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Abstract

Sensorimotor information processing underlies normal cognitive and behavioral traits and has 

classically been evaluated through prepulse inhibition (PPI) of a startle reflex. PPI is a behavioral 

dimension deregulated in several neurological and psychiatric disorders, yet the mechanisms 

underlying the cross-diagnostic nature of PPI deficits across these conditions remain to be 

understood. To identify circuitry mechanisms for PPI, we performed circuitry recording over the 

prefrontal cortex and striatum, two brain regions previously implicated in PPI, using wild-type 

(WT) mice compared to Disc1-locus-impairment (LI) mice, a model representing neuropsychiatric 

conditions. We demonstrated that the corticostriatal projection regulates neurophysiological 

responses during the PPI testing in WT, whereas these circuitry responses were disrupted in 

Disc1-LI mice. Because our biochemical analyses revealed attenuated brain-derived neurotrophic 

factor (Bdnf) transport along the corticostriatal circuit in Disc1-LI mice, we investigated the 

potential role of Bdnf in this circuitry for regulation of PPI. Virus-mediated delivery of Bdnf into 

the striatum rescued PPI deficits in Disc1-LI mice. Pharmacologically augmenting Bdnf transport 

by chronic lithium administration, partly via phosphorylation of Huntingtin (Htt) serine-421 and 

its integration into the motor machinery, restored striatal Bdnf levels and rescued PPI deficits in 

Disc1-LI mice. Furthermore, reducing the cortical Bdnf expression negated this rescuing effect 

of lithium, confirming the key role of Bdnf in lithium-mediated PPI rescuing. Collectively, the 

data suggest that striatal Bdnf supply, collaboratively regulated by Htt and Disc1 along the 

corticostriatal circuit, is involved in sensorimotor gating, highlighting the utility of dimensional 

approach in investigating pathophysiological mechanisms across neuropsychiatric disorders.

Keywords

Cortico-Striatal circuit; Sensorimotor gating; DISC1; Huntingtin; BDNF; Dimensional approach

Introduction

Historically, wide ranges of efforts have tried to address the fundamental biological question 

of how the brain drives behaviors under physiological vs. pathophysiological conditions. 

One popular approach is to focus on a specific neuropsychiatric disorder and analyze 

functional outcomes by perturbing a critical genetic factor or biological mediator for the 

disease. This approach is proven scientifically effective when the disease diagnosis is 
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defined by biological and etiological evidence, e.g., in the case of Huntington’s disease (HD) 

caused by genetic alterations in Huntingtin (HTT) gene. However, in reality, the diagnostic 

criteria for most psychiatric disorders are formally defined to achieve clinical reliability 

while sacrificing etiological validity (1). As a result, biologically heterogeneous conditions 

are included in each diagnosis in this “categorical” approach. To overcome this limitation, 

recent discussion in the clinical nosology of brain disorders has brought a “dimensional” 

approach, in which the mechanism for a critical behavioral trait or dimension, independent 

of a diagnostic category, is addressed at multiple levels (e.g., molecular, cellular and 

circuitry levels) (2). In this approach, behavioral dimensions that are directly translatable 

between humans and model animals, such as rodents, are particularly appreciated from both 

basic and clinical neuroscience viewpoints.

Sensorimotor gating is one of these representative dimensions; it has classically been 

measured using prepulse inhibition (PPI) of a startle response. During the test for PPI, 

neurophysiological responses obtained following presentation of a startle stimulus are 

compared to the responses obtained to the same startle stimulus when it is preceded 

by a lower amplitude prepulse stimulus (3). In healthy individuals, presentation of a 

prepulse stimulus suppresses both the normal neurophysiological and behavioral responses 

to the startle stimulus. Conversely, PPI is diminished in individuals with a range of 

neuropsychiatric disorders, including schizophrenia and HD (4, 5). Furthermore, PPI is 

conserved across multiple different species (6) and deficits in PPI are observed in a series 

of genetic- and pharmacological-based animal models that are developed to understand 

mechanisms for psychosis or mood dysregulation (7–9). Multiple circuits involving the 

forebrain are hypothesized to modulate the inhibitory functions of the prepulse (4). 

Preclinical studies have demonstrated that striatal lesions disrupt PPI (10). Other studies 

have suggested the involvement of the prefrontal cortex (PFC) in PPI regulation (11). 

Nevertheless, as far as we are aware, studies that directly address the role of corticostriatal 

circuitry for PPI regulation are unavailable. It remains elusive how PPI and sensorimotor 

gating are mechanistically explained as an integrative behavioral dimension at the circuitry, 

and down to the cellular and molecular levels. Given the PPI deficits reported across 

diverse brain dysfunctions, such as schizophrenia, psychotic disorders, mood disorder and 

neurodegenerative disorders (4), elucidating the mechanisms of PPI will have high clinical 

and social impacts.

Our ultimate goal is to comprehensively understand a key mechanism for PPI and 

sensorimotor gating at molecular, cellular, circuit and behavioral levels by taking a 

hypothesis-driven dimensional approach in an integrative manner. To address this long-term 

goal, the present study set out to test a key role of corticostriatal circuitry in the PPI 

regulation in mice. In the first half of the present study, we employed electrophysiology by 

using microwire arrays chronically implanted in this circuitry combined with optogenetics. 

The goal of the electrophysiological study was to provide a proof-of-concept that mice 

exhibiting PPI deficits have altered gating properties in the corticostriatal circuitry in vivo. 

We then obtained this proof at the functional level in mice deficient for DISC1, the molecule 

that participates in biological processes underlying a wide range of psychiatric conditions 

(12–14). Accordingly, we next addressed potential molecular and cellular mechanisms 

underlying PPI deficits in association with the corticostriatal circuitry. To explore the 
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mechanisms for the PPI regulation mediated by DISC1, we turned our attention to the 

DISC1-HTT protein complex (15) for the following reasons: (i) HTT deficits lead to PPI 

deficits in HD patients and mouse models (5, 16, 17); (ii) Htt protein complex regulates 

corticostriatal transport of brain-derived neurotrophic factor (BDNF) (18); (iii) a reduction 

in BDNF causes PPI deficits (19); and (iv) the corticostriatal projection has a unique role 

for supplying BDNF to the striatum (20–22). Supported by the electrophysiological data 

for the validity of focusing on the corticostriatal projection in studying PPI regulation, 

we hypothesized that the DISC1-HTT complex regulates corticostriatal BDNF transport, 

thereby contributing to the corticostriatal circuitry mechanism for the sensorimotor gating 

responses. By using both molecular and pharmacological interventions, the current study 

tests the hypothesis to validate this molecular concept.

Methods

We addressed sensorimotor gating mechanisms at circuitry, cellular and molecular levels in 

Disc1 locus-impairment (LI) mice, a rodent model representing pathophysiological aspects 

of neuropsychiatric disorders (23, 24), using the following three main approaches.

In vivo electrophysiology:

Microwire electrodes were implanted in male mice (3−4 months old) to record single unit 

activities and local field potentials (LFPs) from the prelimbic cortex (PrL) and dorsomedial 

striatum (DMS) during PPI testing, according to the procedure described (25).

Prepulse Inhibition (PPI):

Mice were tested in a startle chamber (SR-LAB, CA) either with or without 

neurophysiological recording microwires. The startle stimulus (120 dB) or the prepulse 

stimulus (74, 78, 82, 86 or 90 dB) followed by the startle stimulus were randomly given to 

each mouse to assess the degree of PPI, as described (26).

Adeno-associated virus (AAV):

AAV encoding Bdnf, mCherry or shRNAs to Bdnf, Akt1 or scramble control were 

stereotaxically infused bilaterally into DMS or PrL of mice (2−3 months old, male) and 

the mice were tested for PPI 3 to 4 weeks post-injection.

Additional details for these approaches as well as animal husbandry, regulatory guidelines, 

optogenetics, behavioral assays, ex vivo MRI, stereotaxic virus injection, histology, 

molecular and cell biology are described in Supplementary Information.

Statistical Analysis

Sample size for each animal experiment was predetermined to ensure adequate statistical 

power for drawing conclusion. Animal experiments were statistically analyzed either by 

Z-test, repeated measures two-way analysis of variance (ANOVA) followed by Bonferroni 

post-hoc tests, Kruskal-Wallis test followed by Dunn’s multiple comparisons, or Student’s 

t-test, as specified in the figure legend. Refer to Supplementary Information for more details.
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Results

Critical roles for the PFC and DMS in sensorimotor gating: studies with wild-type mice

Previous studies reported that PPI was affected by manipulation of the PFC or the 

dorsomedial striatum (DMS) (10, 11). Thus, we hypothesized that the corticostriatal 

projection might regulate sensorimotor gating. To test this hypothesis, wild-type (WT) 

C57BL/6 mice were implanted with microwire arrays (25), allowing us to simultaneously 

record single unit activities as well as local field potentials (LFPs) from the PFC and DMS 

under awake, partially-restrained conditions (i.e., in a plexi-glass tube) during PPI testing, 

in which either the startle stimulus (120 dB; Startle trial) or the prepulse stimulus followed 

by startle stimulus (PPI trial) were randomly given to each mouse (Figure 1a). The baseline 

firing patterns of a majority of single units shown in Figure 1a are representative of those in 

PFC and DMS, consistent with the firing properties (firing rates and amplitude) of cortical 

pyramidal neurons and striatal medium spiny neurons (MSNs), respectively (Figure S1). All 

implantation sites were verified histologically after completing the in vivo recording (Figure 

S2).

In the single unit activity recording, we observed that a significant proportion of neurons 

responded to the startle stimulus of the startle trials (32% of 102 PFC cells and 34% of 

80 DMS cells) and a significant portion of neurons responded to the startle stimulus during 

the PPI trials (36% of 102 PFC cells and 33% of 80 DMS cells) (Figure 1b). While 26% 

of PFC and 25% of DMS cells responded to both trial types, 16% of PFC neurons and 

17% of DMS neurons responded to the startle stimulus exclusively during one trial type 

(startle trial or PPI trial), but not the other. Thus, both PFC and DMS activities reflected a 

neurophysiological correlate of sensory gating processes taking place during PPI testing. We 

next quantified the effect of the gating stimulus (78 dB, low amplitude prepulse stimulus) on 

LFP responses to the startle stimulus. Specifically, we calculated the mean evoked potential 

for each trial type and normalized the mean amplitude for each frequency to the amplitude 

observed during the 1−5 second interval prior to delivering the startle pulse (Figure 1c,d). 

This frequency-wise analysis approach allowed us to quantify the impact of the prepulse 

stimulus on the oscillatory activity induced by the startle stimulus. Using this strategy, we 

found that the prepulse stimulus significantly reduced the induction of PFC beta oscillations 

(15−30 Hz) elicited by the initial startle stimulus (Figure 1e). Taken together with our single 

cell observations, these analyses provided evidence that both the cortex and striatum signal 

the sensorimotor gating response.

Critical role of the PFC→DMS projection in sensorimotor gating: comparative studies with 
wild-type and Disc1 LI mice

Based on the results above, we next hypothesized that the corticostriatal circuitry directly 

regulates PPI and sensorimotor gating. To address this question, we compared WT mice with 

a genetically-engineered model that displays deficits in sensorimotor gating. In the present 

study, we chose a model with a disruption at the Disc1 locus (Disc1 LI model, −/−) (23, 24), 

and confirmed robust deficits in PPI in this model (Figure 2a).

Jaaro-Peled et al. Page 5

Mol Psychiatry. Author manuscript; available in PMC 2022 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Next, we tested the functional role of the corticostriatal projection (or PFC→DMS 

projection) in PPI in Disc1 LI mice compared with WT mice. To quantitatively address 

the function, we implanted them with microwire arrays and used the neurophysiological 

parameters of the cortical and striatal activities that were used in the analysis of WT mice 

(Figure 1). In response to the 120-dB cue in the startle alone trial, a similar percentage 

of PFC neurons were activated in Disc1 LI vs. WT mice (33% of 108 PFC units in 

Disc1 LI mice, Figure S3; 32% of 102 PFC units in WT mice, Figure 1b), implying that 

Disc1 LI mice have similar levels of acoustic sensation compared to WT. When a low 

amplitude acoustic stimulus (78 dB) was provided during the PPI testing sequence, a similar 

percentage of PFC neurons were activated in both WT and Disc1 LI mice (11/102 and 

11/108 cells for WT and Disc1 LI mice, respectively), whereas DMS activation following 

auditory stimulation was diminished in Disc1 LI compared with WT mice (15/80 and 2/102 

cells for WT and Disc1 LI mice, respectively; Figure 2b), suggesting that Disc1 LI mice 

have diminished striatal response of sensory gating compared to WT.

In neurophysiological measures, cellular response is the function of not only the proportion 

(number) of cells activated but also the intensity (degree) of response per cell. To further 

verify differences in neuronal sensory gating signals, we used a measurement based 

on receiver operator characteristic (ROC) analysis, which is widely used for classifying 

neurons’ responses to stimuli (27). In contrast to the analysis applied to averages of 

populations of neurons (Figure 2b), ROC analysis provides an estimate of how the activity 

of a single neuron differs between two stimuli on a trial-by-trial basis (i.e., the quality 

of signal detection; Figure 2c). Using this analysis, we found that Disc1 LI mice showed 

diminished striatal signaling of sensory gating compared to WT littermates (Figure 2d). On 

the other hand, cortical sensory gating was not significantly different between the mutants 

and controls (Figure 2d). Taken together with our results obtained from population analysis 

data, the data demonstrate functional deficits in the corticostriatal circuit of Disc1 LI mice, 

which may be causally related to the sensory gating deficits. We next quantified the effect of 

the gating stimulus (78 dB, low amplitude prepulse stimulus) on LFP responses to the startle 

stimulus in Disc1 LI mice (the same way we did for WT mice in Figure 1c,d,e). In contrast 

to the gating effect seen on PFC beta oscillations in WT mice (Figure 1e), the LFP responses 

in Disc1 LI showed no differences between the startle trial and the PPI trial (Figure 2e), i.e., 
impaired gating.

To more directly test our hypothesis that Disc1 LI mice may have deficits in the PFC→DMS 

corticostriatal projection, we probed the projection with concurrent optogenetic and in 
vivo recording approaches (Figure 2f). We injected adeno-associated virus (AAV) encoding 

CaMKII-ChR2 into the PFC of Disc1 LI mice or WT littermates, and then stimulated 

the PFC with light to quantify neuronal activity at both the PFC and DMS (Figure S1). 

When light stimulation was delivered, a similar percentage of PFC neurons responded 

in both Disc1 LI and WT mice (Figure 2g), demonstrating that there is no difference 

in the activation of the soma of PFC neurons between genotypes. On the other hand, 

striatal activation in response to cortical stimulation by light was significantly diminished 

in Disc1 LI mice (Figure 2g). This shows that Disc1 LI mice exhibit impaired function 

of the corticostriatal projection in response to direct stimulation. Taken together, the 
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electrophysiology experiments suggest that the corticostriatal projection plays a role in 

sensorimotor gating and that Disc1 LI mice have deficient corticostriatal gating.

Role for striatal Bdnf through the PFC→DMS projection in sensorimotor gating

To address the mechanisms underlying functional deficits in corticostriatal gating in Disc1 
LI mice, we set out to identify potential anatomical deficits in this model. Structural 

magnetic resonance imaging (sMRI), a technique that addresses gross anatomical changes 

in an unbiased manner, showed a significant volume reduction only in the striatum and 

cerebellum among multiple brain regions in Disc1 LI mice compared with controls (Figure 

S4). In analogy to the modest but reproducible changes in brain anatomy found in patients 

with mental illnesses, the volume reduction in the striatum of Disc1 LI mice is mild, but 

significantly different compared with littermate controls (Figure S4). The striatum does not 

express Bdnf transcripts and thus critically depends on a supply of Bdnf through projections 

from several brain regions (i.e., cortex, substantia nigra, amygdala and thalamus) with 

cortical neurons being the major source of BDNF for the striatum (20–22). Deficits in the 

supply of Bdnf to the striatum lead to a reduction in striatal volume (28). The selective 

reduction in striatal volume and functional deficits in corticostriatal circuitry therefore 

prompted us to test the amount of Bdnf in the striatum of Disc1 LI mice. We measured 

Bdnf by enzyme-linked immunosorbent assay (ELISA) in 1.5-, 3-, and 6-month-old mice. 

While no significant differences in cortical Bdnf levels were observed between Disc1 LI 

and WT at any age tested, the levels of striatal Bdnf were significantly lower in Disc1 
LI mice starting from 3 months of age (Figure 3a). Notably, the cortical and striatal Bdnf 
mRNA levels in Disc1 LI were equivalent to those in WT (Figure 3b, Figure S5). Thus, the 

data suggest the possibility that the decreased striatal Bdnf may, at least in part, be due to 

deficient Bdnf transport from the cortex to the striatum in Disc1 LI mice. To further examine 

this possibility, we analyzed Bdnf transport in primary cortical neurons from Disc1 LI and 

WT mice. The velocity of anterograde and retrograde Bdnf transport was reduced in Disc1 
LI compared with WT and was rescued by transfection of full-length Disc1 (Figure 3c), 

consistent with previous findings that Disc1 plays a role in microtubule-dependent vesicle 

transport in axons (29, 30).

Our findings showing low striatal Bdnf levels and functional striatal deficits in Disc1 LI 

mice suggest a mechanistic link between low Bdnf levels and deficient PPI. Several mouse 

models indirectly suggest the effect of BDNF on PPI. For example, heterozygous Bdnf 
mutant mice have attenuated PPI (19). Adult offspring of maternal immune activation mice 

show reduced BDNF-TrkB signaling and PPI deficits, which are rescued with a TrkB 

agonist (31). To address the extent to which the striatal Bdnf reduction underlies PPI deficits 

in Disc1 LI mice, we supplemented Bdnf by bilateral stereotaxic injection of AAV-Bdnf to 

the striatum. Three to 4 weeks after the injection, expression of Bdnf, but not the control 

AAV, significantly rescued PPI to WT levels (Figure 3d). These data suggest that reduced 

Bdnf supply to the striatum, at least in part, underlies PPI deficits in Disc1 LI mice.

Given reduced striatal Bdnf levels in Disc1 LI mice (Figure 3a), we sought for possible 

consequences of such changes at the cellular level. Disruption of Bdnf signaling in 

striatum (Dlx5/6-cTrkBKO) early in development (embryonic day 12.5) leads to a large 

Jaaro-Peled et al. Page 7

Mol Psychiatry. Author manuscript; available in PMC 2022 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



loss (~50%) of MSNs at postnatal day 21, preferentially affecting dopamine receptor D2 

(DRD2)-positive MSNs in mice (32). In contrast, mice lacking cortical Bdnf (Emx-BdnfKO), 

which results in postnatal Bdnf ablation in forebrain, show no significant loss of MSNs 

up to 4 months of age, while exhibiting reduced soma size and spine density (30−40%) 

of MSNs at 35d of age (33). Mild loss of striatal neurons was only observed beyond 1 

year old in these mice (33). Therefore, we assessed the number, size and spine density of 

MSNs. We found no apparent loss of both DRD1+ and DRD2+ MSNs at 3, 7 and 12 months 

of age (Figure S6a), no significant change in spine density (Figure S6b), and a small but 

significant reduction in soma size in Disc1 LI mice as compared to WT (Figure S6c), which 

may in part account for the reduced striatal volume in these mice (Figure S4). Together 

the data suggest that, unlike developmental ablation of striatal BDNF signaling (32), partial 

reduction (~25%) of postnatal striatal Bdnf observed in Disc1 LI mice (Figure 3a) may not 

significantly alter cellular compositions and anatomical architecture of MSNs. Instead, the 

neurophysiological and behavioral deficits observed in Disc1 LI mice are likely caused by 

attenuated Bdnf signaling at the functional level.

Functional interplay of Disc1 and Htt in Bdnf transport and sensorimotor gating

Given the role of Disc1 in facilitating BDNF transport (Figure 3c), we further addressed 

the mechanisms regulating this process. We recently reported that Disc1 physically interacts 

with Huntingtin (Htt) at the protein level (15). Htt is a multifunctional protein causally 

linked to HD, and plays a crucial role in BDNF transport (18). We therefore tested possible 

functional interplay of Htt and Disc1 in Bdnf transport using cortical neurons in vitro. In our 

previous study showing that the amino-terminal domain of Htt (aa.1−513) interacts with the 

amino acid stretch (aa.201−228) of Disc1, we developed a Disc1 construct that specifically 

lacks the Htt-binding domain (Disc1-△201−228) while preserving other functions of Disc1 

(15). When introduced in cultured neurons prepared from Disc1 LI mice, this Htt binding-

defective mutant Disc1 facilitated Bdnf transport less efficiently than the full-length Disc1 

(Figure S7): Note the significant difference in Bdnf transport speed achieved by the full-

length Disc1 vs. the Disc1-△201−228, reflecting the contribution of Disc1−Htt association 

in Bdnf transport.

Phosphorylation of Htt serine (Ser)-421 by Akt1 is crucial for efficient Bdnf transport (34, 

35). Akt1 is a component of multi-protein complex with Disc1 (36, 37), and Akt1-deficient 

mice are also reported to have PPI deficit (38, 39), suggesting a putative role of Akt1 in 

regulating Htt−Disc1 activity along the corticostriatal circuitry, hence regulation of PPI. This 

idea was directly tested in Akt1-knockdown in PFC, showing significantly reduced PPI in 

mice (Figure S8). Because Akt1 is effectively activated by lithium in neurons (39–41), we 

next used lithium as a tool to further study the mechanisms involving Akt1, Htt and Disc1 in 

the regulation of PPI. Chronic lithium treatment (100 mg/kg, i.p., daily, 14 days) normalized 

the PPI deficits in Disc1 LI mice (Figure 4a), and knocking down cortical Bdnf expression 

abolished this rescuing effect (Figure 4b), suggesting that the PPI rescue by lithium was 

mediated by Bdnf supply from the cortex. This notion is supported by two lines of evidence: 

lithium treatment enhanced Bdnf transport in cortical neurons from Disc1 LI mice in vitro 
(Figure 4c), and it increased striatal Bdnf levels in Disc1 LI mice in vivo (Figure 4d). 

Collectively, the data suggest that the corticostriatal Bdnf transport machinery, sensitive 
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to lithium-mediated regulation, at least in part underlies the PPI-associated corticostriatal 

circuitry function.

Disturbance of phospho-Htt at Ser-421: a mechanism for Bdnf transport deficits in Disc1 LI 
mice

We further investigated a possible mechanism by which lithium augments Bdnf transport 

through Htt phosphorylation at Ser-421 in Disc1 LI mice. We first confirmed that lithium 

(Li, 2 mM in the culture media, 16h) activated Akt1 and significantly upregulated the 

phosphorylation of Htt Ser-421 in primary neurons in culture (Figure S9). Importantly, we 

observed attenuated levels of Htt Ser-421 phosphorylation in the cortices of Disc1 LI mice 

compared with WT (Figure 5a). Chronic lithium administration significantly upregulated 

levels of Htt Ser-421 phosphorylation in Disc1 LI cortices (Figure 5b). These results suggest 

that reduced phosphorylation of Htt Ser-421 may account for Bdnf transport deficits in 

Disc1 LI mice.

To address the mechanism more precisely, we next evaluated additional molecular 

components of the Bdnf transport machinery in Disc1 LI cortices in the presence or absence 

of lithium. Co-immunoprecipitation assays confirmed that some components of the Bdnf 

transport machinery (i.e., Kinesin heavy chain [Kif5], dynactin subunit p150Glued) (18) 

are less tightly associated with Htt in Disc1 LI brains compared with brains of normal 

controls (Figure 5c). Importantly, lithium treatment enhanced and normalized the interaction 

among these components (Figure 5c). Taken together, Disc1 LI (or possibly depletion of 

key isoforms of the Disc1 protein) attenuates phosphorylation of Htt Ser-421 and impairs 

Htt integration into the motor machinery, which negatively impacts Bdnf transport. Disc1 

likely mediates this integration mechanism, as Disc1 physically interacts with Htt (15), 

Kif5 (29), and p150Glued (42), all of which are components of the motor machinery 

responsible for Bdnf transport (18). This mechanism, as schematically illustrated in Figure 

5d, is consistent with the finding that Htt Ser-421 is phosphorylated by Akt1 (34, 35), a 

molecular target of lithium (40, 41). In this model, both Disc1 and lithium can facilitate Htt 

Ser-421 phosphorylation either by increasing Akt1 accessibility to the motor complex or by 

upregulating Akt1 activity, which leads to the formation of a more stable motor complex 

responsible for Bdnf transport.

Note that the behavioral deficits of Disc1 LI mice are not limited to the deficit in 

sensorimotor gating dimension. They are hypoactive in the open field and impaired in the 

rotarod test (Figure S10), similar to many HD mouse models (17). However, as far as we 

are aware, none of these behavioral deficits in other dimensions are likely to affect the PPI 

deficits. The present approach of focusing on one behavioral dimension with the Disc1 LI 

model allowed us to specifically integrate the mechanisms underlying sensorimotor gating at 

molecular, cellular and circuitry levels, demonstrating the utility of dimensional approach in 

studying the pathophysiological mechanisms across neuropsychiatric disorders.

Discussion

Here we report a key mechanism underlying PPI and sensorimotor gating at the molecular, 

cellular, circuitry and behavioral levels in an integrated manner by using a hypothesis-driven 
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dimensional approach. We provided evidence suggesting that the corticostriatal (i.e., the 

PFC→DMS) projection plays a role in eliciting normal PPI at the circuitry level and that 

the Disc1-containing motor complex, including Htt and Bdnf, in the PFC→DMS projection 

accounts for a key mechanism at the molecular level. Amelioration of the PPI deficits in the 

Disc1 LI model by lithium treatment is explained by augmentation of Bdnf transport via its 

pharmacological action on Akt1 activity and a specific phosphorylation of Htt at Ser-421. 

We propose this mechanism will provide a novel and deeper understanding of sensorimotor 

gating along with other regulatory mechanisms for PPI previously reported.

In addition to the contribution of this study to basic molecular and behavioral neuroscience, 

it may have clinical significance. Sensorimotor gating deficits are widely observed in 

neuropsychiatric conditions, including schizophrenia, bipolar disorder (in particular acutely 

manic stages) and post-traumatic stress disorder (43). Furthermore, these deficits are also 

observed in neurological conditions, such as HD (17). Sensory gating deficits likely underlie 

clinical problems in distractibility due to the impaired ability to screen out irrelevant cues, 

cognitive fragmentation, and disintegrated thought (44). The “dimensional” approach to 

address brain functions for a specific behavioral trait (e.g., sensorimotor gating or PPI in the 

present study) may encompass a much more efficient and effective strategy for discovery of 

drug targets for translation. Thus, the National Institute of Mental Health states that such a 

dimensional approach, including the Research Domain Criteria (RDoC), may be a critical 

element in psychiatry in the overall scope of “Precision Medicine” (2).

Here we propose that Bdnf transport facilitated by Disc1 and Htt serves as a mechanism 

underlying sensorimotor gating. Because Disc1 and Htt are rather ubiquitously expressed in 

the brain, one may wonder why and how these proteins play a particularly important role 

in a specific behavior (e.g., sensorimotor gating or PPI) via regulation of Bdnf transport 

in a specific neuronal projection. We attribute this specificity to the unique dependence of 

the striatum on the supply of Bdnf from the cortex. This uniqueness may emphasize the 

particular significance of this mechanism in the corticostriatal (PFC→DMS) projection 

and behavior. Based on the present data suggesting that corticostriatal Bdnf transport 

is necessary for the regulation of sensorimotor gating, several mechanisms for striatal 

Bdnf can be proposed. First, Bdnf may provide neurotrophic support for striatal neurons 

to maintain their functional maturity necessary for eliciting proper sensorimotor gating. 

Alternatively, Bdnf supply from the cortex may serve as a paracrine neuromodulatory factor 

that determines striatal neuronal firing rates, hence facilitating efficacy of downstream 

neural circuitries responsible for sensorimotor gating. The current study contributes to 

a dimensional understanding of PPI deficits observed in a range of psychiatric and 

neurological disorders beyond categorical boundaries in clinical diagnosis.

We used lithium as a pharmacological probe to address a key mechanism linking Bdnf 

transport and sensorimotor gating deficits in Disc1 LI mice. Lithium is likely to have 

multiple molecular and cellular targets. For example, although the beneficial action of 

lithium on PPI deficits has been reported in more than one rodent models from multiple 

groups, the effects of lithium appear complex and may depend on the method of modeling: 

chronic lithium treatment prevented amphetamine-induced PPI disruption, but not ketamine-

induced PPI disruption (45). Addressing the context-dependent efficacy of lithium on PPI 
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will be a future research question. Likewise, although the efficacy of lithium in treating 

patients with bipolar disorder has been well known and was also reported for patients 

with HD as case reports (46, 47), its precise mechanisms regarding molecular targets and 

circuit specificity still remain elusive (48). Currently accepted putative targets of lithium 

include inositol monophosphatase and glycogen synthase kinase-3 (48), yet we have not 

integrated these known pathways in addressing the lithium-mediated PPI rescuing effect 

in this study. In addition, calcineurin, a phosphatase, is associated with schizophrenia 

(49, 50) and negatively regulates Htt (Ser-421) phosphorylation and Bdnf transport (51, 

52); however, whether calcineurin plays a role in lithium-mediated PPI regulation remains 

to be studied. Although we acknowledge these as a potential limitation of the present 

study, further studies are warranted to address possible involvement of these known targets 

in lithium-mediated rescuing effects on BDNF transport and PPI, taking into account 

the cellular and circuit-wide functions of this compound. Of note, while some historical 

pharmacological evidence suggests a major contribution of the striatal indirect (DRD2+) 

pathway in PPI regulation (53), involvement of both the direct (DRD1+) and indirect 

pathways in PPI regulation is becoming evident (54, 55). Further studies will need to address 

the possible role of dopaminergic neurotransmission for DISC1-mediated PPI regulation. 

We believe that this will prove useful for future translational research, including clinical 

trials of lithium to improve cognitive deficits that are correlated with performance on PPI 

across multiple neuropsychiatric disorders. Given multiple molecules, circuits, and drugs 

that could variably regulate PPI, future research using a machine learning approach may 

help predict the impact of these variables on PPI and further decode the neural-behavioral 

coupling. Another important area of future investigation is the sex-dependent effect on 

BDNF transport machinery and associated behavioral/cognitive outcomes. Sex-dependent 

regulation of BDNF signaling and sex-associated vulnerability of corticolimbic circuitry 

have been suggested in several psychiatric conditions (56–58), and Disc1-mediated BDNF 

transport machinery described here may well be impacted by sex effects.

We have recently reported pathological interaction of Disc1 and Htt in mood-associated 

symptoms in HD (15): we showed a “gain-of-function” of mutant Htt proteins aberrantly 

sequestrated Disc1, resulting in altered enzymatic activity of phosphodiesterase 4 (Pde4) 

that is to be controlled by Disc1 under normal physiological conditions. In contrast, in 

the present study, we demonstrated that “loss-of-function” of Disc1/Htt interaction in the 

PFC→DMS projection leads to a distinct cellular deficit (i.e., reduced Bdnf transport), 

thereby affecting a distinct behavioral dimension (i.e., sensorimotor gating). This not only 

exemplifies multi-functional nature of both Disc1 and Htt, but also emphasizes a need 

to address each behavioral dimension based on specific molecular, cellular and circuit-

wide mechanisms, demonstrating the validity of dimensional approach in investigating the 

mechanisms underlying neuropsychiatric disorders.

Sensorimotor gating or PPI may be regulated by circuitries other than the corticostriatal 

projection in which other molecular mediators possibly participate in additional contexts. 

Our hypothesis-driven approach does not exclude this possibility. For example, a recent 

study reported the involvement of the excitatory cortical neurons along the cortico-accumbal 

(PFC->NAc) circuitry in PPI regulation, but the study did not step in the investigation at 

the molecular levels (59). The PFC->DMS circuitry we report in the present study may 
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cooperatively regulate PPI together with the PFC->NAc circuitry. Provided that BDNF 

is also transported along the PFC->NAc circuitry (20–22), Disc1-associated molecular 

mechanism may also play a role in this cascade. Elucidating all mechanisms for PPI 

is beyond the scope of the present study. Nevertheless, the central mechanism that we 

presented here at multiple levels in an integrated manner will provide novel insight into 

sensorimotor gating mechanisms in many brain disorders, such as schizophrenia and HD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The prefrontal cortex and dorsomedial striatum in sensorimotor gating.
(a) Startle (120 dB) and pre-pulse (78 dB) stimuli used for testing PPI (top). Two-second 

trace of single neuron spikes and LFP (local field potential) activity recorded in a mouse 

during the PPI test (bottom). (b) Perievent time histograms (PETH) showing examples of 

the prefrontal cortex (PFC, left) and the dorsomedial striatum (DMS, right) unit responses 

during startle and PPI trials (n = 30 per trial, data are shown in 20 ms bins). Dashed lines 

correspond to the presentation of the 78 dB stimulus (−120 ms) and the 120 dB stimulus 

(0 ms). Horizontal bars represent the 95% confidence interval for mean firing rate during 
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baseline. The percentage of neurons that responded to the startle stimulus during the startle 

and PPI trials are shown below. (c) PFC LFPs recorded during prepulse and startle trials. 

Zero millisecond (ms) corresponds to the time of presentation of the 120 dB pulse for 

both trial types. Data are shown as means ± SEM (n = 30 trials for each stimulus). (d) 
Amplitude-frequency components of the PFC (left) and DMS (right) LFP normalized to the 

mean LFP amplitudes observed during the −5 s to −1 s window prior to the presentation 

of the 120 dB pulse. (e) The prepulse significantly reduced the mean cortical (left), but not 

the DMS (right) beta response to the startle pulse (data were averaged within animals across 

8−16 LFP channels per brain area). *P < 0.05 using mixed-model ANOVA followed by 

Bonferroni-corrected Wilcoxon signed-rank test.
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Figure 2. Sensorimotor gating in Disc1 LI mice.
(a) Disc1 LI (−/−) mice show reduced PPI. WT (+/+), n = 7; Disc1 LI (−/−), n = 8. Data 

are shown as means ± SEM. *P < 0.05, **P < 0.01 (Student’s t-test). (b) Startle and 

prepulse stimuli used for testing PPI (top). A similar portion of PFC neurons modulated 

their firing rates in response to the 78 dB low amplitude stimulus in Disc1 LI mice and 

their WT littermates (P > 0.05 using Z-test). A significantly lower proportion of DMS 

neurons modulated their response to this stimulus in Disc1 LI mice compared to their WT 

littermates (*P < 0.05 using Z-test). (c) Raster plot of DMS neuron response during startle 
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and prepulse trials (top). Area under the ROC curve (AUC) demonstrating unit detection 

of gating across the stimulus interval (bottom). (d) Population AUC magnitude functions in 

WT and Disc1 LI mice (top). Differences between genotypes were identified by comparing 

AUC functions averaged within 20-ms bins using a Wilcoxon rank-sum test (bottom). The 

gray line corresponds with P = 0.05. The black line corresponds with the significance 

threshold following Bonferroni correction for multiple comparisons (n = 102 PFC neurons 

and 80 DMS neurons in WT mice; n = 108 PFC neurons and 102 DMS neurons in Disc1 
LI mice). (e) The prepulse stimulus showed no effect on the mean PFC (top) or DMS 

(bottom) response to the startle stimulus across any frequency band examined (data was 

averaged within animal across 8−16 LFP channels per brain area, n = 10). (f) Schematic of 

concurrent optogenetic stimulation and neurophysiological recordings in Disc1 LI and WT 

mice infected with AAV-CaMKII-Chr2 in PFC. (g) Sixty light pulses (10 ms pulse width) 

were delivered with a pseudorandomized inter-pulse-interval ranging between 8 s and 23 s. 

Left: Raster plot (top) and firing rate perievent time histogram (PETH) of a representative 

striatal neuron (bottom). Right: A similar proportion of PFC neurons modulated their firing 

rates in response to cortical stimulation (P > 0.05 using Z-test) in Disc1 LI mice and WT 

littermates. A significantly lower proportion of DMS neurons modulated their firing rates in 

response to cortical stimulation (right; *P < 0.05 using Z-test) in Disc1 LI mice compared to 

WT littermates.
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Figure 3. Deficits in corticostriatal Bdnf transport in Disc1 LI mice.
(a) Age-dependent reduction in striatal, but not cortical, Bdnf in Disc1 LI (−/−) mice as 

measured by ELISA. WT (+/+), n = 9−10; Disc1 LI (−/−), n = 9−10. *P < 0.05 using 

Student’s t-test. (b) No difference in Bdnf mRNA in the cortex and striatum between WT 

and Disc1 LI mice at 3 months of age (WT striatum, 1.00 ± 0.05; Disc1 LI striatum 0.97 

± 0.05; WT cortex, 59.15 ± 3.01; and Disc1 LI cortex 58.72 ± 2.90). Bdnf mRNA in WT 

striatum was assigned as “1” to which the other results were normalized. WT, n = 6; Disc1 
LI, n = 6. (c) Impaired antero-/retro-grade transport velocity in Disc1 LI primary cortical 
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neurons was rescued by overexpression of full-length Disc1 (−/−, Disc1-HA). *P < 0.05 

(Kruskal-Wallis test with Dunn’s multiple comparisons). (d) Disc1 LI mice injected with 

control AAV-mCherry showed significantly low PPI, as compared with WT mice injected 

with either AAV-mCherry or AAV-Bdnf (#P < 0.05). Injection of AAV-Bdnf significantly 

improved PPI in Disc1 LI mice (*P < 0.05, as compared with control AAV-mCherry 

injection in Disc1 LI; repeated measures two-way ANOVA followed by Bonferroni post-hoc 

tests). There were no statistically significant differences between “+/+, AAV-mCherry” 

and “−/−, AAV-Bdnf”, nor between “+/+, AAV-Bdnf” and “−/−, AAV-Bdnf” (n.s.: not 

significant). WT+AAV-mCherry, n = 10; WT+AAV-Bdnf, n = 10; Disc1 LI+AAV-mCherry, 

n = 8; Disc1 LI+AAV-Bdnf, n = 8. Data are shown as means ± SEM.
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Figure 4. Lithium-mediated augmentation of Bdnf transport can rescue PPI deficits in Disc1 LI 
mice.
(a) Lithium (Li, 100 mg/kg body weight, i.p., daily, 14 days) rescued the PPI deficits 

in Disc1 LI (−/−) mice. n = 8 per cohort. Veh, vehicle. **P < 0.01, ***P < 0.001 as 

compared with Disc1 LI cohort treated with Veh (repeated measures two-way ANOVA 

followed by Bonferroni post-hoc tests). (b) Li-mediated rescue of PPI was abolished by 

Bdnf knockdown. n = 8 per cohort. Veh, vehicle. *P < 0.05 as compared with WT (+/+) 

cohort injected with AAV-scramble and treated with Veh, #P < 0.05 as compared with 
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Disc1 LI (−/−) cohort injected with AAV-scramble and treated with Li (repeated measures 

two-way ANOVA followed by Bonferroni post-hoc tests). (c) Li (2 mM in the culture media 

30 min before imaging) rescued the antero-/retro-grade Bdnf transport speed in cultured 

primary cortical neurons prepared from Disc1 LI (−/−) mice. *P < 0.05 (Kruskal-Wallis test 

with Dunn’s multiple comparisons). (d) Li (100 mg/kg body weight, i.p., daily, 14 days) 

increased the levels of Bdnf in the striatum of Disc1 LI (−/−) mice to levels equivalent 

to WT mice. n = 8 per cohort. The injections also increased Bdnf in WT, but the effects 

were more prominent in Disc1 LI mice. **P < 0.01, ***P < 0.001 (Kruskal-Wallis test with 

Dunn’s multiple comparisons).
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Figure 5. Lithium upregulates Htt Ser-421 phosphorylation and enhances assembly of the Bdnf 
transport machinery in Disc1 LI mice.
(a) Levels of phospho-Htt Ser-421 normalized by total Htt levels in prefrontal cortex 

of Disc1 LI (−/−) mice at 3 months of age, compared to WT (+/+) mice. *P < 0.05 

(Student’s t-test). (b) Levels of phospho-Htt Ser-421 normalized by total Htt levels in 

prefrontal cortex of Disc1 LI (−/−) mice at 3 months of age after administration of Li (100 

mg/kg body weight, i.p., daily, 14 days) (+) or vehicle (−). *P < 0.05 (Student’s t-test). 

(c) Prefrontal cortical homogenates from WT (+/+) and Disc1 LI (−/−) mice, chronically 
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treated with Li (100 mg/kg body weight, i.p., daily, 14 days) (+) or with vehicle (−), were 

immunoprecipitated (IP) with anti-Htt antibody and analyzed by Western blots using the 

antibodies indicated. Equal amounts of protein extracts (100 μg/mouse) were used for each 

immunoprecipitation and lesser amounts (5−10%) of protein extracts were used as input (5 

μg for Htt and α-Tubulin, 10 μg for the rest of the proteins) in order to allow quantitative 

evaluation of the signals. Graph: Relative binding capacity between Htt and each component 

of the Bdnf transport machinery. The ratio of the densitometry of a given protein band 

divided by the densitometry of Htt in IP blots for each condition was normalized to that 

for control condition (WT without Li). The experiments were done in triplicate. Data are 

shown as means ± SEM. *P < 0.05, **P < 0.01, and ***P < 0.001 (Student’s t-test). (d) 
Schematic model for Htt-mediated BDNF transport facilitated by DISC1, Akt1 and Li. 

BDNF-containing cargo is linked to the motor machinery (kinesin and dynactin) via Htt 

adaptor protein and thereby transported along the cortico-striatal tract. DISC1 supports 

BDNF transport by facilitating the complex formation among Htt, cargo (BDNF) and 

motors, in part through augmentation of Ser-421 phosphorylation of Htt. Lithium (Li) could 

also enhance this complex formation via Ser-421 phosphorylation of Htt, possibly through 

upregulation of Akt1 activity or Akt1 recruitment.
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