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Abstract

Summary: Mutation is the key for a variant of concern (VOC) to overcome selective pressures, but this process is still
unclear. Understanding the association of the mutational process with VOCs is an unmet need. Motivation: Here, we
developed VOC-alarm, a method to predict VOCs and their caused COVID surges, using mutations of about 5.7 million
SARS-CoV-2 complete sequences. We found that VOCs rely on lineage-level entropy value of mutation numbers to
compete with other variants, suggestive of the importance of population-level mutations in the virus evolution. Thus,
we hypothesized that VOCs are a result of a mutational process across the globe. Results: Analyzing the mutations
from January 2020 to December 2021, we simulated the mutational process by estimating the pace of evolution, and
thus divided the time period, January 2020—March 2022, into eight stages. We predicted Alpha, Delta, Delta Plus
(AY.4.2) and Omicron (B.1.1.529) by their mutational entropy values in the Stages I, III, V and VII with accelerated
paces, respectively. In late November 2021, VOC-alarm alerted that Omicron strongly competed with Delta and Delta
plus to become a highly transmissible variant. Using simulated data, VOC-alarm also predicted that Omicron could
lead to another COVID surge from January 2022 to March 2022.

Availability and implementation: Our software implementation is available at https://github.com/guangxujin/
VOC-alarm.

Contact: gjin@wakehealth.edu or ylu2@houstonmethodist.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

To track the mutations in the SARS-CoV-2 variants, genomic sur-
veillance has been made by the Global Initiative on Sharing All
Influenza Data (GISAID) (Elbe and Buckland-Merrett, 2017),
Nextstrain (McBroome et al., 2021) and Phylogenetic Assignment
of Named Global Outbreak (Pango) (Graham, 2020). To better de-
scribe the variants of potential global health significance, the World
Health Organization (WHO) has established an international sur-
veillance system to designate variants into different categories, like
variant of concern (VOC) (Sheikh et al., 2021; Sonabend et al.,

2021; Wang et al., 2021) or variant of interest (VOI) (Chakraborty
et al., 2021; Thompson et al., 2021; Wang et al., 2021). The VOCs,
including Alpha (Zhang et al., 2020), Beta (Hung et al., 2020),
Gamma (Collier et al., 2021) and Delta (Del Rio et al., 2021), have
shown increased transmissibility and disease severity. On November
26, 2021, the WHO designated the variant B.1.1.529 as another
VOC, named Omicron (Chen et al., 2021). The transmissibility and
caused disease severity of Omicron remained unclear.

Genomic surveillance provided valuable genomic mutation infor-
mation to further understand these VOCs (Saito et al., 2021). Great
efforts have been made to construct models, which aimed to
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understand the transmissibility of SARS-CoV-2 (Davies et al., 2021;
Dhar et al., 2021; Jentsch et al., 2021) and the SARS-CoV-2 pan-
demic (Davies et al., 2021; Dhar et al., 2021; Kontis et al., 2020;
Narykov et al., 2021; Sonabend et al., 2021). However, due to the
complexity of the mutation data, including lineages, clades and
related geographical locations, understanding how the mutations
determined the VOCs and how the VOCs could compete with other
variants has been difficult. To fully make advantage of the valuable
mutation information, we must find out whether the mutational
process of a VOC has been driven by a force from selective pres-
sures, which were caused by diagnostic approaches, treatments and/
or vaccines (Choi et al., 2021; Collier et al., 2021; Lopez Bernal
et al., 2021; Payne et al., 2021; Sheikh et al., 2021; Wilder-Smith
and Mulholland, 2021).

It remains unclear that how the mutations determined VOCs.
Here, we developed a novel computational method, VOC-alarm, to
address the association of the increased mutations with VOCs and
their caused COVID surges. Our findings confirmed that Omicron
variant would be a new VOC, however, it is still in its early stage in
which it has been competing with Delta and Delta plus variants,
which might continue into January 2022. The Omicron’s caused
surge would follow the current one related to Delta and Delta plus
and will reach its peak no later than March 2022.

2 Results

2.1 Competition among variants sponsored by speed-

up mutation led to VOCs
To simulate the force that has driven VOCs and understand how
mutation could determine VOCs, we identified the changes in the
pace of evolution by mutations. We first analyzed the mutation in-
formation from GISAID (Elbe and Buckland-Merrett, 2017), includ-
ing 91 382 343 whole-genome mutations from 3 816 807 complete
SARS-CoV-2 sequences, as of September 28, 2021 (Supplementary
Table S1). Despite classified lineages or clades defined by GISAID
(Elbe and Buckland-Merrett, 2017), Nextstrain (McBroome et al.,
2021) and Pango (Graham, 2020), as well as the diverse geographic-
al locations included in the mutation information, current VOCs
have not been dominated by any known lineages and their emer-
gence processes have not been restricted within certain geographic
locations. To fully make use of the complex mutation information
and understand its association with VOCs, we must reconsider the
mutational process of the virus as a global behavior that was not
limited by known lineages and clades so that we could predict any
emerging lineage in an unexpected geographical region. To accom-
plish this goal, we estimated the mutation rate across the globe by a
spatiotemporal genomic variation (SGV) index (Section 4,
Supplementary Fig. S1 and Supplementary Table S2) and its weekly
change rate as the pace of evolution (Fig. 1A).

SGV, calculated as an average mutation number per genome se-
quence across the globe, showed a continuous increase. It increased to
30 by end September 2021 (Supplementary Table S3 and
Supplementary Fig. S2), suggesting that the mutation rate was �5
mutations/100days. Moreover, the increased rate periodically
changed between 6% and 11% (Fig. 1A, top, Supplementary Table
S4), which separated the time period from January 1, 2020 to
September 28, 2021 into Stages I–V. Remarkably, Stages I and III
with accelerated mutation speeds included a small number of Alpha/
B.1.1.7 variants (Chemaitelly et al., 2021; Payne et al., 2021;
Washington et al., 2021) (Fig. 1B and C, Supplementary Fig. S3 and
Supplementary Tables S5 and S6) and Delta variants [including AY.4
and B.1.617.2 lineages (Celik and Tallei, 2022; Lopez Bernal et al.,
2021; Pung et al., 2021; Sonabend et al., 2021)] (Fig. 1B, right,
Supplementary Fig. S4 and Supplementary Table S7). Despite the tiny
populations, strong competitions have been observed for the collected
sequences of Alpha and Delta variants (Fig. 1A, lower). To clarify the
competition sponsored by speed-up mutations, we simulated the
adaptiveness to selective pressures (Choi et al., 2021; Collier et al.,
2021; Lopez Bernal et al., 2021; Payne et al., 2021; Sheikh et al.,
2021; Wilder-Smith and Mulholland, 2021) by the mutational

entropy concept (Fan et al., 2021, 2022; Fariselli et al., 2021;
Mukherjee et al., 2013) (Section 4). Of five candidate lineages with
population growths and significantly high mutation numbers (Fig. 1A,
lower left, Supplementary Fig. S5 and Supplementary Table S8), lin-
eage B.1.1.7 showed the highest mutational entropy (Fig. 1A, lower
left and Supplementary Figs S5 and S6). To illustrate the difference
among mutational entropy, mutation number and population growth
rate, we tested whether mutation number or population growth rate
could identify the VOC in Stage I. However, lineage B.1.1.7 only
ranked at top by mutational entropy but not mutation number and
population growth rate (Supplementary Fig. S7). This suggested that
mutational entropy described the competition among the variants best
based on the adaptiveness to selective pressures. Similarly, of the 13
lineages with population growths and significantly high mutation
numbers, identified from Stage III, we ranked the lineages AY.4 and
B.1.617.2 at top by mutational entropy values (Fig. 1A, lower middle,
Supplementary Fig. S8 and Supplementary Table S9). Thus, we identi-
fied Alpha and Delta variants by their competitions with other var-
iants in Stages I and III. To better describe the competitive capabilities
by mutational entropy, we used the mutational entropy value of lin-
eage B.1.1 in Stage I as the threshold for identifying lineages as VOCs.

Unexpectedly, Stage V also showed an accelerated pace of evolution,
which predicted the essential role of AY.4 variant in October 2021
(Fig. 1A, lower right, Supplementary Fig. S9 and Supplementary Table
S10). In contrast, Stages II and IV with the decelerated paces were
related to the COVID surges caused by Alpha and Delta variants. These
two stages included the dates of the official designation for Alpha and
Delta variants by the WHO (Supplementary Table S11). Strikingly,
Stage V with the accelerated mutation speed generated a new generation
of Delta variant, Delta plus (AY.4.2 sublineage) (Angeletti et al., 2021),
evolved from AY.4 lineage and emerged in October 2021.

2.2 Competition-driven prevalence change
Consistent with the ranking of lineages by mutational entropy, AY.4
variant (Delta) in Stage V with the highest mutational entropy

Fig. 1. Determining VOCs from their competitions with other variants.

(A) Competition among variants sponsored by speed-up mutation led to VOCs.

Top: mutation changes classified the time period from January 2020 to September

2021 into Stages I–V, dash lines: peaks or valleys. Shown is the weekly mutation

number change rate per genome across the globe, which is used to evaluate the pace

of evolution (Section 4). Below: the competitions among variants in Stages I, III and

V sponsored by speedy-mutation changes. The competition was evaluated by the

mutational entropy value of the mutation numbers of the genomes form each lin-

eage (left), which simulated the adaptiveness of a variant to the selective pressures.

The growth rate of each variant in each stage was shown by the sequence numbers

of the late and early periods of each stage, i.e. early and late stages (middle) and

their ratio (right). (B) Numbers of Alpha sequences in Stages I and II (left) and those

of Delta sequences in Stages III and IV (right). (C) Stream plot of the proportions of

the GISAID clades across Stages I–V. Shown is the percentage of the sequences col-

lected on a specific date for a specific clade
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showed a significant prevalence increase in October 2021, whereas
B.1.1.7 (Alpha) and B.1.617.2 (Delta) variants showed a decrease
trend (Fig. 2A–C). The VOC (AY.4) showed a 12% accumulative
prevalence worldwide and about 40% prevalence in the sequences
collected from the UK in October and early November
(Supplementary Fig. S10). Distinctly, B.1.1.7 and B.1.167.2 did not
continue their increased prevalence trends in the worldwide GISAID
sequences (Fig. 2A and B and Supplementary Figs S11 and S12).
These results indicated that the competition sponsored by mutation
could lead to the population change of the VOCs.

We observed not only inter-lineage but also intra-lineage com-
petitions. Analyzing the mutational entropy values of AY.4 subli-
neages in October 2021, we found that both AY.4.2, which was also
called Delta plus, and AY.4.2.1 sublineages emerged as VOCs
(Fig. 2D). AY.4.2 variant was suspected to be a potential VOC
(Arora et al., 2022; Saunders et al., 2022), which has two character-
istic amino acid mutations in the Spike protein, Y145H (Aljindan
et al., 2021) and A222V (Kannan et al., 2021), closely monitored by
the WHO and the CDC in late October. This finding confirmed our
prediction in Stage V (as of September 2021), regarding the import-
ant role of lineage AY.4 in the future pandemic. Interestingly,
AY.4.2 and AY.4.2.1 variants displayed a strong increase in preva-
lence in October (Fig. 2E–G), compared to AY.4 variant.

Further analysis of the sequences of AY.4.2 across the globe
found a significant mutation number increase in October 2021
(Fig. 3A), reaching to 100. AY.4.2 has been found in 45 countries
from different continents (Fig. 3B–D), which led to an increase in
cases or deaths in October and November 2021 in these countries
(Fig. 3E–G). These results indicated that competition among var-
iants could lead to the variant population change and COVID surge.

2.3 Omicron emerged as the only variant that could

compete with Delta in November
Unexpectedly, following the emergence of Delta plus, VOC-alarm
identified another stage (VII) with an accelerated pace of evolution
and predicted the B.1.1.529 variant as the first lineage that showed
a relatively high mutational entropy except of the known VOCs
(Fig. 4A–C, Supplementary Fig. S13 and Supplementary Table S12).
This result suggested that B.1.1.529 has the potential to be next
VOC. As of December 7, 2021, 12 of 21 Delta variants took part in
the competitive process in Stage VII, in which AY.4, AY.4.2, AY.34,
AY.120, AY.4.2.1 and B.1.617.2 increased their total prevalence
from <25% in August 2020 to >50% (Fig. 4D). Remarkably, des-
pite a small population, B.1.1.529 variant had increased its preva-
lence from 0.0035% on November 8, 2021 to 0.6% on November
26, 2021 (Fig. 4E and Supplementary Fig. S14). Of note, the speedy-
mutating and fast-growing variant, B.1.1.529, was still in its early
stage, requiring more time to develop into a VOC.

2.4 Future trend of the virus evolution
To figure out how long Omicron might take to complete its com-
petition with other variants, we used the estimated pace of evo-
lution data to simulate the future evolution of the virus. The
regression on the pace of the evolution suggested that the select-
ive process determined by the competition between Omicron
and Delta/Delta plus would continue to January 2022, i.e. the
end of simulated Stage VII, and its caused COVID surge would
happen between January and March 2022, i.e. within the simu-
lated Stage VIII (Fig. 5A). The total days for the competition be-
tween Omicron and Delta/Delta plus might take about 90 days

Fig. 2. Competition-driven sequence prevalence change. The prevalence lineplots of the mutations of the VOCs by months. B.1.1.7 (A), B.1.617.2 (B) and AY.4 (C). Color:

scaled sequence prevalence. Columns: Marker mutations for the VOC definitions. The top 50 amino acid mutations sorted by sequence prevalence were shown

in Supplementary Figure S12. (D). Mutational entropy values for AY.4 sublineages in October 2021. (E) Sequence counts for the AY.4 sublineages as of November 18, 2021.

(F and G) The prevalence heatmaps of the mutations of AY.4.2 (F) and AY.4.2.1 (G) by months. Color: scaled sequence prevalence

Fig. 3. Mutation number, geographical distribution, and associated COVID surges

of AY.4.2 variant. (A) Scatter plot of AY.4.2 variants by their mutation numbers

and collected dates. Color: the continent in which the sequence was collected. (B–D)

Distribution of AY.4.2 variants in the worldwide (B), UK (C) and USA (D). Color:

the country in which the sequence was collected. (E and F) Cases and deaths surges

in different regions of the UK (E) and USA (F). Color: rolling 7-day average numbers

of new cases (top) and new deaths (lower). (G) COVID surges in the countries in

which AY.4.2 sequence was found in October or November 2021
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and that for its global outbreak might take about 50 days
(Fig. 5B).

We compared the paces of the evolution that caused the speedy
mutation of the VOCs in Stages I, III, V and VII (predicted for
Omicron). From Alpha to Delta, the pace of evolution was signifi-
cantly decreased (Fig. 5C, P<0.0001, Student’s t-test), which might
be related to the fast rollouts of vaccines in late 2020 and early
2021. However, from Delta to Delta plus and Omicron, the pace of
evolution has been significantly increased (Fig. 5C, P<0.001,
Student’s t-test). This might be associated with the adaptiveness of
the new VOCs to the selective pressures caused by vaccines. As an
instance, the first case in California, USA, infected by Omicron was
fully vaccinated (Chen et al., 2021), which suggested that Omicron
might gain the adaptiveness to existing vaccines. Our results sup-
ported that Omicron might be a highly transmissible variant with
high adaptiveness to vaccines, which may cause a new COVID surge
earlier than March 10, 2022.

3 Discussion

Understanding the association between mutation and VOCs is ur-
gently needed. A major breakthrough in this work is to simulate the
competition among variants by mutation to answer questions
related to VOCs: which lineage and when it will become a VOC and
what likes its caused COVID surge.

We noticed that VOCs tend to grow from a small or even tiny
population. In particular, Alpha, Delta and Omicron, remained a
small number of sequences in Stages I, III and VII during they
emerged. Remaining a small population should be more convenient
for a VOC to become adaptive to the new selective pressures. As an
evidence, we found that along with the emergence of VOCs, the pre-
cedent lineages decreased their population sizes. The B.1.1.7 prece-
dent variants in GR clade and those of B.1.617.2 (Lopez Bernal
et al., 2021; Pung et al., 2021; Sonabend et al., 2021) in G clade sig-
nificantly decreased their populations after lineages B.1.1.7 and
B.1.617.2 emerged (Supplementary Fig. S15). These results sug-
gested that speedy-mutation sponsored competition among variants
could lead to prevalence change no matter how small the population
size of the emerged VOCs was. In this work, we used the clades that
showed most significant decrease in prevalence to identify VOCs.
Similarly, we could identify Beta variant (B.1.351, Supplementary
Fig. S16) from the clades with less statistical significance, which gen-
erally showed lower mutational entropy values. Since both Beta and
Gamma (P.1, Fig. 1A) illustrated lower mutational entropy values,
we did not designate them as VOCs in our alarming system.

Mutational entropy concept plus our defined stages displayed its
power in predicting VOCs. In this article, we used 4.25, i.e. the mu-
tational entropy value of lineage B.1.1 in Stage I, as the threshold to
predict VOCs, which could be also applied to predict future VOCs.
The mutational entropy, distinct from mutation number and popu-
lation growth rate, was useful to identify the VOCs. Our defined
mutational entropy was a metric to fully make advantage of the mu-
tation information of the sequences from distinct lineages, different
clades and various geographical regions. Development of mutational
entropy concept for predicting VOCs was based on our novel mod-
eling of the virus mutation as a global behavior. These modeling
advances distinguished VOC-alarm from existing methods using
genomic surveillance by phylogenetic clustering or those based on
marker mutations (Ascoli, 2021; Harvey et al., 2021; Muecksch
et al., 2021; Wang et al., 2021). In fact, current VOCs were not lim-
ited by any known marker mutations, such as those from Spike pro-
tein (Arbeitman et al., 2021), because of the unexpected speedy
mutational process and fast gained mutations on all proteins and
whole-genome regions. More importantly, it seems that the virus
has been taking its mutational process as a strategy to overcome se-
lective pressures; consequently, the mutational process was not lim-
ited to any marker mutations, any lineages, and any geographical
locations.

Bearing that in mind, we could see that Stage VII did not reach
its end yet in December 2021, suggesting that the virus continues an
accelerated pace. The current small population of Omicron would

Fig. 4. Omicron emerged as the only variant competing with Delta variant. (A)

Stages I–VII identified by the pace of evolution using the GISAID data as of

December 7, 2021. Shown is the weekly mutation number change rate per genome

across the globe. (B) Stream plot of the proportions of the GISAID clades across

Stages I–VII. Shown is the percentage of the sequences collected form a specific clade

on a specific date. (C) Competition among the variants in Stage VII evaluated by

mutational entropy. The growth rate of each variant in each stage was shown by the

sequence numbers of the late and early periods of each stage, i.e. early and late

stages (middle) and their ratio (right). (D) Stream plot of the proportions of the top

lineages in (C). (E) Increase of the collected Omicron sequence number in Stage VII

Fig. 5. Omicron may cause a COVID surge from January to March 2022. (A) Stages

I–VIII. The late period of Stages VII and VIII were simulated by existing data of the

pace of evolution and the trend from Delta plus. (B) The lasting days for different

stages. (C) The comparisons of the paces of evolution among Stages I, III, V and VII.

*<0.01, **<0.001 and ***<0.0001
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continue its fast evolution and speedy mutation to grow as a VOC.
Since Omicron was at its early stage, another B.1.1 sublineage or an
AY.4 sublineage was possible to compete with B.1.1.529. Similarly,
we observed the same trend as B.1.1.529 from AY.4.2.1 sublineage
(Supplementary Fig. S17). VOC-alarm would monitor the change in
the pace of evolution and the mutational entropy of B.1.1.529 in
real time.

Our VOC-alarm could monitor the pandemic and answer when
it would terminate. In future, if the pandemic terminates, the pace of
evolution would decrease to a low level, eventually terminating
within a final stage; simultaneously, the mutational entropy values
of all lineages would decrease to a lower level, e.g. much lower than
4.25. On the contrary, if the pandemic becomes an endemic, the
virus might continue its pace in evolution, leading to periodically re-
gional outbreaks (Benvenuto et al., 2020).

VOC-alarm had three major conceptual advances in studying
SARS-CoV-2 mutations: (i) reconsidering the virus mutational pro-
cess as a global behavior. Distinct from phylogenetic tree analysis
focusing on difference among variants, we fully made advantage of
the sequence mutation information across the globe to analyze the
time-lapse changes in the pace of evolution; (ii) estimating the com-
petition among variants by our defined mutational entropy.
Mutational entropy was a product of our novel thinking of the virus
mutational process as a global behavior, which used the mutation
information of a lineage across the globe; and (iii) defining stages by
the pace of evolution. Stages separated the VOC emergence from its
caused global outbreak, and thus enabled investigation of the com-
petition of variants in a specific VOC emergence period. In sum-
mary, VOC-alarm would become an essential tool to predict VOCs
and guide public health responses.

4 Materials and methods

4.1 SARS-CoV-2 mutation data
We used the SARS-CoV-2 mutations from global genomic surveil-
lance. A total of 91 382 343 whole-genome mutations of 3 816 807
complete SARS-CoV-2 genomes from the GISAID database (https://
www.gisaid.org/) as of September 28, 2021 (Elbe and Buckland-
Merrett, 2017) were used to study Alpha and Delta variants
(Supplementary Table S1). Another dataset of 156 205 744 whole-
genome mutations from 5 709 730 complete SARS-CoV-2 genomes
from the GISAID database (https://www.gisaid.org/) as of December
7, 2021 (Elbe and Buckland-Merrett, 2017) were used to analyze
Delta Plus and Omicron variants (Supplementary Table S13). The
meta data included information geographic location, clade, lineage,
collection date and age and gender of confirmed cases. The latest
data from outbreak.info (https://outbreak.info/) were used to ana-
lyze the prevalence of VOCs.

4.2 SGV index
The challenge in understanding how the virus mutates into a VOC is
from that we know little about the process of the virus mutation.
Because of separated sequences by lineages or clades and divided
geographical regions, there lacks a global view of the evolution pro-
cess of the virus. To enable an understanding of the evolution pro-
cess across the globe and take the virus mutational process as a
global behavior, we developed the SGV index, defined by the mean
value of the mutation numbers of variants collected worldwide on a
specific date.

SGVi ¼
Pni

j¼1

Nijj j
,

ni

;

where i is a day between January 1, 2020 and December 7, 2021,
Nij is a set of mutations identified from the complete genome j on
the date of i, Nij

�� �� is the number of the mutations in Nij and ni is the
number of the complete genomes collected on the date of i.

4.3 The pace of evolution evaluated by mutation change

rate in SGV
To simulate how VOC competes with other variants, we need to
model how the virus controls the mutational process by its mutation
speed change. We defined the pace of evolution as a weekly change
in the SGV indices. Specifically, we used derivative and second de-
rivative to identify the accelerated and decreased paces. We denoted

the pace of the evolution as y0 ¼ f 0 xð Þ ¼ dy
dx �

Dy
Dx � DSGV

Dx , and the

peaks and valleys as xjy00 ¼ f 00 xð Þ ¼ dy0

dx �
Dy0

Dx ¼ 0, where x is the

date, y is the SGV index and f is the regression function of y. To nor-

malize the pace of evolution, we modified y
0
as

y0 xiþ1ð Þ � g xiþ1ð Þ ¼ paceiþ1 ¼
SGViþ1�SGVi

SGVi

�
Dx

� SGViþ1 � SGVi

SGVi
per week:

Accordingly, the change in the pace of evolution was defined as

Pacechange ¼ g
0

xð Þ:

The peaks and valleys (xjg0 xð Þ ¼ 0) identified stages. Notably,
the value of g xð Þ changed within 1% per week was ignored in identi-
fying stages.

4.4 Stages
Evolutionary stages were essential to VOC-alarm. Stages provided
critical time periods to distinctly analyze the competition process, in
which a VOC emerged from a small or a tiny population, and the
global outbreak process, in which the emerged VOC caused a
COVID surge. Stages were defined by the changes in the estimated
pace of evolution. We defined a stage as a period in which the pace
of evolution was either accelerated or decelerated. Mathematically,

xjg0 xð Þ < 0 or xjg0 xð Þ > 0:

Accordingly, we classified the days from January 1, 2020 to
December 7, 2021 into seven stages by the six dates (xjg0 xð Þ ¼ 0),
that was, October 23, 2020, February 7, 2021, March 29, 2021,
May 31, 2021, August 30, 2021 and October 20, 2021. In addition,
we also predicted the future trend of the pace of evolution to March
10, 2022 (Fig. 5A), in which Stages VII and VIII were defined by the
date of January 19, 2022 that satisfied xjg0 xð Þ ¼ 0 in our simulated
data.

Stages I, III, V and VII showed accelerated paces of evolution
(g
0

xð Þ > 0), but Stages II, IV, VI and VIII had decelerated paces
(g
0

xð Þ < 0Þ. Specifically, Stage I was from January 1, 2020 to
October 23, 2020, Stage II was from October 24, 2020 to February
7, 2021; Stage III was from February 8, 2021 to March 29, 2021;
Stage IV was from March 30, 2021 to May 31, 2021 and Stage V
was from June 1, 2021 to September 28, 2021 (Fig. 1A). Using the
latest GISAID data as of December 7, 2021, we modified Stage V as
June 1, 2021–August 30, 2021 and added a new stage VI as August
31, 2021–October 20, 2021 and VII as October 21, 2021–
December 7, 2021. Using our simulated future trend data, we
extended Stage VII to January 19, 2022 and added a new stage VIII
from January 9, 2021 to March 10, 2022. Specifically, we predicted
VOCs, Alpha, Delta, Delta plus and Omicron in the Stages I, III, V
and VII.

4.5 Mutational entropy
A difficult in understanding a VOC was from quantifying its adap-
tiveness to selective pressures from diagnostics, treatments and/or
vaccines (Choi et al., 2021; Collier et al., 2021; Lopez Bernal et al.,
2021; Payne et al., 2021; Sheikh et al., 2021; Wilder-Smith and
Mulholland, 2021). To accomplish this goal, we used the concept of
entropy from the information theory (Ghanchi et al., 2021;
Tomaszewski et al., 2020). Our defined mutational entropy for ana-
lyzing the competition among variants is distinct from the currently
used strategy by phylogenetic analysis or those specific marker
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mutations (Ascoli, 2021; Harvey et al., 2021; Muecksch et al.,
2021; Wang et al., 2021). Instead of comparing the mutated loci in
the genomes, we considered the change of the mutation numbers
across the globe for a specific lineage in a specific time period. Thus,
this metric became feasible to simulate the competition among var-
iants and predict VOCs by the lineages with the strongest competi-
tive capabilities.

Within a time period (e.g. Stage I), we collected the variants
f1; 2; . . ., nlg from the lineage l across the days in this time period.
For each variant j ðj ¼ 1; 2; . . ., nlÞ; we defined Njl is a set of muta-
tions found in the complete genome of the variant j and Njl

�� �� is the
number of the mutations in Njl. For all variants f1; 2; . . ., nlg in
the lineage l, we derived the unique mutation numbers from
all mutation numbers f N1lj j; N2lj j; . . . ; Nnl ;l

�� ��g and denoted
these unique mutation numbers as Ml. For each unique
mutation number Mkl ðk ¼ 1; 2; . . ., ulÞ; we calculated its
frequency Qkl ðk ¼ 1; 2; . . ., ulÞ and defined its probability
Pkl ¼ Qkl

ul k ¼ 1; 2; . . .ð , ulÞ. Thus, we defined the mutational en-
tropy for this lineage within this time period as

Entropyl ¼ �
Xul

k¼1
Pkl log Pkl:

4.6 Sequence prevalence
Competition among variants not only determined VOCs but also
their population size changes. It was well known that an emerged
VOC tended to compete with its precedents, which caused the popu-
lation size decrease of its precedents (Elbe and Buckland-Merrett,
2017; Vohringer et al., 2021). We described the population size per-
centage at a specific time range as prevalence. Generally, we used
the sequence number in the GISAID database to calculate preva-
lence. Specifically, using the GISAID database, if one lineage l
included kl sampled sequences (l 2 1; 2; . . . ; nlf g), its prevalence
was defined as

Prevalencel ¼
kl � 100Pnl

i¼1

ki

%:

The prevalence of this lineage for a specific date or time range
could be defined by the sampled sequences on this date or within
this time range.

4.7 VOC-alarm
VOC-alarm was a software for real-time monitoring of stages, com-
petition among variants, VOCs and potential future COVID surges.
Our defined Stages and calculated mutational entropy values were
the key to predicting a VOC by its competition with others. The
Stages I, III, V and VII, showing accelerated paces of evolution, pre-
dicted Alpha/B.1.1.7 (Chemaitelly et al., 2021; Payne et al., 2021;
Washington et al., 2021), Delta/AY.4 (Celik and Tallei, 2022),
Delta/B.1.617.2 (Lopez Bernal et al., 2021; Pung et al., 2021;
Sonabend et al., 2021), Delta plus/AY.4.2 (Angeletti et al., 2021)
and Omicron/B.1.1.529 (Chen et al., 2021) as VOCs, respectively.

Four criteria were used for identifying lineages/clades for predict-
ing a potential VOC (Supplementary Fig. S6):

i. Stages for predicting VOCs should illustrate an accelerated pace

of evolution (g
0

xð Þ > 0), e.g. Stages I, III, V and VII;

ii. In these stages, VOCs generally emerged from the highly

mutated variants (generally, 95 percentiles of the mutation

numbers were used as the threshold);

iii. In these stages, the precedents of the emerging VOCs showed a

significant decrease in population size;

iv. In these stages, the emerging variants themselves grew in popu-

lation size.

To ensure these four criteria and apply mutational entropy con-
cept, we developed a flowchart for VOC-alarm, as shown in

Supplementary Figure S6. We summarized this flowchart into the
following four steps:

1. Identifying a stage with the accelerated pace of evolution

(xjg0 xð Þ > 0). This step enabled the prediction of the earliest

emerging dates for VOCs (xjg0 xð Þ ¼ 0) in these stages. The ear-

liest emerging variants within a small population were generally

associated with the accelerated pace of evolution.

2. In an identified stage, the clade with the most significant

decreased population size, evaluated by an ANOVA test, was

used for predicting a VOC. This was because of the competition

from the VOC and its precedents.

3. Variants with relatively high mutation numbers and increased

population sizes were selected from the identified clades/lineages

(in Step 2). We used a threshold for mutation numbers, i.e. 95

percentiles, and a population growth rate as 1 for selecting line-

ages as the candidates for the VOCs. Generally, we divided the

days in this stage into two periods by its middle time point and

calculated the population growth rate as the ratio of the sampled

sequence numbers within the later period (late stage) and the

earlier period (early stage).

4. The lineage(s) ranked at the top by mutational entropy was pre-

dicted as a VOC. This was determined by the strong competitive

capabilities of VOCs. A relatively high mutational entropy value

suggested a high potential to be a VOC in the competition with

other variants.

In this work, we identified a threshold from lineage B.1.1,
EntropyB:1:1 ¼ 4:25, for identifying VOCs. We have applied this
threshold to predict Alpha/B.1.1.7 (Chemaitelly et al., 2021; Payne
et al., 2021; Washington et al., 2021), Delta/AY.4 (26), Delta/
B.1.617.2 (Lopez Bernal et al., 2021; Pung et al., 2021; Sonabend
et al., 2021), Delta plus/AY.4.2 (Angeletti et al., 2021) and
Omicron/B.1.1.529 (Chen et al., 2021).

4.8 The pandemic epidemiological data
Despite that VOC-alarm did not use the pandemic epidemiological
data, we have considered the epidemiological data of new cases and
new deaths to verify the COVID surges caused by VOCs. We used
the epidemiological data sources from the WHO, Our world in Data
(owid: https://ourworldindata.org/), COVID-19 Data Repository by
the Center for Systems Science and Engineering at Johns Hopkins
University (Dong et al., 2020), data from The New York Times
(https://github.com/nytimes/covid-19-data), based on reports from
state and local health agencies and data from Coronavirus (COVID-
19) in the UK (https://www.who.int/en/activities/tracking-SARS-
CoV-2-variants/).

4.9 Dates of designation of VOCs and VOIs from the

WHO and the US Centers for Disease Control and

Prevention
VOCs or VOIs have been designated by the WHO and the US
Centers for Disease Control and Prevention. The information of des-
ignation, e.g. Pango lineage name, the GISAID clade name and the
designated dates, were included in Supplementary Table S14.

4.10 Statistical analyses
All statistical analyses and visualization were conducted using R
(version 4.4.1) or Python (version 3.8.3). Barplot, boxplot and scat-
ter plot were constructed using R package ggplot2 (version 3.3.5);
stream plots were implemented using R package ggstream (version
0.1.0); the R package for entropy (version 1.3.0) with the ML
method, was used to calculate entropy scores; ROC was calculated
with the Python package, sklearn. The LOESS method was used for
regression of the pace of evolution. Span of 0.5 was used for the mu-
tation data as of September 28, 2021 and 0.25 was used for the
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mutation data as of December 7, 2021. The regression on the future
trend for Omicron was based on the trend from Delta plus. P-value
<0.05 from two-sided Student’s t-test or one-way ANOVA test was
considered significant.

Acknowledgements

We acknowledge all the researchers who openly shared their genomic data on

GISAID.

Author contribution

G.J. was responsible for conception and design of the study. G.J. designed the

computational analysis software. H.Z., K.H. and C.G. were responsible for

software development. H.Z., V.M., U.T., and G.J. took part in data analyses.

H.Z., V.M., U.T., Y.L. and G.J. wrote the manuscript.

Funding

This work was supported by a start-up fund from Wake Forest University

Health Sciences. We also acknowledge assistance of the Wake Forest Baptist

Comprehensive Cancer Center Bioinformatics Shared Resource, supported by

[P30CA012197]. The content is solely the responsibility of the authors and

does not necessarily represent the official views of the National Cancer

Institute.

Conflict of Interest: none declared.

Data and software availability

All datasets used in our study were listed in Supplementary Table S15. We

downloaded the SARS-CoV-2 mutation data from GISAID (Elbe and

Buckland-Merrett, 2017). Due to the restriction on the availability of the raw

data and meta data from GISAID, requests for these data should be submitted

to GISAID directly. Processed data related to our results were included in the

Supplementary Tables.

References

Aljindan,R.Y. et al. (2021) Investigation of nonsynonymous mutations in the

spike protein of SARS-CoV-2 and its interaction with the ACE2 receptor by

molecular docking and MM/GBSA approach. Comput. Biol. Med., 135,

104654.

Angeletti,S. et al. (2021) SARS-CoV-2 AY.4.2 variant circulating in Italy: gen-

omic preliminary insight. J. Med. Virol., 94, 1689–1692.

Arbeitman,C.R. et al. (2021) The SARS-CoV-2 spike protein is vulnerable to

moderate electric fields. Nat. Commun., 12, 5407.

Arora,P. et al. (2022) No evidence for increased cell entry or antibody evasion

by Delta sublineage AY.4.2. Cell. Mol. Immunol., 19, 449–452.

Ascoli,C.A. (2021) Could mutations of SARS-CoV-2 suppress diagnostic de-

tection? Nat. Biotechnol., 39, 274–275.

Benvenuto,D. et al. (2020) The global spread of 2019-nCoV: a molecular evo-

lutionary analysis. Pathog. Glob. Health, 114, 64–67.

Celik,I. and Tallei,T. (2022) A computational comparative analysis of the

binding mechanism of molnupiravir’s active metabolite to RNA-dependent

RNA polymerase of wild-type and Delta subvariant AY.4 of SARS-CoV-2.

J. Cell. Biochem., 123, 807–818.

Chakraborty,C. et al. (2021) D614G mutation eventuates in all VOI and VOC

in SARS-CoV-2: is it part of the positive selection pioneered by Darwin?

Mol. Ther. Nucleic Acids, 26, 237–241.

Chemaitelly,H. et al. (2021) mRNA-1273 COVID-19 vaccine effectiveness

against the B.1.1.7 and B.1.351 variants and severe COVID-19 disease in

Qatar. Nat. Med., 27, 1614–1621.

Chen,J. et al. (2021) Omicron Variant (B.1.1.529): Infectivity, Vaccine

Breakthrough, and Antibody Resistance. J. Chem. Inf. Model, 62, 412–422.

Choi,A. et al. (2021) Safety and immunogenicity of SARS-CoV-2 variant

mRNA vaccine boosters in healthy adults: an interim analysis. Nat. Med.,

27, 2025–2031.

Collier,D.A. et al.; CITIID-NIHR BioResource COVID-19 Collaboration.

(2021) Age-related immune response heterogeneity to SARS-CoV-2 vaccine

BNT162b2. Nature, 596, 417–422.

Davies,N.G. et al.; CMMID COVID-19 Working Group. (2021) Estimated

transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England.

Science, 372, eabg3055.

Del Rio,C. et al. (2021) Confronting the Delta variant of SARS-CoV-2,

summer 2021. JAMA, 326, 1001–1002.

Dhar,M.S. et al.; The Indian SARS-CoV-2 Genomics Consortium

(INSACOG). (2021) Genomic characterization and epidemiology of an

emerging SARS-CoV-2 variant in Delhi, India. Science, 374, 995–999.

Dong,E. et al. (2020) An interactive web-based dashboard to track COVID-19

in real time. Lancet Infect. Dis., 20, 533–534.

Elbe,S. and Buckland-Merrett,G. (2017) Data, disease and diplomacy:

GISAID’s innovative contribution to global health. Glob. Chall., 1,

33–46.

Fan,Z. et al. (2021) Entropy-driven amplified electrochemiluminescence bio-

sensor for RdRp gene of SARS-CoV-2 detection with self-assembled DNA

tetrahedron scaffolds. Biosens. Bioelectron., 178, 113015.

Fan,Z. et al. (2022) Rational engineering the DNA tetrahedrons of dual

wavelength ratiometric electrochemiluminescence biosensor for high ef-

ficient detection of SARS-CoV-2 RdRp gene by using entropy-driven and

bipedal DNA walker amplification strategy. Chem. Eng. J., 427,

131686.

Fariselli,P. et al. (2021) DNA sequence symmetries from randomness: the ori-

gin of the Chargaff’s second parity rule. Brief. Bioinform., 22, 2172–2181.

Ghanchi,N.K. et al. (2021) Higher entropy observed in SARS-CoV-2 genomes

from the first COVID-19 wave in Pakistan. PLoS One, 16, e0256451.

Graham,F. (2020) Daily briefing: pangolins return to a region where they were

once extinct. Nature.

Harvey,W.T. et al.; COVID-19 Genomics UK (COG-UK) Consortium. (2021)

SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev.

Microbiol., 19, 409–424.

Hung,I.F. et al. (2020) Triple combination of interferon beta-1b, lopinavir-ri-

tonavir, and ribavirin in the treatment of patients admitted to hospital with

COVID-19: an open-label, randomised, phase 2 trial. Lancet, 395,

1695–1704.

Jentsch,P.C. et al. (2021) Prioritising COVID-19 vaccination in changing so-

cial and epidemiological landscapes: a mathematical modelling study.

Lancet Infect. Dis., 21, 1097–1106.

Kannan,S.R. et al. (2021) Evolutionary analysis of the Delta and Delta plus

variants of the SARS-CoV-2 viruses. J. Autoimmun., 124, 102715.

Kontis,V. et al. (2020) Magnitude, demographics and dynamics of the effect of

the first wave of the COVID-19 pandemic on all-cause mortality in 21 indus-

trialized countries. Nat. Med., 26, 1919–1928.

Lopez Bernal,J. et al. (2021) Effectiveness of covid-19 vaccines against the

B.1.617.2 (Delta) variant. N. Engl. J. Med., 385, 585–594.

McBroome,J. et al. (2021) A daily-updated database and tools for comprehen-

sive SARS-CoV-2 mutation-annotated trees. Mol. Biol. Evol., 38, 5819–5824.

Muecksch,F. et al. (2021) Affinity maturation of SARS-CoV-2 neutralizing

antibodies confers potency, breadth, and resilience to viral escape muta-

tions. Immunity, 54, 1853–1868.e1857.

Mukherjee,S. et al. (2013) Cell responses only partially shape cell-to-cell varia-

tions in protein abundances in Escherichia coli chemotaxis. Proc. Natl.

Acad. Sci. USA, 110, 18531–18536.

Narykov,O. et al. (2021) Computational protein modeling and the next viral

pandemic. Nat. Methods, 18, 444–445.

Payne,R.P. et al.; PITCH Consortium. (2021) Immunogenicity of standard

and extended dosing intervals of BNT162b2 mRNA vaccine. Cell, 184,

5699–5714.e5611.

Pung,R. et al.; CMMID COVID-19 Working Group. (2021) Serial intervals in

SARS-CoV-2 B.1.617.2 variant cases. Lancet, 398, 837–838.

Saito,A. et al. (2021) Enhanced fusogenicity and pathogenicity of

SARS-CoV-2 Delta P681R mutation. Nature, 602, 300–306.

Saunders,N. et al. (2022) Fusogenicity and neutralization sensitivity of the

SARS-CoV-2 Delta sublineage AY.4.2. EBioMedicine, 77, 103934.

Sheikh,A. et al.; Public Health Scotland and the EAVE II Collaborators.

(2021) SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital

admission, and vaccine effectiveness. Lancet 397, 2461–2462.

Sonabend,R. et al. (2021) Non-pharmaceutical interventions, vaccination, and

the SARS-CoV-2 delta variant in England: a mathematical modelling study.

Lancet, 398, 1825–1835.

Thompson,C.N. et al.; PhD1. (2021) Rapid emergence and epidemiologic char-

acteristics of the SARS-CoV-2 B.1.526 Variant - New York city, New York,

January 1-April 5, 2021. MMWR Morb. Mortal Wkly. Rep., 70, 712–716.

Tomaszewski,T. et al. (2020) New pathways of mutational change in

SARS-CoV-2 proteomes involve regions of intrinsic disorder important for virus

replication and release. Evol. Bioinform. Online, 16, 1176934320965149.

VOC-alarm 3555

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac370#supplementary-data


Vohringer,H.S. et al. (2021) Genomic reconstruction of the SARS-CoV-2 epi-

demic in England. Nature, 600, 506–511.

Wang,L. et al. (2021) Ultrapotent antibodies against diverse and highly trans-

missible SARS-CoV-2 variants. Science, 373, eabh1766.

Wang,R. et al. (2021) Analysis of SARS-CoV-2 variant mutations reveals neu-

tralization escape mechanisms and the ability to use ACE2 receptors from

additional species. Immunity, 54, 1611–1621 e1615.

Washington,N.L. et al. (2021) Emergence and rapid transmission of

SARS-CoV-2 B.1.1.7 in the United States. Cell, 184, 2587–2594.e2587.

Wilder-Smith,A. and Mulholland,K. (2021) Effectiveness of an inactivated

SARS-CoV-2 vaccine. N. Engl. J. Med., 385, 946–948.

Zhang,H. et al. (2020) Ethics committee reviews of applications for research

studies at 1 hospital in China during the 2019 novel coronavirus epidemic.

JAMA, 323, 1844–1846.

3556 H.Zhao et al.


