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Abstract

Objective.—Genome-wide association studies (GWASs) of the Alcohol Use Disorders 

Identification Test (AUDIT), a ten-item screener for alcohol use disorders (AUD), have elucidated 

novel loci for alcohol consumption and misuse. However, these studies also revealed that 

GWASs can be influenced by numerous biases (e.g., measurement error, selection bias), which 

may have led to inconsistent genetic correlations between alcohol involvement and AUD, as 

well as paradoxically negative genetic correlations between alcohol involvement and psychiatric 

disorders/medical conditions.

Methods.—To explore these unexpected differences in genetic correlations, we conducted the 

first item-level and largest GWAS of AUDIT items (N=160,824), and applied a multivariate 

framework to mitigate previous biases.

Results.—We identified novel patterns of similarity (and dissimilarity) among the AUDIT items, 

and found evidence of a correlated two-factor structure at the genetic level (Consumption and 

Problems, rg=.80). Moreover, by applying empirically-derived weights to each of the AUDIT 

items, we constructed an aggregate measure of alcohol consumption that is strongly associated 

with alcohol dependence (rg=.67) and several other psychiatric disorders, and no longer positively 

associated with health and positive socioeconomic outcomes. Lastly, by conducting polygenic 

analyses in three independent cohorts that differed in their ascertainment and prevalence of AUD, 

we identified novel genetic associations between alcohol consumption, alcohol misuse, and human 

health.

Conclusions.—Our work further emphasizes the value of AUDIT for both clinical and genetic 

studies of AUD, and the importance of using multivariate methods to study genetic associations 

that are more closely related to AUD.

INTRODUCTION

Over the past decade, genome-wide association studies (GWASs) have advanced our 

understanding of alcohol use disorders (AUDs)(1). Many of these studies have relied 

on a categorical approach to AUD phenotypes, comparing clinically-ascertained cases 

and controls (e.g., 2), but recent studies have increasingly employed a complementary 

approach leveraging dimensional measures of alcohol consumption and screener-based 

AUD symptoms in population-based cohorts (e.g., 3–6). Often, these dimensional measures 

can more easily be administered at scale via self-report questionnaires than can clinical 

diagnostic measures, thereby accelerating genetic discovery through drastic increases 

in sample size. The Alcohol Use Disorders Identification Test (AUDIT)(7), a ten-item 

questionnaire that screens for drinking habits and problems by measuring aspects of alcohol 

use and misuse in the past year, is one such measure. A recent GWAS meta-analysis of AUD 

and AUDIT phenotypes identified 29 novel loci (5), representing one of the biggest advances 

of AUD genetics to date (2–4, 6).

Notably, several studies using self-report instruments have revealed that not all aspects of 

alcohol involvement are interchangeable. While AUDIT can be used as a unidimensional 
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screener (i.e., AUDIT-Total), previous research has shown that AUDIT can differentiate 

between two related but distinct facets of AUD: alcohol consumption (sum of items 1–3, 

“AUDIT-C”), which is necessary but not sufficient for a diagnosis of AUD, and problematic 

consequences of alcohol consumption (sum of items 4–10, “AUDIT-P”), which more closely 

resemble the diagnostic criteria of AUD. We previously found that AUDIT-C and AUDIT-P 

have distinct genetic relationships with clinically-defined AUD (6), as well as other forms 

of psychopathology. Surprisingly, AUDIT-C was positively associated with socioeconomic 

variables, negatively associated with some forms of psychopathology, and only moderately 
positively associated with alcohol dependence, whereas AUDIT-P exhibited strong positive 

associations with alcohol dependence and numerous other psychiatric disorders. Although 

this divergence might reflect true differences in the biology underlying alcohol consumption 

versus problems, it may be confounded by other factors, such as sources of selection bias, 

genetic heterogeneity among the individual items, and measurement error (1, 8).

As AUDIT-C and AUDIT-P are computed using an unweighted composite score approach, 

they inherently rely on the assumptions that (i) the scale is unidimensional, and (ii) each 

item is equally informative of the construct being measured. This approach is not based on 

any empirical evidence but rather reflects a holdover from the original use of the AUDIT 

as a screener for primary health care settings. Therefore, it is possible that the lack of 

item-specific weights introduces error in downstream analyses. While these issues have been 

thoroughly studied at the phenotypic level via factor analysis (Table S1), they have not 

yet been investigated at the genetic level. Using methods that can account for, or mitigate, 

such measurement problems will allow researchers to better capitalize on the potential of 

dimensional measures like AUDIT for genetic discovery.

In the present study, we sought to elucidate the genetics of alcohol consumption and 

problematic consequences of alcohol use measured via AUDIT using Genomic Structural 

Equation Modeling (9), a novel multivariate framework that allows for structural equation 

modeling techniques to be applied to genetic covariance matrices based on GWAS results. 

Accordingly, we undertook the first item-level and largest to-date GWAS meta-analyses of 

AUDIT (N=160,824), using data from three population-based cohorts of European ancestry. 

We then used Genomic Structural Equation Modeling (9) to analyze the item-level GWAS 

results with the aims of (i) investigating the latent genetic factor structure of AUDIT, 

based on prior knowledge (Table S1), and (ii) conducting multivariate GWASs of the 

resulting latent genetic factor(s). We posited that applying this approach would lead to more 

nuanced, empirically-derived weights to each of the AUDIT items when constructing our 

aggregate measures (as opposed to giving each item equivalent weight), which is a novel 

approach for GWASs of AUD phenotypes. Finally, to characterize the biology and liability 

associated with each latent genetic factor, we used a variety of in-silico tools and polygenic 

analyses spanning three independent cohorts that varied in their method of ascertainment 

and prevalence of AUD.

We hypothesized that a higher resolution of each of the alcohol phenotypes measured 

in AUDIT would further our understanding of the differences among indices of alcohol 

consumption (items 1–3) and problematic alcohol use (items 4–10), and how they relate 

to human health. We anticipated that the genetic contributions to alcohol consumption and 
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problematic use would not be completely overlapping, and that genomic modeling using 

item-level data would ameliorate the confounding issues between alcohol consumption, 

AUD, and indices of health that complicated previous GWAS efforts.

MATERIALS AND METHODS

Discovery samples and phenotype construction

We collected AUDIT (7) and genotype data from three population-based cohorts: UK 

Biobank (nmax=147,267), the Netherlands Twin Register (nmax=9,975), and the Avon 

Longitudinal Study of Parents and Children (ALSPAC, nmax=3,582). We used the same 

phenotyping strategies across the three cohorts, which are described in the Supplementary 

Material 2. AUDIT scores and demographics for each cohort are reported in Table S2. 

Genotyping, imputation and quality control procedures have been extensively described in 

previous publications (10–12). Because AUDIT was administered with skip logic in UK 

Biobank, we used multiple imputation by chained equations to minimize the impact of 

missing data on our item-level GWAS (see Supplementary Material 2.1 for details).

Univariate genome-wide association and meta-analyses

In UK Biobank, we used BOLT-LMM (13) v2.3.2 to conduct GWASs for each of the 

ten AUDIT items with the first 40 ancestry principal components, sex, age, sex-by-age 

interactions, and batch as covariates. In the Netherlands Twin Register, we used the fastgwa 
function of GCTA (14) and included the first 5 ancestry principal components, sex, birth 

year, and genotyping platform as covariates. In ALSPAC, we analyzed unrelated participants 

using PLINK v2.0 (15), including the first 10 ancestry principal components, sex, and age 

as covariates. Note that both BOLT-LMM and fastgwa are capable of analyzing related 

individuals. Further details are included in Supplementary Material 3, as well as prior 

work (16). We then used METAL (17) to conduct sample-size weighted meta-analyses of 

the cohort-level GWAS summary statistics for each AUDIT item following quality control 

procedures (see Supplementary Material 4). A total of 8,596,116 SNPs were included in the 

meta-analyses.

Phenotypic and genetic correlations

We used the lavaan (18) v0.6.5 package in R to estimate polychoric phenotypic correlations 

(rp) among AUDIT items. We used the Genomic Structural Equation Modeling v0.0.2 

package in R, which is based on LD score regression (19), to estimate the heritability of each 

of the ten AUDIT items, and the genetic correlations between them. We applied standard 

quality control procedures prior to all analyses (e.g., used precomputed LD scores, excluded 

the major histocompatibility region, SNPs restricted to HapMap 3, applied minor allele 

frequency ≥1% and information score >.90 filters). Lastly, we used Genomic Structural 

Equation Modeling (9) to estimate genetic correlations between latent genetic factors and 

complex traits and disorders broadly related to human health (Supplementary Material 

5.1.2). We applied a standard Benjamini–Hochberg false discovery rate correction (FDR 

5%) to account for multiple testing.
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Phenotypic and genetic factor analysis

To empirically model the phenotypic and genetic relationships among AUDIT items, we 

used lavaan (18) and Genomic Structural Equation Modeling (9) to conduct phenotypic and 

genetic confirmatory factor analyses, respectively, using weighted least squares estimation. 

Further details are provided in the Supplementary Material 5.1 and described extensively 

elsewhere (20–23). We tested three models: (i) a parallel factor model (i.e., a sum score 

model), (ii) a common factor model, and (iii) a correlated factors model. The common and 

correlated-factors models were selected based on prior research (Table S1) while the parallel 

factor model served to test the restrictive assumptions of sum score approaches. We assessed 

model fit using conventional indices that were available in both the lavaan and Genomic 

Structural Equation Modeling software (9) (Supplementary Material 5). Only data from UK 

Biobank (the largest sample) was included in the phenotypic factor analyses. For the genetic 

factor analyses, GWAS summary statistics from the meta-analyses for each AUDIT item 

were subjected to standard quality control practices, as described above. Genomic Structural 

Equation Modeling’s multivariable version of LD score regression was then used to estimate 

the genetic covariance and sampling covariance matrices (S and V, respectively) for the 

AUDIT items, which were used to test the specified confirmatory factor models. The S 

matrix was smoothed beforehand as it was slightly non-positive definite. Factor extension 

analysis was used to estimate the expected factor loading of item 6 (i.e., ‘eye opener’; 

Supplementary Material 5.1.1), as it was excluded from the final genetic confirmatory factor 

model due to non-significant SNP heritability.

Multivariate genome-wide association analyses

Using Genomic Structural Equation Modeling (9), we conducted multivariate GWASs 

analyses by estimating SNP associations with the AUDIT latent genetic factors from the 

best-fitting model. The details of these analyses are described in the Supplementary Material 

5.1. Individual SNP effects were estimated for the latent genetic factors in each model if 

they (i) were available in all univariate summary statistics, (ii) had a minor allele frequency 

≥.5%, and (iii) were present in the 1000 Genomes Phase 3 v5 reference panel. The effective 

sample size for each latent factor was estimated using the approach described by Mallard 

and colleagues (16).

Biological annotation, gene and transcriptome-based association analyses

We performed multiple in-silico analyses to compare the results from each of the AUDIT 

latent genetic factors. First, we used FUMA (24) v1.2.8 to identify independent SNPs 

and study their functional consequences, which included ANNOVAR categories, Combined 

Annotation Dependent Depletion scores, RegulomeDB scores. Second, we used MAGMA 

v1.08 (24, 25) to conduct competitive gene-set and pathway analyses for each of the AUDIT 

genetic latent factors. SNPs were mapped to 18,546 protein-coding genes from Ensembl 

build 85. Gene-sets were obtained from Msigdb v7.0 (“Curated gene sets”, “GO terms”). We 

also used an extension of this method, Hi-C coupled MAGMA (H-MAGMA)(26), to assign 

non-coding (intergenic and intronic) SNPs to genes based on their chromatin interactions. 

Exonic and promoter SNPs are assigned to genes based on physical position. We used four 

Hi-C datasets, which were derived from fetal brain, adult brain, iPSC-derived neurons and 
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and iPSC-derived astrocytes (https://github.com/thewonlab/H-MAGMA). Lastly, we used 

S-PrediXcan v0.6.2 (27) to predict gene expression levels in 13 brain tissues, and to test 

whether the predicted gene expression showed divergent correlation patterns with each of 

the AUDIT latent genetic factors. Pre-computed tissue weights from the Genotype-Tissue 

Expression (GTEx v8) project database (https://www.gtexportal.org/) were used as the 

reference transcriptome dataset. Further details are provided in the Supplementary Material 

6.

Polygenic risk score analyses

Prediction of alcohol phenotypes in UK Biobank and COGA.—We used the 

PRS-CS “auto” version (28) to compute polygenic scores (PRSs) for the latent genetic 

AUDIT factors (Consumption and Problems) and their sum score counterparts (AUDIT-C 

and AUDIT-P) in European subjects from two independent samples: (i) an independent 

subset of unrelated individuals of European ancestry in the UK Biobank who did not fill out 

the AUDIT, and (ii) a subset of individuals of European ancestry from the Collaborative 

Study on the Genetics of Alcoholism (COGA)(29), which includes probands meeting 

criteria for alcohol dependence, their family members, and community control families. 

Using the ‘score’ algorithm in PLINK v1.90, we computed individual-level PRS to predict 

additional alcohol phenotypes (drinking quantity, drinking frequency, and lifetime AUD 

diagnosis) measured in UK Biobank and COGA (Supplementary Material 7). We tested 

for associations between AUDIT PRSs and alcohol phenotypes using linear (quantity and 

frequency phenotypes) or logistic (AUD) regression models in R v3.6.3. In UK Biobank, we 

included sex, age at first assessment, Townsend Deprivation Index score (30) and the first 

10 ancestry principal components as covariates. In COGA, we included age, sex, array type, 

income, and the first 10 ancestry principal components as fixed effect covariates, with family 

identity included as a random effect (i.e., allowing the intercept to vary by family).

We sought to compare the performance of the latent factor-based PRSs (Consumption and 

Problems PRSs) against the performance of their sum score counterparts (AUDIT-C and 

AUDIT-P PRSs) in predicting different alcohol phenotypes. To this end, we applied two 

approaches to our PRS analyses: (i) cross-dimension PRS models (i.e., Consumption + 

Problems PRSs included as simultaneous predictors), and (ii) cross-method PRS models 

(i.e., Consumption + AUDIT-C PRSs included as simultaneous predictors in a model, 

and Problems + AUDIT-P PRSs included as simultaneous predictors in a model). We 

corrected for the total number of outcome phenotypes across the validation samples using 

a conservative Bonferroni p value = 8.33E-3, since the same PRSs were used as predictors 

across models (and were correlated with each other).

Phenome-wide association study in BioVU.—To examine exploratory associations 

between PRSs and hundreds of medical diagnoses, we used the PRS-CS method (28) 

described above to compute Consumption and Problems PRSs for each of the 66,915 

unrelated genotyped individuals of European ancestry from the Vanderbilt University 

Medical Center biobank (BioVU)(31). Using electronic health record data in BioVU, we 

performed phenome-wide association studies (PheWASs) for Consumption and Problems 
PRSs using the PheWAS (32) v0.12 package in R. Specifically, we fit a logistic regression 
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model to each of the 1,335 case/control phenotypes in BioVU (“phecodes”; Supplementary 

Material 7.3) in order to estimate the effect of a given PRS on each diagnosis. Sex, median 

age of the longitudinal electronic health record measurements, and the first 10 principal 

components were included as covariates. We then repeated the PheWAS analyses using 

AUD diagnoses (phecodes 317, 317.1) as additional covariates. A standard Benjamini–

Hochberg false discovery rate (FDR 5%) correction was applied to account for multiple 

testing.

RESULTS

Phenotypic and genetic analyses reveal a consistent two-factor structure of alcohol 
consumption and problematic use

Phenotypic and genetic analyses showed that AUDIT items were positively correlated with 

each other, with correlation estimates ranging from moderate to large (Tables S3–4). The 

one exception to this pattern was item 1 (i.e., frequency of consumption), which was 

generally less correlated with the other AUDIT items. Moreover, we found that genetic 

correlations tended to be moderately larger than the phenotypic correlations (mean absolute 

difference = .198), an effect that was driven by stronger genetic correlations among items 

4 through 10 (i.e., the problematic alcohol use phenotypes). Of note, all AUDIT items 

exhibited significant SNP heritability with the exception of item 6 (Table S5). We suspect 

this may be attributable to the low rates of endorsement for the item in all three cohorts 

(Table S2). For this reason, we excluded item 6 from all subsequent analyses, and a factor 

extension analysis was used to estimate its expected factor loading in the final model.

We found that a correlated factors model provided the best fit (Figure 1, Tables 

S6–7) to both the genetic and the phenotypic covariance matrices [phenotypic 

model: (χ2(26)=4252.963, Comparative Fit Index=.994, standardized root mean square 

residual=.041), genetic model: (χ2(26)=142.689, Comparative Fit Index=.982, standardized 

root mean square residual=.067)]. That is, the patterns of genetic and phenotypic 

correlations among the AUDIT items could both be represented by a factor model with 

two correlated factors: one that captured the covariance among alcohol consumption 

items (items 1–3, henceforth “Consumption”) and one that captured the covariance among 

alcohol-related problems (items 4–10, henceforth “Problems”). These two latent factors 

were highly correlated with each other, phenotypically (rp=.825, SE=.002) and genetically 

(rg=.801, SE=.037). Nearly all items had large factor loadings across both levels of analyses 

except item 1, which consistently had markedly smaller factor loadings and larger residual 

variances.

The two correlated-factors model was compared to other solutions. A model with a single 

common factor provided acceptable fit for the phenotypic (χ2(27)=14967.064, Comparative 

Fit Index=.978, standardized root mean square residual=.070) and genetic (χ2(27)=350.785, 

Comparative Fit Index=.949, standardized root mean square residual=.094) factor analyses, 

but it did not minimize the standardized difference between the observed and predicted 

correlations as well as the correlated factors model (Table S7). The parallel factor model 

(i.e., the sum score model) exhibited very poor fit, reflected by the strong, unanimous 

bias observed in the model implied correlations [phenotypic model: (χ2(34)=43655.530, 
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Comparative Fit Index=.936, standardized root mean square residual=.143), genetic 

model: (χ2(43)=607.196, Comparative Fit Index=.911, standardized root mean square 

residual=.470)]. Accordingly, we identified the correlated factors model as the best fitting 

and most appropriate model for further genetic analyses.

Latent variable approach characterizes and ameliorates bias in GWAS of alcohol 
consumption

By estimating genetic correlations in a Genomic Structural Equation Modeling framework, 

we identified interesting patterns of relationships between 100 exogenous phenotypes 

(chosen based on previous findings or hypothesized relationships) and the Consumption 
and Problems latent genetic factors. We also examined correlations with the residual genetic 

variance in item 1 (i.e., the genetic variance in item 1 that is unrelated to other AUDIT 

items; henceforth “Frequency Residual”). Results are reported in Table S8.

For Consumption and Problems, we found that their patterns of genetic correlation with 

other phenotypes were much more similar than previously reported for AUDIT-C and 

AUDIT-P (4). Both Consumption and Problems showed strong positive genetic correlations 

with alcohol dependence. Consumption and Problems were also positively related to 

other measures of substance use (e.g. cannabis use disorder, impulsivity). Furthermore, 

the previous positive associations that we observed between AUDIT and indices of 

socioeconomic status (e.g. educational attainment) were now attenuated.

We did still observe that, compared to Consumption, Problems was more strongly related 

to psychopathology (e.g., post-traumatic stress disorder, depression, bipolar disorder, 

schizophrenia). We also identified novel divergent associations with pain phenotypes, 

malnutrition and measures of social satisfaction (e.g., Problems showing genetic overlap 

with these conditions) suggesting that, as we anticipated, the genetic contributions to alcohol 

consumption and misuse reflect both complementary and distinct genetic factors.

Finally, Frequency Residual was negatively associated with alcohol dependence (Figure 

2). We also found positive genetic correlations between Frequency Residual and 

socioeconomic outcomes, including educational attainment, household income, and 

intelligence. Furthermore, we observed consistently negative genetic correlations between 

Frequency Residual and other psychiatric and substance use disorders, such as major 

depressive disorder and cannabis use disorder. This result suggests that many of the puzzling 

genetic correlations previously reported for alcohol consumption were driven by variance 

related to socially-stratified differences in behavior rather than variance related to the 

alcohol phenotypes of clinical interest.

Multivariate GWAS confirm a distinct genetic basis between alcohol consumption and 
misuse

The results of our multivariate GWAS for Consumption and Problems are presented 

in Figure 3. We identified 8 independent loci that were associated with Consumption 
(Table S9). For Problems, we replicated 2 loci on chromosome 4, located in the ethanol 

metabolizing gene ADH1B (Table S10). The signal associated with the latent factors is 
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convergent with that of the sum scores, with a few exceptions (Supplementary Material 6.1.1 

and Tables S11–12).

Some loci included genes that were only associated with Consumption (Table S31), such as 

KLB, RCF1 and the MAPT/CRHR1 region, which were previously associated with alcohol 

consumption behaviors (3–5, 33), and other novel candidate genes for alcohol, such as 

CPS1, previously associated with metabolic conditions (Table S13).

We performed in-silico gene-based and transcriptome-based analyses (Tables S15–30), 

which consistently revealed both convergent and divergent associations for Consumption 
and Problems (Table S31). For example, both factors robustly implicated ethanol 

metabolizing genes (ADH1B, ADH1C) and dopamine transmission [DRD2, involved in 

mediating the rewarding effects of drugs (34)], as well as pleiotropic genes previously 

implicated in anthropometric and metabolic traits [e.g., CELF1 (5, 35)], and intelligence 

[e.g., MTCH2 (36), FAM180B/NDUFS3 (37)].

Lastly, gene-set analyses revealed that genes more closely linked to cellular responses to 

alcohol drinking (e.g., cellular response to retinoic acid) were associated with Consumption 
(Table S17), while the gene-sets related to postsynaptic modulation of chemical synaptic 

transmission were associated with Problems (Table S18).

Polygenic risk analyses

UK Biobank.—In UK Biobank, we found that both Consumption and Problems PRSs were 

robustly associated with drinking frequency, drinking quantity, and lifetime AUD (Figure 

4). However, Consumption PRS outperformed (i.e., explained more variance) Problems PRS 

for alcohol consumption phenotypes (Table S32). When the latent factor PRSs and sum 

score PRSs for the same construct were both included in the multiple regression model 

(e.g., Consumption and AUDIT-C PRSs), Consumption PRS outperformed AUDIT-C PRS 

in predicting AUD diagnosis and drinking quantity (but not frequency), while AUDIT-P PRS 

outperformed Problems PRS across all three phenotypes (Table S33).

COGA.—In COGA, PRS results aligned with those observed in UK Biobank, with a few 

exceptions. When both Consumption and Problems PRS were included in the same model, 

only Consumption PRS showed significant associations with drinks per week, MaxDrinks, 

and AUD (Table S34). As observed in UK Biobank, when latent factor PRSs and sum 

score PRSs for the same construct were both included in the multiple regression model, 

Consumption outperformed AUDIT-C PRS, whereas AUDIT-P PRS outperformed Problems 
(Table S35). Interestingly, in those models, we found that the strongest associations were 

between Consumption PRS and AUD, and AUDIT-P PRS and AUD.

BioVU.—We performed two independent PheWASs of Consumption and Problems PRSs 

to identify whether these two factors would show different patterns of genetic associations 

with medical outcomes. Of 1,335 phenotypes, 15 were FDR-significantly associated with 

Consumption (Figure 5, Table S36) and 17 with Problems (Table S37). Both factors 

were significantly associated with AUD and other tobacco and substance use disorders. 

Replicating our previous results for AUDIT-C and AUDIT-P, we observed paradoxical 
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negative associations between Consumption and metabolic conditions, including diabetes 

mellitus and obesity phenotypes, whereas Problems was primarily positively associated 

with other psychiatric disorders, including depression, anxiety disorder, bipolar disorder, 

schizophrenia and suicidal ideation or attempt. Intriguingly, Problems was also negatively 

associated with type 2 diabetes with renal manifestations. Most of the associations did 

not persist after correcting for AUD, although the direction of effects remained consistent 

(Tables S38–39).

DISCUSSION

In the present study, we report the first item-level and largest GWAS of AUDIT to date 

(N=160,824), and we used Genomic Structural Equation Modeling to elucidate the genetic 

etiology of alcohol consumption and problematic alcohol use. By conducting phenotypic 

and genetic factor analyses of the individual AUDIT items, we provide evidence that 

two correlated latent factors (Consumption and Problems) parsimoniously explained the 

covariance in measures of alcohol consumption and problematic alcohol use across both 

levels of analysis. Moreover, by applying empirically-derived weights to the AUDIT items 

in a Genomic Structural Equation Modeling framework, we demonstrated that our method 

can ameliorate confounding biases that have complicated previous work with consumption 

phenotypes (in particular, the bias present in item 1). Notably, both Consumption and 

Problems share a strong, positive genetic correlation with alcohol dependence (both rg~0.7), 

and we show, for the first time, that the polygenic signal of Consumption is strongly 

associated with several AUD phenotypes in three independent cohorts. Finally, the results 

of our bioinformatic analyses further illustrate that Consumption and Problems have unique 

components of their genetic etiology. Collectively, our novel framework provides a means 

to study two genetic liabilities that are more closely related to AUD, and advances our 

understanding of the associated biology in several ways, as we delineate below.

First, we built upon recent investigations of the genetic etiology of AUDs and related traits 

by analyzing each of the ten unique items that comprise AUDIT. At this higher resolution, 

we were able to identify sources of genetic heterogeneity among the items, such as the 

consistently weaker genetic correlations between frequency of alcohol consumption (item 1) 

and other drinking patterns (items 2–3) and AUD symptoms (items 4–10). Our item-level 

approach also allowed us to empirically model the genetic relationships between AUDIT 

items, providing the first empirical evidence of a correlated, two-factor structure for AUD 

symptoms at the genetic level. In doing so, we also generated empirically-derived weights 

to determine how individual items contribute to aggregate measures of alcohol consumption 

and problematic use. This is an important advance from most quantitative or dimensional 

genetic studies of AUDs (and other forms of psychopathology), which often use composite 

score measures that lack statistical justification.

Second, and perhaps most importantly, we found that Consumption was a good 

genetic proxy of AUD when appropriate weights were applied to the individual items 

using Genomic Structural Equation Modeling. This is a striking change from previous 

investigations into the divergent genetic bases of alcohol consumption and problematic use, 

including our own prior analyses of AUDIT. GWASs of alcohol consumption phenotypes 
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have consistently reported low-to-moderate overlap with AUDs that have surprised many 

researchers (2–5), and even paradoxical negative associations with a variety of diseases and 

disorders. Our multivariate approach has ameliorated these issues, producing an aggregate 

measure of alcohol consumption that is more consistent with the known patterns of alcohol 

phenotype associations established in the existing body of literature, such as a strong genetic 

correlation with alcohol dependence. Furthermore, we used genetic correlation analyses 

to characterize the residual genetic variance in frequency of consumption (Frequency 
Residual) that is unrelated to other AUDIT items. These analyses revealed that Frequency 
Residual had consistently positive associations with measures of socioeconomic status and 

consistently negative associations with measures of substance use and psychopathology. 

Indeed, these genetic correlations are very similar to those observed in GWASs of AUDIT-

C (4, 5) and other GWASs of alcohol consumption (3, 4), suggesting that single-item 

frequency-based measures of alcohol consumption may be particularly susceptible to 

confounding and/or selection bias. For example, Marees and colleagues (38) reported 

that greater frequency of alcohol consumption was associated with higher socioeconomic 

status and lower risk of other psychiatric and substance use disorders in UK Biobank. In 

population-based cohorts with a “healthy volunteer” bias, such as the UK Biobank, the 

relationship between frequency of alcohol consumption and aspects of physical and mental 

health may not be fully generalizable (39). This degree of bias, we speculate, will likely vary 

from population to population.

Third, we confirmed that the genetic contributions to alcohol consumption are partially 

distinct from those pertaining to problematic consequences of alcohol use. In-silico 
analyses revealed the value of dissecting the two phenotypes, as gene- and transcriptome-

based analyses identified partially divergent biological mechanisms for Consumption and 

Problems. For example, the corticotrophin receptor gene (CRHR1), which has been 

associated with alcohol use in animals and humans (40, 41), was associated with 

Consumption only. As a result, we are now beginning to uncover genetic signals for aspects 

of alcohol involvement that have the potential to be further analyzed at the molecular, 

cellular and circuit level in cellular and animal model systems.

Fourth, we found that Consumption PRS was strongly associated with AUD even in higher-

risk cohorts like COGA. This demonstrates the important downstream effects of allowing 

items to have different weights in phenotype construction. Whereas our current and previous 

PRS for AUDIT-C have been disproportionately influenced by a single item (frequency 

of consumption)(42), our Consumption PRS was composed of the genetic effects shared 

among all consumption-focused items. The Consumption and Problems PRSs were both 

strongly associated with AUD in UK Biobank – even when both scores were entered in the 

same model. In COGA, both Consumption and Problems PRSs were associated with AUD, 

but Consumption PRS was more strongly associated than Problems PRS. The increased 

influence of binge drinking (item 3), which had a large factor loading on Consumption, may 

be partially responsible for these stronger associations in a high-risk sample. However, it is 

perhaps more likely that these differences might be simply explained by differences in item 

endorsement and thus predictive power of the discovery GWASs (e.g., Consumption had a 

greater mean χ2 than Problems).
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Finally, our comprehensive PheWAS analyses have linked different facets of AUD liability 

(via the latent factor-based Consumption and Problems PRSs) to a myriad of health-

related outcomes in a large, independent biobank. We found that the Consumption PRS 

was consistently negatively associated with a broad range of metabolic and congenital 

conditions. While it is possible that there is still residual bias in the discovery GWAS, 

it is important to note that this pattern of paradoxical associations with Consumption is 

not observed in the genetic correlation analyses. Thus, it is possible that these negative 

associations are illustrative of selection bias or other confounding in BioVU (43), where 

patients with certain conditions may elect to not drink due to unmeasured factors (e.g., 

family history, medical advice, contraindications for prescriptions). Mirroring the genetic 

correlation results, we also found that the Problems PRS was uniquely associated with 

numerous psychiatric disorders that are commonly reported to co-occur with AUD. 

However, and importantly, we identified that the associations between Problems PRS and 

mental health did not persist in the absence of the clinical manifestation of AUD. These 

findings suggest that the associations with mental health are not the result of horizontal 

pleiotropy. Instead, they may be either (i) a consequence of AUD, (ii) correlated with other 

risk factors for AUD (along and/or aside from genetic risk), or (iii) related to ascertainment 

of patients with diagnosed AUD in the medical record. These results also encouragingly 

suggest that treating AUD could have widespread improvements in overall health.

These findings should be interpreted in light of several limitations. Regretfully, AUDIT 

is a self-report that can be influenced by misreporting, and it only captures alcohol use 

in the past year, so can be influenced by longitudinal changes in drinking that may be a 

consequence, for example, of other illnesses (44). People who stopped drinking or never 

drinkers might represent genetically distinct groups; in our dataset 4,511 individuals were 

never drinkers, and 4,290 were previous drinkers. While our approach has substantially 

reduced bias in AUDIT without excluding any individuals from discovery, future studies 

might consider employing multiple techniques (e.g., separate never drinkers from former 

drinkers) to further alleviate potential biases associated with frequency of alcohol use in 

population-based cohorts. Additionally, while the AUDIT PRSs tended to perform similarly 

in UK Biobank and COGA, the portability of PRSs can be influenced by demographic 

characteristics such as the socio-economic status, age or sex (45). It remains to be 

determined how generalizable the genetics of AUDIT are across different populations, 

especially in samples of different ancestries (as we have only included individuals of 

European ancestry in the present study) or cultures (UK vs US). A similar point also 

applies to sex-stratified samples, considering that AUDIT scores differ in men and women. 

Finally, it is important to note that the Problems PRS exhibited weaker associations with 

AUD and other alcohol phenotypes in comparison to its AUDIT-P counterpart. Although 

the two predictors generally had similar effects in single PRS models, the Problems PRS 

was rendered redundant in the cross-method analyses when both of the highly correlated 

AUDIT-P and Problems PRSs (e.g., r = .84 in UK Biobank) were included in the regression 

models. However, we caution against the interpretation that the univariate GWAS approach 

is preferable. The multivariate GWAS function of Genomic Structural Equation Modeling is 

not only more flexible than traditional univariate GWAS, but its results may also be more 

robust to confounding, as the software automatically applies a correction for population 
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stratification (20). Furthermore, Genomic Structural Equation Modeling is better suited 

to investigate nuanced genetic influences, including the possibility to identify SNPs with 

heterogeneous effects across symptoms or items.

Analyzing alternative phenotypes as a complementary approach to studying clinically-

defined AUD, and psychiatric disorders in general, has generated considerable interest 

in recent years (46). Collectively, our work demonstrates how AUDIT can inexpensively 

facilitate such efforts. Here, we have shown that, after correcting for some potential 

biases, item- or symptom-level analyses can help unpack the genetic etiology of AUD by 

breaking down genetic influences into specific and shared components; notably, this is only 

possible because we can contrast our results against gold standard, clinically-ascertained, 

AUD GWAS datasets. While composite scores have shown some utility in previous 

genetic association studies, such studies often rely on strong assumptions that the scale 

is unidimensional, and that each item is equally informative of the construct being measured. 

In the present paper, we have shown that the latter assumption is false for the AUDIT. In 

particular, a large proportion of the genetic variance of item 1 appears to be uninformative 

of a broader consumption construct, as it covaries with. Moreover, although we found a 

conspicuous degree of unidimensionality among the AUDIT items, our results demonstrate 

that Consumption and Problems remain distinct in their associations with human health.
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Figure 1. 
Genetic relationships between AUDIT items. Path diagram of the best fitting genetic 

confirmatory factor model for AUDIT, as estimated with Genomic Structural Equation 

Modeling. All parameter estimates are standardized, and standard errors are presented in 

parentheses. The genetic components of items and factors (denoted by g) are inferred 

variables that are represented as circles. Regression relationships between variables are 

represented as straight one-headed arrows pointing from the independent variable(s) to the 

dependent variable(s). Covariance relationships are depicted as curved two-headed arrows 

linking two variables. The variances for factors are represented as a two-headed arrow 

connecting the variable to itself, as are the residual variances for individual items (denoted 

by u). As item 6 was included via factor extension, its parameter estimates are illustrated 

using dashed lines.
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Figure 2. 
Genetic correlations between latent AUDIT phenotypes and other complex traits. Bar charts 

of the genetic correlation (rg) results for three AUDIT phenotypes: Consumption (green), 

Problems (blue), and Frequency Residual (gray). Point estimates and corresponding standard 

errors (SEs) are displayed for select phenotypes related to substance use, psychopathology, 

impulsivity, cognition, and socioeconomic factors. Full results are reported in Table S8.
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Figure 3. 
Multivariate genome-wide association analyses for the latent genetic factors. Miami plot for 

the two latent genetic factors: Consumption (top) and Problems (bottom). Approximately 

independent lead SNPs are labeled with a white diamond. For each lead SNP, the neared 

gene is labeled. Additional symbols convey findings from additional biological annotation; 

filled symbols indicate that the gene was identified in the corresponding pipeline, while 

empty symbols indicate that the gene was not. The y-axis refers to the significance on a 

-log10 scale, the x-axis refers to chromosomal position, the horizontal dotted line marks 

suggestive significance (p = 1E-5), and the horizontal dashed line denotes genome-wide 

significance (p = 5E-8).
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Figure 4. 
Associations between Consumption and Problems PRS and selected alcohol-related 

phenotypes. Bar charts of the variance explained by Consumption and Problems PRS 

for various clinical and quantitative measures of alcohol use. Values correspond to the 

proportion of variance explained the outcome (R2 or pseudo R2 depending on the use of 

linear or logistic regression; see Supplementary Section 7 for more details). Results for 

the independent UK Biobank subsample are presented on the left, while results for the 

independent COGA cohort are presented on the right. Please note that the COGA models are 

not directly comparable to those from the UKB models, as mixed-effect models were used 

in COGA. Please also note that the R2 for each PRS is calculated from a single PRS model 

and, as such, the values not independent (due to shared variance between PRSs). Complete 

results are available in Tables S32–S35.
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Figure 5. 
Phenome-wide association study of polygenic risk scores for Consumption (left panel) 

and Problems (right panel) against 1,338 diseases available in the biobank from 

Vanderbilt University Medical Center, BioVU. PheWAS of both Consumption and Problems 
revealed positive genetic associations with alcohol use disorders. Problems was positively 

genetically associated with multiple psychiatric conditions, whereas Consumption was 

counterintuitively negatively associated with metabolic conditions. Importantly, most of the 

associations disappear when adjusting for alcohol use disorders diagnosis (non-significant 

associations are highlighted in gray).
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