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Abstract

Summary: Diversity of the T-cell receptor (TCR) repertoire is central to adaptive immunity. The TCR is composed of
a and b chains, encoded by the TRA and TRB genes, of which the variable regions determine antigen specificity. To
generate novel biological insights into the complex functioning of immune cells, combined capture of variable
regions and single-cell transcriptomes provides a compelling approach. Recent developments enable the enrich-
ment of TRA and TRB variable regions from widely used technologies for 30-based single-cell RNA-sequencing
(scRNA-seq). However, a comprehensive computational pipeline to process TCR-enriched data from 30 scRNA-seq is
not available. Here, we present an analysis pipeline to process TCR variable regions enriched from 30 scRNA-seq
cDNA. The tool reports TRA and TRB nucleotide and amino acid sequences linked to cell barcodes, enabling the re-
construction of T-cell clonotypes with associated transcriptomes. We demonstrate the software using peripheral
blood mononuclear cells from a healthy donor and detect TCR sequences in a high proportion of single T cells.
Detection of TCR sequences is low in non-T-cell populations, demonstrating specificity. Finally, we show that TCR
clones are larger in CD8 Memory T cells than in other T-cell types, indicating an association between T-cell clono-
types and differentiation states.

Availability and implementation: The Workflow for Association of T-cell receptors from 30 single-cell RNA-seq
(WAT3R), including test data, is available on GitHub (https://github.com/mainciburu/WAT3R), Docker Hub (https://
hub.docker.com/r/mainciburu/wat3r) and a workflow on the Terra platform (https://app.terra.bio). The test dataset is
available on GEO (accession number GSE195956).

Contact: pvangalen@bwh.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

During T-cell development, a series of recombinations shape the a
and b chains that comprise the T-cell receptor (TCR), giving rise to
1015–1021 potential TCRs (La Gruta et al., 2018). The recombina-
tions occur in the variable regions of the TRA and TRB genes that
encode the TCR a/b chains. TRA and TRB determine T-cell specifi-
city by shaping TCR recognition of antigens presented by major
histocompatibility complex molecules. The recombined sequences
can also be used to track T-cell clonotypes. With the advent of
single-cell sequencing technologies, simultaneous capture of TRA

and TRB sequences combined with transcriptional states provides a
powerful approach to studying T-cell biology (Ginhoux et al.,
2022).

Several protocols have been developed to combine single-cell
RNA-sequencing (scRNA-seq) and TCR sequencing, using cell barc-
odes to integrate both layers of information. Low-throughput sin-
gle-cell methods with full-length transcript coverage allow for the
recovery of complete TRA and TRB transcripts (Sade-Feldman
et al., 2018; Stubbington et al., 2016). Current high-throughput
scRNA-seq assays generate sequencing data that are biased toward
either the 50 or the 30 end of transcripts. The 10� Genomics 50
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scRNA-seq platform provides some coverage of the TCR variable
region that can be reconstructed using TRUST4 or, alternatively,
further enriched using 10� Genomics TCR amplification (Lowery
et al., 2022; Oliveira et al., 2021; Song et al., 2021). In contrast, 30

scRNA-seq platforms provide poor coverage of the TCR variable re-
gion, although this too can be improved with specific TCR amplifi-
cation (Oh et al., 2020; Singh et al., 2019; Tu et al., 2019). For TCR
enrichment from the 10� Genomics 30 scRNA-seq platform, we re-
cently established the T-cell Receptor Enrichment to linK clonotypes
(TREK-seq) protocol (Supplementary Fig. S1; DePasquale et al.,
2022; Miller et al., 2022). There is a need for bioinformatics tools
that facilitate the analysis of TCR variable regions enriched from 30

scRNA-seq. Here, we describe WAT3R (pronounced ‘water’), an
integrated pipeline that covers TCR-enriched data from preprocess-
ing FASTQ files to alignment and the identification of T-cell clones.

2 Description

Sequencing data are provided as two compressed FASTQ files, in ac-
cordance with the TREK-seq protocol (DePasquale et al., 2022;
Miller et al., 2022). One contains the cell barcode and unique mo-
lecular identifier (UMI) sequences and the other contains the TCR
sequence. First, files are reformatted to join the barcode, UMI and

corresponding TCR sequence in a single FASTQ. Next, the user can
specify whether barcode and UMI correction should be performed.
Barcode correction allows for one mismatch with barcodes in the
10� Single Cell 30 v3 list (or a custom list provided by the user).
UMI correction is performed by clustering together UMIs with one
mismatch and considering the most abundant UMI as the correct
one. Every barcode and UMI sequence are then added to the corre-
sponding FASTQ read header, to be used as an identifier. Next, we
apply a quality filter to remove every read with an average quality
score lower than indicated (default is q score <25, Fig. 1, top left).
To account for barcode swapping (i.e. incorrect barcode assigning),
TCR sequences with an identical barcode and UMI are subjected to
clustering based on sequence similarity, using the USEARCH algo-
rithm (Edgar, 2010). The identity threshold to measure similarity
can be set by the user (default is 0.9). To reduce the impact of tech-
nical artifacts such as barcode swapping (Griffiths et al., 2018), only
TCR sequences are kept if the most abundant cluster represents a
large proportion of the reads (default is 0.5) and is substantially
larger than the second most abundant cluster (default ratio is 2.0;
Fig. 1, top right).

Next, a consensus sequence is built for each of the clusters
(Heiden et al., 2014). For a consensus to be constructed, we require
a minimum of three reads and allow for a maximum error rate of

Fig. 1. Overview of WAT3R. The workflow starts by merging two FASTQ files, correction of cell barcodes and UMIs and quality filtering (top left). Clustering of TCR sequen-

ces with identical barcode and UMI is then performed. Top right dot plot shows evaluation of cluster quality by comparing the proportion of reads supporting the most abun-

dant cluster (x-axis), the ratio of the most abundant cluster to the second (y-axis) and the number of reads supporting each TCR sequence with a specific barcode and UMI

(color). Bottom left: TCR consensus sequences are generated and used for V(D)J alignment. In downstream analysis, results are integrated with a paired scRNA-seq dataset.

Bottom right bar plot shows the proportion of cells in the dataset, separated by cell type, for which WAT3R returned information on the TRA gene, TRB gene or both. (A color

version of this figure appears in the online version of this article.)
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0.5 and a gap frequency of 0.5 per position; these parameters can be
changed by the user (Fig. 1, bottom left). Consensus sequences are
aligned to the V(D)J segments reference provided by IMGT, using
IgBLAST with the default parameters (Lefranc et al., 2015; Ye et al.,
2013). This task is performed through the interface implemented in
the Python package Change-O (Gupta et al., 2015). After selecting
TRA and TRB sequences with the highest UMI counts, the CDR3
nucleotide/amino acid sequences and V(D)J calls are assigned to cell
barcodes and saved in a results table.

As an optional step, the user can provide a file with cell barcodes
and annotations coming from a paired scRNA-seq experiment to in-
tegrate with the TRA and TRB calls (Fig. 1, bottom right). Overall,
this pipeline returns two tables of results, one at the transcript level
and the other at the cell level. In addition, multiple quality control
(QC) graphs and metrics are generated. WAT3R, together with the
required software, reference data and documentation are available
as a docker image. It is also available as a workflow on Terra, which
provides access to Google Cloud computing resources through a
simple web-based user interface.

3 Results

We analyzed a human peripheral blood sample using 10� Genomics
30 v3 scRNA-seq and TREK-seq to enrich TRA and TRB variable
regions (Miller et al., 2022). The TREK-seq library was sequenced
on a MiSeq to a depth of 8 million reads, and WAT3R took 5–8 h to
run given moderate resources (Supplementary Table S1). After
recovering 4.3% of the cell barcodes using the barcode correction al-
gorithm, 98.3% of reads contained valid barcodes (Supplementary
Fig. S2). Likewise, 4.9% of the UMI sequences were corrected.
Reads were filtered for an average q score above 25, which retained
92.3% of the original reads. For consensus building and subsequent
alignment, 70.4% of the reads were valid. After the removal of TCR
sequence clusters below the proportion and ratio thresholds, 65.8%
of the original reads were retained. The results were stable with dif-
ferent parameters (Supplementary Table S2). WAT3R generates a
results table with TCR nucleotide and amino acid sequences, allele
information and quality metrics (Supplementary Table S3).

We integrated these results with the paired 30 scRNA-seq dataset
with cell-type annotations based on canonical marker genes
(Supplementary Fig. S3; Hao et al., 2021). We detected TRA or
TRB sequences in 90% of all T cells, which is similar to alternative
protocols (Supplementary Fig. S4; DePasquale et al., 2022; Lowery
et al., 2022; Oh et al., 2020; Oliveira et al., 2021; Tu et al., 2019).
In contrast, TRA or TRB sequences are present in only 3% of non-T
cells, which was partially explained by artifacts in the cDNA library
(Supplementary Fig. S5). Specificity was further confirmed by run-
ning WAT3R on OT-I mouse T cells, which express transgenic Tcra
and Tcrb genes (Supplementary Fig. S6; Blüthmann et al., 1988; Gu
et al., 2014; Tu et al., 2019). The TRB variable region is most effi-
ciently enriched: in the peripheral blood mononuclear cells, TRA
sequences are detected in 65% of single T cells, TRB in 77% and
TRAþTRB in 52% (Fig. 1, bottom right). As expected in a healthy
individual, we did not observe any expanded T-cell clones dominat-
ing the sample. Nonetheless, the largest detected clones belong
mainly to CD8 Memory T-cell subsets, in accordance with previous
findings (Supplementary Fig. S7; DePasquale et al., 2022; Penter
et al., 2021).

4 Conclusions

WAT3R is a comprehensive pipeline for the analysis of TRA and
TRB variable regions enriched from the cDNA of widely used 30

scRNA-seq protocols. In combination with the TREK-seq protocol,
this enables TCR recovery that rivals the 10� 50 immune profiling
platform (Supplementary Fig. S4). From sequencing error correc-
tion, alignment and QCs to intersection with cell-type annotations
from scRNA-seq, this tool applies state-of-the-art algorithms to reli-
ably detect T-cell clonotypes and initiate new discoveries in
immunology.
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