists often face two different tasks in their daily 

practice: (1) Assessing whether the patient’s phenotype is specific for a known disorder. 

If, for example, a variant of unclear clinical significance is found in a diagnostic-grade 

gene, a match in GestaltMatcher would be considered as supporting evidence for the 
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pathogenicity28,29. (2) Assessing whether the phenotypic similarity of an unsolved case 

to other individuals also lacking a diagnosis is high enough to form a case group that 

can be further analyzed. This could, for example, result in the identification of potentially 

deleterious variants in a novel disease gene and would represent the phenotypic complement 

to existing matching approaches on the molecular level. Several online platforms, such 

as GeneMatcher, MyGene2 (https://mygene2.org/MyGene2), and Matchmaker Exchange30, 

already allow physicians to look for similar patients based on sequencing information, 

and over the past few years these platforms have enabled the matching of thousands of 

patients. However, automated facial matching technology has not yet been included in any of 

these platforms, although phenotypic data, for example encoded in HPO terms, are usually 

exchanged after contact has been established.

Since its first proof of concept, in which GestaltMatcher was used to identify two unrelated 

patients from different countries with the same novel disease, caused by the same de 
novo mutation in LEMD24, our approach has successfully been applied to further ultra-

rare disorders (Figure 1). We matched 40 of 79 different families in 15 GeneMatcher 

publications by top-30 rank (Table 2 and Supplementary Figure 8), and 11 candidate genes 

are currently under evaluation. This result shows the power and potential of GestaltMatcher 

to identify novel syndromes. Although the number of individuals and the diversity of their 

phenotypes will affect the performance, cases with a high syndromic similarity will remain 

matchable due to the high dimensionality of the CFPS.

We therefore hope that GestaltMatcher will be readily integrated into other matching 

platforms to aid in determining which phenotypes should be grouped together into a 

syndrome or phenotypic series, as well as linking individual patients to a molecular 

diagnosis.

Online methods

Study approval

This study is governed by the approval of the following Institutional Review Boards: 

Charité–Universitätsmedizin Berlin, Germany (EA2/190/16); UKB Universitätsklinikum 

Bonn, Germany (Lfd.Nr.386/17). The authors have obtained written informed consent from 

the patients or their guardians, including permission to publish photographs.

Face2Gene datasets

We collected images of subjects with clinically or molecularly confirmed diagnoses from the 

Face2Gene database (https://www.face2gene.com). Extracted, deidentified data were used to 

remove poor-quality or duplicated images from the dataset without viewing the photos. After 

removing images of insufficient quality, the dataset consisted of 26,152 images from 17,560 

subjects with a total of 1,115 syndromes (Supplementary Table 9).

GestaltMatcher was designed to distinguish syndromes with different properties. We 

separated syndromes by the number of affected subjects and whether they had already 

been learned by the DeepGestalt model. Supplementary Figure 14 provides an overview 

of how the dataset was divided. The current DeepGestalt approach requires at least seven 
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subjects to learn a novel syndrome. We first used this threshold to separate the syndromes 

into “frequent” and “rare” syndromes. The objective of our study was to improve phenotypic 

decision support for “rare disorders”. However, frequent syndromes that are not associated 

with facial dysmorphic features cannot be modeled by DeepGestalt. We therefore further 

selected 299 frequent syndromes that possess characteristic facial dysmorphism recognized 

by DeepGestalt to use as “frequent syndromes”. The frequent syndromes were used to 

validate syndrome prediction and the separability of subtypes of a phenotypic series because 

these syndromes are known to have facial dysmorphic features that are well recognized by 

the DeepGestalt encoder. For rare syndromes, we sought to demonstrate that GestaltMatcher 

could predict a syndrome even if facial images were publicly available for only a few 

subjects. It is noteworthy that, for more than half of all known disease-causing genes, fewer 

than ten cases with pathogenic variants have been submitted to ClinVar (Figure 1). Of the 

1,115 syndromes in the entire dataset, 299 were frequent and 816 were rare. DeepGestalt 

cannot yet be applied to rare syndromes.

We further divided each of these two datasets into a gallery and a test set. The gallery is 

the set of subjects that we intend to match, given a subject from the test set. First, 90% 

of subjects with each frequent syndrome were used to train the models, and the remaining 

10% of subjects were used to validate the DeepGestalt training; the 90% then became the 

frequent gallery and the 10% were assigned to the frequent test set. For the rare dataset, 

we performed 10-fold cross-validation. In each syndrome, 90% and 10% of subjects were 

assigned to the gallery and test set, respectively. The test sets were designed to have the 

same distribution of distinctiveness as the training sets.

Matching only within a dataset would not represent a real-world scenario. Therefore, the 

galleries of the two datasets were later combined into a unified gallery that was used to 

search for matched patients.

Please note that the threshold of seven subjects to divide the dataset into frequent and rare is 

to compare GestaltMatcher to DeepGestalt, which both use the same training data. We could 

adjust this threshold higher or even remove this threshold in the future.

GMDB dataset

We collected images of subjects with clinically or molecularly confirmed diagnoses from 

publications and individuals that gave appropriate informed consent for the purpose of this 

study. This dataset can be used as a public training and test set for benchmarking and is 

available at GestaltMatcher Database (https://gestaltmatcher.gene-talk.de).

At the time of the data freeze on 9 June 2021, the dataset consisted of 4,306 images of 3,693 

subjects with a total of 257 syndromes from 902 publications (Supplementary Table 9). Six 

of the 3,693 subjects have not yet been published, but appropriate consent has been obtained. 

For a fair comparison with the Face2Gene dataset, we performed the data separation in the 

same way. The dataset was first split by the same threshold (seven subjects) into frequent 

and rare datasets, giving 139 syndromes in the frequent dataset and 118 syndromes in the 

rare set. Both datasets were also later separated into gallery and test sets. The data split is 

shown in Supplementary Figure 15. Of the 3,693 subjects in GMDB, 963 are also in the 
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Face2Gene dataset. To use the GMDB rare set as the test set for both the GMDB frequent set 

and the Face2Gene frequent set, we made sure that no syndrome was in both the GMDB rare 

set and the Face2Gene frequent set (Supplementary Figure 16).

DeepGestalt encoder

The preprocessing pipeline of DeepGestalt includes point detection, facial alignment 

(frontalization), and facial region cropping. During inference, a facial region crop is forward 

passed through a deep convolutional network (DCNN) and ultimately gives the final 

prediction of the input face image. The DeepGestalt network consists of ten convolutional 

layers (Conv) with batch normalization (BN) and a rectified linear activation unit (ReLU) to 

embed the input features. After every Conv-BN-ReLU layer, a max pooling layer is applied 

to decrease spatial size while increasing the semantic representation. The classifier part of 

the network consists of a fully connected linear layer with dropout (0.5). In this study, we 

considered the DeepGestalt architecture as an encoder–classification composition, pipelined 

during inference. We chose the last fully connected layer before the softmax classification as 

the facial feature representation (facial phenotypic descriptor, FPD), resulting in a vector of 

size 320.

DeepGestalt was first trained on images of healthy individuals from CASIA-WebFace19, 

and later fine-tuned on a dataset with patient images (Face2Gene or GMDB). The encoder 

without fine-tuning on patient images was called Enc-healthy. The encoder later trained on 

299 frequent syndromes in the Face2Gene dataset was named Enc-F2G. The encoder trained 

on 139 frequent syndromes in GMDB was named Enc-GMDB. In the following sections, 

we have several encoders trained on different subsets of the Face2Gene and GMDB datasets. 

The summary of all the encoders used in this study is shown in Supplementary Table 5. 

To compare GestaltMatcher and DeepGestalt, we employed a model that uses softmax for 

predicting syndromes, which we called “Enc-F2G (softmax)”. This model is the same as 

Enc-F2G; the only difference is that Enc-F2G (softmax) used softmax in the last layer for 

prediction, as in DeepGestalt, and Enc-F2G used the cosine distance of FPDs for prediction.

Our first hypothesis was that images of patients with the same molecularly diagnosed 

syndromes or within the same phenotypic series, and who also share similar facial 

phenotypes, can be encoded into similar feature vectors under some set of metrics. 

Moreover, we hypothesized that DeepGestalt’s specific design choice of using a predefined, 

offline-trained, linear classifier could be replaced by other classification “heads”, for 

example, k-nearest neighbors using cosine distance, which we used for GestaltMatcher.

Descriptor projection: Clinical Face Phenotype Space

Each image was encoded by the DeepGestalt encoder, resulting in a 320-dimensional FPD. 

These FPDs were further used to form a 320-dimensional space called the Clinical Face 

Phenotype Space (CFPS), with each FPD a point located in the CFPS, as shown in Figure 

2. The similarity between two images is quantified by the cosine distance between them 

in the CFPS. The smaller the distance, the greater the similarity between the two images. 

Therefore, clusters of subjects in the CFPS can represent patients with the same syndrome, 

similarities among different disorders, or the substructure under a phenotypic series.
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Evaluation

To evaluate GestaltMatcher, we took the images in the test set as input and positioned them 

in the CFPS defined by the images of the gallery. We calculated the cosine distance between 

each of the test set images (for which the diagnoses were known in this proof-of-concept 

study) and all of the gallery images. Then, for each test image, if an image from another 

subject with the same disorder in the gallery was among the top-k nearest neighbors, we 

called it a top-k match. We then benchmarked the performance by averaging the top-k 
accuracy (percent of test images with correct matches within the top k) of each syndrome to 

avoid biasing predictions toward the major class. We further compared the accuracy of each 

syndrome in the frequent and rare syndrome subsets to investigate whether GestaltMatcher 

can extend DeepGestalt to support more syndromes. To compare its performance on 

predicting syndromes with that of DeepGestalt, we first performed image aggregation on 

the syndrome level before calculating top-k accuracy, so that only the nearest image of each 

syndrome was taken into account.

London Medical Dataset validation analysis

We compiled 323 images of patients diagnosed with 91 frequent syndromes from the 

LMD19 and used this as the validation set for frequent syndromes. We first evaluated the 

validation set using softmax, which is a DeepGestalt method. To compare the performance 

with that of GestaltMatcher, we evaluated the performance of GestaltMatcher on two 

different galleries: a gallery of frequent syndromes consisting of 19,950 images of patients 

with 299 syndromes, and a unified gallery consisting of 22,298 images of patients with 

1,115 syndromes. We then reported the top-k accuracy and compared the results of these 

three settings (DeepGestalt with softmax, GestaltMatcher with the frequent gallery, and 

GestaltMatcher with the unified gallery).

Rare syndromes analysis

To understand the potential for matching rare syndromes, we trained an encoder, denoted 

Enc-F2G-rare, on 467 out of 816 rare syndromes with more than two and fewer than seven 

subjects. Ninety percent of the subjects were used to train Enc-F2G-rare and were later 

assigned to the gallery. The remaining 10% of subjects were assigned to the test set. We then 

compared the performance of Enc-F2G-rare and Enc-F2G using both cosine distance and the 

softmax classifier.

Matching undiagnosed patients from unrelated families

We selected 15 articles published from 2015 to 2019 in which GeneMatcher was used to 

establish an association between a gene and a novel phenotype with facial dysmorphism in 

patients from unrelated families. In total, these studies contained 108 photos of 91 subjects 

from 79 families. The details are shown in Table 2. The 15 genes were not among the 

Face2Gene frequent syndromes, so we can consider them each as a novel phenotype to the 

model. We performed leave-one-out cross-validation on this dataset; that is, we kept one 

photo as the test set, and we assigned the rest of the photos to a gallery of 3,533 photos with 

816 rare syndromes to simulate the distribution of patients with unknown diagnosis. We then 

evaluated the performance by top-1 to top-30 rank. If a photo of another subject with the 
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same disease-causing gene from an unrelated family was among the top-k rank, we called it 

a match.

Moreover, we used top-k rank to measure how many unrelated families were connected. If 

one unrelated family was among the test photo’s top-k rank, the families were considered to 

be connected at that rank. How many families were matched to at least one unrelated family 

was also represented. When using the GeneMatcher data, we did not perform syndrome 

aggregation because aggregation cannot be performed if the syndrome is not known. Instead, 

we matched patients rather than predicting disorders.

Syndrome facial distinctiveness score

To evaluate the importance of the facial gestalt for clinical diagnosis of the patient, we asked 

three dysmorphologists (co-authors S.M., N.E., and K.W.G.) to score the usefulness of each 

syndrome’s facial gestalt for establishing a diagnosis. Three levels were established:

1. Facial gestalt can be supportive in establishing the clinical diagnosis.

2. Facial gestalt is important in establishing the clinical diagnosis, but diagnosis 

cannot be made without additional clinical features.

3. Facial gestalt is a cardinal symptom, and a visual or clinical diagnosis is possible 

from the facial phenotype alone.

We then averaged the grades from the three dysmorphologists for each syndrome.

Syndrome prevalence

The prevalence of each syndrome was collected from Orphanet (www.orpha.net). Birth 

prevalence was used when the actual prevalence was missing. If only the number of cases 

or families was available, we calculated the prevalence by summing the numbers of all cases 

or families and dividing by the global population, using 7.8 billion for the global population 

and a family size of ten for each family31.

Unseen syndromes correlation analysis

To investigate the influence of prevalence and distinctiveness score on the performance 

of novel syndromes with facial dysmorphism, we selected 50 frequent syndromes and 

kept them out of the training set. The 50 syndromes were selected to have evenly 

distributed distinctiveness scores and prevalence distribution; the distributions are shown 

in Supplementary Figure 17 and Supplementary Table 6. The encoder (Enc-F2G-exclude-50) 

was trained on 90% of the subjects from the other 249 frequent syndromes. In addition, we 

performed random downsampling to remove the confounding effect of prevalence. For each 

iteration, we randomly downsampled each syndrome by assigning five subjects to the gallery 

and one subject to the test set. We then averaged the top-10 accuracy of 100 iterations. 

We calculated Spearman rank correlation coefficients for the following two pairs of data: 

between top-10 accuracy and the syndrome’s distinctiveness score, and between top-10 

accuracy and the prevalence of syndromes collected from Orphanet.
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The same analysis was also performed on the GMDB dataset. We selected 20 syndromes 

from GMDB-frequent instead of 50 syndromes because the GMDB dataset is smaller than 

the Face2Gene dataset, and we trained the Enc-GMDB-exclude-20 on the remaining 119 

frequent syndromes. The details of the 20 selected syndromes and the results are reported in 

Supplementary Table 7. Please note that we report the top-5 accuracy in the GMDB dataset 

instead of top-10 accuracy because of the smaller number of syndromes in the gallery.

Analysis of number of training syndromes and subjects

In this analysis, we evaluated the influence of training with additional syndromes and 

subjects to the novel disorders. To avoid an imbalance among the syndromes, we used the 

same number of subjects for each syndrome. We first used four different settings for the 

number of subjects: 10, 20, 40, and 80. However, some syndromes have fewer subjects than 

the four settings used for training: for 10, 20, 40, and 80 subjects, there are 242, 156, 84, 

and 40 syndromes. We then defined the ordering of syndromes we added each time. To add 

the same syndromes for the four numbers of subjects each time, we first sorted syndromes 

with the number of subjects in descending order. To avoid bias due to having specific 

disorders added at each position, we then performed random sorting five times within each 

of the intervals [1, 40], [41, 80], [81, 150], and [151, 240] to generate five different lists 

of syndromes. Thus, the ordering from common disorders to rare disorders was by interval 

rather than by syndrome. For example, Kabuki syndrome might be in the 9th position in the 

first list, but in the 20th position in the second list, but in each randomly sorted list Kabuki 

syndrome is in the first interval.

For each of five different lists of training syndromes, we performed the same training 

described as follows. We first trained X number of syndromes with ten subjects, where X = 

10 to 240, incremented at an interval of ten syndromes. As mentioned above, there are only 

156 syndromes with more than 20 subjects. Thus, we trained syndromes with 20 subjects 

with X = 10 to 150 syndromes with the same increment of ten syndromes. We performed the 

same process for 40 and 80 subjects, with maximums of 80 and 40, respectively.

For each setting (number of subjects, number of syndromes), we had five models. We then 

encoded the photos separately with each model and tested them on the rare syndromes, 

which had not been seen by the models. In the end, we averaged the performance by the five 

models and report the average as the top-10 accuracy for each setting in Figure 3. We also 

used the models described above to encode the GMDB dataset, tested them with the GMDB 

rare set, and report the results in Supplementary Figure 2.

Because the GMDB dataset is smaller than Face2Gene dataset, we were not able to use the 

same number of subjects and syndromes to perform the analysis. For the GMDB dataset, we 

used 10, 20, 40 for the number of subjects, and syndrome intervals of [1, 10], [11, 40], and 

[41, 80]. The results of training on GMDB and testing of the GMDB rare set are shown in 

Supplementary Figure 3.

We next wanted to compare two scenarios, double the number of training syndromes and 

double the number of training subjects. For example, we first set training on ten subjects 

for each of ten syndromes as the base setting, then compared this performance to training 
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ten subjects for each of 20 syndromes (double syndromes) and training 20 subjects for each 

of ten syndromes (double subjects). The base setting had 100 subjects in total. Double 

syndromes and double subjects each had 200 subjects. This comparison allows us to 

understand the different influence of adding more syndromes and adding more subjects. 

The results are shown in Supplementary Figures 4–6.

Analysis of number of training syndromes in a real-world scenario

In this analysis, we trained the encoders with different numbers of syndromes to simulate 

the real-world scenario. The difference to the previous section is that we used all available 

subjects with each syndrome for the training. To make a fair comparison, we first used the 

same ordering of syndromes as in the previous section, and we added a fifth interval of 

[241, 299]. For each of the five lists of syndromes, we then trained 16 encoders, each with 

a different number of training syndromes. The interval of syndromes was 20 in this analysis 

due to the long training time. For example, we used the first ten syndromes in the training 

list for the first encoder. For the second encoder, we trained on the first 30 syndromes, and 

continually increased the number of syndromes for each subsequent encoder by 20 until we 

reached 299 syndromes. Thus, we simulated how syndromes would be included in model 

training in the real world. We took the rare syndromes as the test set. We then averaged the 

performance of the five models with the same number of training syndromes and report the 

top-10 accuracy in Supplementary Figure 7.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Data availability

The data that support the findings of this study are divided into two groups, sharable 

data (GMDB) and non-sharable data (F2G). Controlled access to GMDB is available via 

www.gestaltmatcher.org. Restricted data are curated from Face2Gene users under a license 

and cannot be shared in order to protect patient privacy.
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Figure 1: Subsets of disorders supported by DeepGestalt and GestaltMatcher.
The lower x-axis shows examples of disease genes, and the upper x-axis is the cumulative 

number of genes. The y-axis shows the number of pathogenic submissions in ClinVar for 

each gene. The numbers on the curve indicate the number of submissions for each of 

the indicated genes. Most of the rare disorders that DeepGestalt supports have relatively 

high prevalence based on their ClinVar submissions; e.g., Cornelia de Lange syndrome 

(CdLS) is caused by a mutation in NIPBL, SMC1A, or HDAC8 (yellow), among other 

genes. Disease genes such as PACS1 (gray) cause highly distinctive phenotypes but are 

ultra-rare, representing the limit of what current technology can achieve. The first novel 

disease that was characterized by GestaltMatcher is caused by mutations in LEMD2 (red). A 

candidate disease gene associated with a characteristic phenotype that can be identified by 

GestaltMatcher is PSMC3.
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Figure 2: Concept of GestaltMatcher.
a, Architecture of a deep convolutional neural network consisting of an encoder and a 

classifier. Facial dysmorphic features of 299 frequent syndromes were used for supervised 

learning. The last fully connected layer in the feature encoder was taken as a Facial 

Phenotypic Descriptor (FPD), which forms a point in the Clinical Face Phenotype Space 

(CFPS). b, In the CFPS, the distance between each patient’s FPD can be considered as a 

measure of similarity of their facial phenotypic features. The distances can be further used 

for classifying ultra-rare disorders or matching patients with novel phenotypes. Take the 

input image shown in the figure as an example: the patient’s ultra-rare disease, which is 

caused by mutations in LEMD2, was not in the classifier, but was matched with another 

patient with the same ultra-rare disorder in the CFPS4.
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Figure 3: Influence of the number of syndromes included in model training.
The x-axis is the number of syndromes used in model training. The y-axis shows the average 

top-10 accuracy of testing images in the rare set. Each line uses the same number of subjects 

per syndrome, which is shown in the key. For each point, we train the models five times 

with five different splits, and average the results. The null accuracy (the expected value if the 

encoder returned random predictions) is 1.2% (10/816).
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Figure 4: Pairwise ranks of subjects with mutations in TMEM94.
Each label consists of family numbering and subject numbering, which are the same as 

in the original publication22. For example, F-2-7 means the seventh subject in the second 

family. Each column is the result of testing the image indicated at the bottom of the column. 

The number in the box is the rank to the corresponding image in the gallery. The fourth 

column starting from the left is the result of testing F-2-5, and the fourth row from the 

bottom shows that F-1-1 has a rank of 2 for F-2-5. In the fifth to seventh rows from the 

bottom are the ranks from family 2, which is the same family that F-2-5 is from.
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Figure 5: Correlation among syndrome prevalence, distinctiveness score, and top-10 accuracy.
a, Distribution of top-10 accuracy and distinctiveness score. The Spearman rank correlation 

coefficient was 0.400 (P = 0.004). b, Distribution of top-10 accuracy and prevalence. 

The Spearman rank correlation coefficient was −0.217 (P = 0.130) The details of each 

syndrome can be found in Supplementary Table 6 using the syndrome ID shown in the 

figure; syndrome 5 is Schuurs-Hoeijmakers syndrome. The y-axis shows the average top-10 

accuracy of the experiments over 100 iterations.
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Table 1:

Performance comparison between classification and clustering with different encoders on sets of known 

disorders.

Test set Model
Images Supported 

syndromes
Null top-1 
accuracy Top-1 Top-5 Top-10 Top-30

Gallery Test

F2G-frequent Enc-F2G 
(softmax) - 2,669 299 0.33% 35.94% 52.45% 63.91% 78.13%

F2G-frequent Enc-F2G 19,950 2,669 299 0.33% 21.06% 39.62% 49.12% 67.98%

F2G-frequent Enc-healthy 19,950 2,669 299 0.33% 10.69% 23.69% 31.46% 50.80%

F2G-rare Enc-F2G 2,348.8 1,183.3 816 0.12% 13.66% 23.62% 29.56% 40.94%

F2G-rare Enc-healthy 2,348.8 1,183.3 816 0.12% 9.46% 16.87% 21.77% 31.77%

F2G-frequent Enc-F2G 22,298
a 2,669 1,115

c 0.09% 20.15% 37.81% 46.85% 64.21%

F2G-frequent Enc-healthy 22,298
a 2,669 1,115

c 0. 09% 9.70% 22.51% 29.80% 48.24%

F2G-rare Enc-F2G 22,298.8
b 1,183.3 1,115

c 0. 09% 7.07% 14.19% 17.67% 24.41%

F2G-rare Enc-healthy 22,298.8
b 1,183.3 1,115

c 0. 09% 4.02% 8.84% 11.73% 16.61%

The deep convolutional neural networks of Enc-F2G (softmax), Enc-F2G, and Enc-healthy have the same architecture. Training of Enc-F2G 
(softmax) and Enc-F2G was initiated with CASIA-WebFace and further fine-tuned on photos of patients in the Face2Gene frequent set. The 
Enc-F2G (softmax) model is the same as Enc-F2G, but using the softmax values of the layer instead of cosine distances between the FPDs in the 
CFPS. For the top-1 to top-30 columns, the best performance in each set is boldfaced. The numbers of images and syndromes in the rare set are 
averaged over ten splits. Enc-F2G outperformed Enc-healthy on both types of syndromes, showing the importance of fine-tuning on patient photos 
for learning facial dysmorphic features. The top-10 accuracy of Enc-F2G only drops by 2.27 percentage points (from 49.12% to 46.85%) after 
increasing the number of cases in the gallery and almost quadrupling the number of supported syndromes from 299 to 1,115.

a
Number of images in the frequent gallery + rare gallery.

b
Average of ten splits in the frequent gallery + rare gallery.

c
Number of syndromes in the frequent gallery + rare gallery.
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Table 2:

Matching of novel phenotypes on a GeneMatcher validation set.

Gene PMID Total families (Subjects)
Connected families (subjects)

a

Top-10 Top-30

BPTF 32 28942966 6 (6) 0 (0) 2 (2)

CCDC47 33 30401460 4 (4) 0 (0) 0 (0)

CHAMP1 34 27148580 4 (4) 2 (2) 4 (4)

CHD4 35 27616479 3 (3) 0 (0) 0 (0)

DDX6 36 31422817 4 (4) 4 (4) 4 (4)

EBF3 37 28017373 6 (7) 0 (0) 0 (0)

FBXO11 38 30679813 17 (17) 5 (5) 9 (9)

HNRNPK 39 26173930 3 (3) 3 (3) 3 (3)

KDM3B 40 30929739 9 (9) 0 (0) 2 (3)

LEMD2 4 30905398 2 (2) 2 (2) 2 (2)

OTUD6B 41 28343629 4 (9) 3 (4) 3 (6)

PACS2 42 29656858 6 (6) 0 (0) 2 (2)

TMEM94 22 30526868 6 (10) 5 (8) 6 (10)

WDR37 43 31327508 4 (4) 2 (2) 3 (3)

ZNF148 44 27964749 3 (3) 0 (0) 0 (0)

Total - 79 (91) 26 (30) 40 (48)

Average - - 32.91% (32.97%) 50.63% (52.75%)

a
Number of families (subjects) matched by a photo from another family in the top-10 or top-30 rank.

In the discovery mode for novel phenotypes (second use case), all cases in the gallery are without diagnosis. For the performance readout, only 
the correct disease gene of a match is revealed. As an example, for individuals of the TMEM94 study (shown in bold in the table), eight out of 
ten subjects had an image from another family within the top-10 rank, and five of the six families had at least one subject from another family in 
their top-10 rank. All subjects and families matched within the top 30. This table is based on the ranks from the similarity matrices in Figure 4 
and Supplementary Figure 8. The accuracy of connected subjects corresponds to the accuracy of using Enc-F2G on the F2G-rare test set (shown in 
Table 1), but in discovery mode in a gallery of almost the same size as F2G rare gallery set.
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