
Data and text mining

Metapone: a Bioconductor package for joint pathway

testing for untargeted metabolomics data

Leqi Tian 1,2, Zhenjiang Li3, Guoxuan Ma2,4, Xiaoyue Zhang3, Ziyin Tang3,

Siheng Wang2, Jian Kang4, Donghai Liang3,* and Tianwei Yu1,2,5,*

1Shenzhen Research Institute of Big Data, Shenzhen 518712, China, 2School of Data Science, The Chinese University of Hong Kong –

Shenzhen, Shenzhen 518712, China, 3Gangarosa Department of Environmental Health, Emory University, Atlanta, GA 30322, USA,
4Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA and 5Warshel Institute, Shenzhen, Guangdong 518712, China

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on March 7, 2022; revised on May 7, 2022; editorial decision on May 20, 2022; accepted on May 25, 2022

Abstract

Motivation: Testing for pathway enrichment is an important aspect in the analysis of untargeted metabolomics
data. Due to the unique characteristics of untargeted metabolomics data, some key issues have not been fully
addressed in existing pathway testing algorithms: (i) matching uncertainty between data features and metabolites;
(ii) lacking of method to analyze positive mode and negative mode liquid chromatography–mass spectrometry (LC/
MS) data simultaneously on the same set of subjects; (iii) the incompleteness of pathways in individual software
packages.

Results: We developed an innovative R/Bioconductor package: metabolic pathway testing with positive and negative
mode data (metapone), which can perform two novel statistical tests that take matching uncertainty into consider-
ation—(i) a weighted gene set enrichment analysis-type test and (ii) a permutation-based weighted hypergeometric
test. The package is capable of combining positive- and negative-ion mode results in a single testing scheme. For
comprehensiveness, the built-in pathways were manually curated from three sources: Kyoto Encyclopedia of Genes
and Genomes, Mummichog and The Small Molecule Pathway Database.

Availability and implementation: The package is available at https://bioconductor.org/packages/devel/bioc/html/
metapone.html.

Contact: donghai.liang@emory.edu or yutianwei@cuhk.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Untargeted metabolomics, which measures of abundance of small
molecules in an unbiased manner, is gaining wider applications in
biomedical research (Jacob et al., 2019). Pathway testing is a critical
step in data interpretation for untargeted metabolomics data. Many
works have been done on metabolic pathway testing, but there is no
consensus on the best approach (Karnovsky and Li, 2020). The cur-
rent leading methods, e.g. Mummichog and MetaboAnalyst (Chong
et al., 2018; Li et al., 2013), use incomplete pathway information.
More importantly, pathway testing is hampered by matching uncer-
tainty between extracted features from LC/MS data and known
metabolites, as possible correspondences are largely identified by
comparison of feature m/z values and the theoretical m/z values of
common adduct ions of known metabolites, and many metabolites
share the same molecular composition. Furthermore, when multiple
adduct ions are considered, the issue becomes more complicated.

Although efforts were made to annotate LC/MS data features to
known metabolites in a more reliable manner, currently the majority
of features are matched with uncertainty, i.e. a feature could poten-
tially be derived from multiple metabolites (Chaleckis et al., 2019;
Kuhl et al., 2012; Uppal et al., 2017). This uncertainty heavily
impacts pathway testing, as in many cases, we cannot be sure a
differentially abundant feature is truly derived from a certain
pathway.

Some methods use extra information in pathway testing, such as
methods for longitudinal metabolomics data (Ebrahimpoor et al.,
2021), matching features to metabolites by utilizing the similarity of
MS2 in reaction-paired neighborhood (Shen et al., 2019), and com-
bining feature matching with predictive modeling (Cai et al., 2017).
However, for untargeted data collected using the most common
case–control study design, such methods are not suitable. And since
not all matched metabolites can be found in the known metabolic
network, some information may be lost when using network-based
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methods. Therefore, a method that can be widely used with relative-
ly complete pathway information is urgently needed.

In this work, we developed an R/Bioconductor package named
‘Metapone’. It facilitates pathway testing by making improvements
in three areas:

1. We developed two novel tests to address the matching uncer-

tainty issue. The first follows the concept of gene set enrichment

analysis (GSEA) (Subramanian et al., 2005), but uses weighted

features or metabolites based on multiple-matching status. The

second is a permutation-based weighted hypergeometric test

which also accounts for matching uncertainty.

2. We compiled pathways from three established database sources

by computationally removing (partial) overlaps—Kyoto

Encyclopedia of Genes and Genomes (KEGG) (Ogata et al.,

1998), Mummichog (Li et al., 2013) and The Small Molecule

Pathway Database (SMPDB) (Frolkis et al., 2010).

3. Metapone can jointly analyze positive- and negative-ion mode

data produced in the same study, which can help avoid double

counting and to generate a more integrated and comprehensive

view of metabolic perturbations.

2 Materials and methods

2.1 Combining pathways from different databases
All metabolites were mapped using the human metabolome data-

base (HMDB) IDs. We first collected all pathways from the three
established sources. Then between any pair of pathways, if the num-
ber of overlapping metabolites is � 75% of the size of both path-
ways, we removed the pathway with smaller number of metabolites.
A total of 372 pathways were included in the Metapone package.

2.2 Testing procedures
Metapone can use data from a single-ion mode, and it can also han-
dle the case of jointly testing both positive- and negative-ion mode
data. In the joint analysis scenario, data from the two ion modes are
first individually mapped to HMDB metabolites based on the listed
of allowed adduct ions, which the user can select. We then combine
the feature-metabolite matching from both modes in the pathway
testing. Metapone allows two approaches for pathway testing.

(1) Weighted GSEA test.
This is a modified GSEA-type test based on Fast Gene Set
Enrichment Analysis (fgsea) approach (Korotkevich et al., 2021),
using weighted features/metabolites. The features are denoted as
f1; f2; . . . ; fM, the metabolites as m1;m2; . . . ; mK, the potential
matching between features and metabolites as A 2 R

M�K, where
Aij ¼ 1 if there is potential matching between fi and mj, and 0 other-
wise. For feature i, we define the feature weight as:

wi ¼ 1= min

XK

j¼1

Aij; b
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where b is a cap of the number of matchings to a feature to limit the
penalty, and d is the power term which tunes the penalty on multiple
matching. The recommended range for parameter d is between 0 and
1, with a default value of 0.5. The higher the value of d, the higher the
penalty on multiply matched features. Users can adjust the parameters
according to the scope of matchings and specific task requirements.

We then take steps to limit the total contribution of a single fea-
ture/metabolite. If a feature is connected to too many metabolites such
that wi

Pk
t¼1 Ait > 2, we limit its total contribution by replacing wi

with 2=
Pk

t¼1 Ait. And if the total weight of a metabolite’s matched
features is larger than 1, we divide each of the weights by the square-
root of the total weight. The procedure avoids the weights of single
metabolites being too large and dominating the pathway test.

For GSEA calculation, the feature importance is defined as the
weighted negative log P-value:

impðfiÞ ¼ �logðpiÞ �wi:

For metabolites j, we define its importance as the sum of the im-
portance of its associated features:

impðmjÞ ¼
X

i: Aij¼1

impðfiÞ:

In combination with pathway assignments, the importance
scores of metabolites are used in fgsea. Alternatively, the testing can
be conducted using fgsea with respect to features, with the relevant
pathways for each feature being determined by the pathways of its
matched metabolites.

(2) Permutation-based weighted hypergeometric test.
The procedure is similar to the regular hypergeometric test of gene
sets in GOstats (Falcon and Gentleman, 2007). The difference is we
factor the matching uncertainty into the test statistics by using wi as
the fractional counts of feature i. For each pathway, we first find the
total fractional counts of significant features assigned to pathway k:

Ck ¼
X

i: fi 2 Uk

wi � Iðpi � dÞ;

where Uk denotes the collection of features associated with pathway
k through their matched metabolites, d denotes the P-value thresh-
old, and IðÞ is the identity function. To assign pathway significance,
we use a permutation test. In the nth permutation, we permute the
original feature P-values, and calculate the total fractional counts of
significant features C

ðnÞ
k . After N permutations, we assign the path-

way P-value by
PN

n¼1 IðCk � C
ðnÞ
k Þ=N.

Following either testing procedure, the pathway-level P-values
are then transformed to local false discovery rate and cumulative
false discovery rate (Strimmer, 2008). The output contains a table of
pathway testing results and a list of the mapped significant features
in each pathway.

3 Example analysis using metapone

As an illustration, we performed metapone analysis on data from
the Metabolome Atlas of the Aging Mouse Brain (ST001888) data-
set downloaded from the Metabolomics Workbench (https://www.
metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=
Study&StudyID=ST001888). The F-test results of metabolites be-
tween prime-age and aging mice were used. Using weighted hyper-
geometric test with 2000 permutations and parameters b, d set to 10
and 0.5, we obtained 9 pathways with P-value � 0:05 and the
weighted number of significant metabolites � 1:5 (Fig. 1a). The ma-
jority of the selected pathways were associated important lipid spe-
cies in the brain. The remaining pathways include retinol
metabolism, which is known to be critical to the nervous system de-
velopment, and pentose glucuronate interconversions, which was
linked to Alzheimer’s disease in gene expression analysis (Chen
et al., 2016). We also conducted pathway testing using only positive-
(Fig. 1b) or negative- (Fig. 1c) ion mode data, using the same criteria
with P-value � 0:05 and the weighted number of significant metab-
olites � 1:5. Less significant pathways were found by comparing
both ion modes. Similar results using weighted GSEA test are shown
in Supplementary Figure S1. Therefore, the results indicate analyz-
ing both ion modes data together yields higher power than analyzing
individual ion mode data separately.

For comparison, we conducted testing using Mummichog and
MetaboAnalyst with both ion modes data, through the webserver of
MetaboAnalyst 5.0. Only four and three pathways were found with
P-value � 0:05; respectively (Supplementary Figs S2 and S3).
Unlike Metapone, Mummichog mostly found core amino acid me-
tabolism pathways (Supplementary Fig. S4). The results indicated
the benefit of using more complete pathway information.
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Metapone requires the setting of a few parameters. To assess the
robustness of the model against parameter settings, we conducted a
series of weighted GSEA tests with 2000 permutations using differ-
ent parameters, i.e. 5, 10, 20 for b, and 0.25, 0.50, 1.00 for d. The
Pearson correlation coefficients of the estimated pathway P-values
are in the range of 0.94 to 1 (Fig. 2).

Overall, metapone can analyze positive- and negative-ion mode
data simultaneously and test against a comprehensive list of pathways,
yielding rich functional results for untargeted metabolomics studies.
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Fig 1. Example weighted hypergeometric testing result on the ST001888 dataset.

(a) 2D plot of significant pathways using both positive- and negative-ion mode data.

(b) and (c) are results using positive- or negative-ion mode data, respectively

Fig 2. Heatmap of the correlation of pathway P-values with different model parame-

ters on ST001888 dataset
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