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ABSTRACT
Background: Toll-like receptors (TLRs) are important components of the innate and adaptive
immune systems, and abnormal TLR expression has been linked to a variety of cancers.
However, there was a lack of clarity on the association of TLR stimulation with the carcinogen-
esis of cancer. The study’s goal was to analyse the clinical importance of TLRs expression at the
mRNA level in pan-cancer datasets, as well as the link between TLR expression and carcinogen-
esis, progression, and clinical prognosis.
Methods: The expression profile of TLRs derived from UCSC pan-cancer data was analysed in
multiple dimensions, including clinical analysis, immunological subtype analysis, tumour micro-
environment (TME) analysis, tumour stem cell correlation analysis, and drug sensitivity analysis.
Additionally, we analyse protein-protein interactions, functional enrichment, and chromatin
accessibility, as well as TLR expression in single-cell sequencing data.
Results: Our multi-omics analysis results imply that TLRs may operate as a biological marker for
carcinogenesis and progression, a potential target for anti-tumour therapy, and a prognostic bio-
marker, laying the theoretical groundwork for future translational medicine research.
Conclusion: TLRs are involved in the formation of malignancies and can be explored in further
detail as potential prognostic indicators.

KEY MESSAGES

� Toll-like receptors (TLRs) are key factors in the process of the innate and adaptive immune
response, and their aberrant expression of TLRs have been widely reported in various cancer.
However, the association between TLRs stimulation and tumorigenesis of cancer has not
been well clarified.

� In this study, in the pan-cancer data, integrated TLR family gene expression analysis, clinical
correlation analysis, immune subtype correlation analysis, tumour microenvironment correl-
ation analysis, tumour stem cell correlation analysis, and drug sensitivity correlation analysis
were performed.

� TLRs play an important role in the development of tumours and can be studied in depth as
potential prognostic markers.
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1. Introduction

TLRs are a type of pattern-recognition receptors (PRRs)
expressed in immune cells. They are best known for
their pathogen defense function, which involves the

recognition of damage-associated molecular patterns
(PAMPs) such as bacterial lipopolysaccharide and flag-
ellin, as well as RNA produced during virus replication.
TLRs, on the other hand, are involved in the
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identification of several endogenous ligands, including
damage-associated molecular patterns (DAMPs) gener-
ated by dying or wounded cells [1]. The human body
contains a total of 13 TLR genes, of which TLR1-10 are
protein-coding genes and TLR11-13 are pseudogenes.
Notably, unlike the majority of other TLR genes, TLR8-
AS1 is an RNA gene that belongs to the lncRNA class.
The TLR family is categorised into two subgroups
based on their position: TLR1, �2, �4, �5, �6, and
�10 on the cell surface, and TLR3, �7, �8, and �9 on
the intracellular endosome [2,3]. TLR contains both
external and intracellular domains as a type I trans-
membrane glycoprotein. The former contains the leu-
cine repeat sequence and detects ligands selectively.
The latter contains the Toll-interleukin 1 (IL-1) receptor
domain (TIR) and activates downstream signalling
pathways such as the NF-B, p38-MAPK, and JUN-
kinase [4].

TLRs are broadly dispersed in numerous immune
cells, including macrophages, dendritic cells (DC), neu-
trophils, B cells, epithelial and endothelial cells [5], as
well as tumour-associated macrophages (TAMs) [6,7].
Apart from tumour-infiltrating immune cells, other
tumour cells exhibit TLR activation [8,9]. TLRs can play
a critical role in tumour initiation and progression by
regulating the immune system, yet persistently acti-
vated TLRs can potentially produce a chronic inflam-
matory milieu and drive carcinogenesis [10].

Given that genes in the TLR family have distinct
ligands and downstream mechanisms of action in vari-
ous malignancies, the precise activities of several of
these genes remain unknown [11]. Considering TLR’s
unique double-edged sword effect of being both pro-
and anti-tumour, it is worthwhile to do a comprehen-
sive investigation of TLR expression in pan-cancer. The
expression of TLR in pan-cancer was discovered in this
investigation. Additionally, we explored the correlation
between TLR genes and clinical overall survival (OS),
tumour immune subtype, interstitial microenviron-
ment, tumour stem cells, and drug sensitivity using a
multi-omics analysis at the genomics, transcriptome,
and proteome levels, as well as preliminary experi-
mental validation. The findings demonstrated a strong
correlation between TLRs and tumour growth and clin-
ical prognosis, emphasising the importance of add-
itional translational medicine research.

2. Materials and methods

2.1. Data downloading and interpretation

Our analysis is based entirely on data from existing
databases. The mRNA sequencing data, clinical data

(including phenotype and overall survival), immuno-
logical subtype, and stemness score information for 33
types of tumours [12] and paired adjacent tissues (a
total of 11,057 samples) were retrieved from the UNSC
Xena website (http://xena.ucsc.edu/). Among the
above, the mRNA level expression was quantified
using Fragments per Kilobase of transcript per Million
mapped reads (FPKM), and survival data were down-
loaded from TCGA cancer datasets collected by
Genomic Data Commons (GDC) (version, 07-19-2019),
whereas the phenotype information was obtained
from GDC-collected TCGA cancer datasets (version, 08-
07-2019). Additionally, we downloaded immunological
subtypes and stemness scores assessed by DNA
methylation and RNA expression from the TCGA Pan-
Cancer (PANCAN) datasets (version, 2018-04-03). After
translating the ensemble ID to the gene symbol (offi-
cial name) in R, the expression profiles of TLR1, TLR2,
TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10,
TRL12P, and TLR8-AS1 were retrieved for further study.

Additionally, we downloaded all ATAC-seq count
matrices for cancer types from the GDC data portal
(https://gdc.cancer.gov/about-data/publications/ATACseq-
AWG), which included 23 TCGA cancer types (Table S2),
410 tumour samples, 796 chromatin accessibility
atlases, and 562,709 transposase-accessible DNA ele-
ments [13].

2.2. Differentially expressed TLR genes analysis
and correlation analysis

We used differential expression studies with the
Wilcox test to elucidate the general rule of transcrip-
tome expression in pan-cancer. To assure the study’s
significance, the analysis process included only cancer
species with at least two adjacent specimens (23 of
the 33 TCGA cancers). Besides, FC (fold change) values
of TLR expression level between paired samples were
obtained for further detection. Then, we utilised box-
plots and a heatmap to illustrate the differences in
TLR expression between cancer and surrounding tis-
sues: The colour in the heatmap denotes log2FC value.
Colour red means that the gene is up-regulated in the
tumour, Colour blue shows that the gene is down-
regulated, and colour white indicates that there is no
variation in expression levels. In general, a TLR expres-
sion level with a log2FC value > 1 or < �1 was con-
sidered differentially expressed. In view of the putative
regulatory relationship between genes of the same
family, we ran liner correlation analysis with t test on
the expression level of TLR genes in pan-cancer data.
The significance level was established at two pairs
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p< .05. Correlation and significance values were dis-
played in the heatmap as correlation coefficients, col-
ours, and sizes of dots.

2.3. Clinical correlation analysis of TLR genes

The Kaplan-Meier method was utilised to generate sur-
vival curves of patients with above and below the
median TLR expression, respectively, using follow-up
time as the horizontal axis and survival rate as the ver-
tical axis in a study of 33 cancer patients. We also
used the log-rank test to look for any significant
changes in the factor of survival time (two pairs
p< .05). The COX proportional hazard model with v2
test was carried out to perform multi-factor analysis
and to evaluate effected TLR genes on the prognosis
using hazard ratio. Furthermore, liner correlation anal-
yses of TLR expression with clinical outcomes such as
tumour stage, grade, and recurrence were conducted.
When the P value on both sides was less than .05, the
difference was declared statistically significant.

2.4. Immune type correlation analysis of
TLR genes

In pan-cancer research, the immune microenvironment
characteristics were used to classify tumour tissues
into immune subtypes, which are currently classified
as Wound Healing (Immune C1), IFN-gamma
Dominant (Immune C2), Inflammatory (Immune C3),
Lymphocyte Depleted (Immune C4), Immunologically
Quiet (Immune C5), and TGF-beta Dominant (Immune
C6) [14]. We used the Kruskal test to identify differen-
tially expressed TLR genes in six distinct immuno-
logical subtypes in order to determine if TLR genes
have an effect on immune infiltration patterns. p< .05
was considered significant for two pairs.

2.5. Tumour microenvironment correlation
analysis of TLR genes

The microenvironment scores were calculated using
the ESTIMATE (Estimation of Stromal and Immune cells
in Malignant Tumour tissues Using Expression Data)
algorithm [15]. Three scores were applied to measure
microenvironment data: stromal score, immune score,
and estimation score. The stromal score indicates the
number of stromal cells (fibroblasts and vascular endo-
thelial cells) in tumour tissues; the immune score indi-
cates the number of immune cells (T cells and B cells);
and the estimated score indicates the total of the stro-
mal and immune scores. A higher estimate score

suggests that the tumour is less pure. Spearman cor-
relation analysis was used to determine the relation-
ship between the expression levels of TLR genes in 33
tumour tissues and the three scores. And the results
were shown using heatmaps.

2.6. Tumour stemness correlation analysis of
TLR genes

Cancer stem cells (CSCs) are tumour cells that have
the ability to self-renew and differentiate into different
types of tumour cells. Typically, these cells are identi-
fied as having the potential to promote tumour forma-
tion, progression, recurrence, and resistance to
treatment. Stemness scores for tumour samples are
generated using DNA methylation (DNAss) and mRNA
expression (RNAss) data. They range from 0 to 1 and
are calculated using the one-class logistic regression
(OCLR) technique [16]. In general, a higher score sug-
gests more stem cell characteristics. Similarly,
Spearman correlation analyses were used to determine
the relationship between the expression of TLR genes
and the stemness scores of each type of cancer.
Heatmaps were used to display the results.

2.7. Drug sensitivity analysis of TLR genes

Cell Miner database (version, 2.2, https://discover.nci.
nih.gov/cellminer/) offered processed datasets of
matched mRNA sequencing and compound activity
data (NCI-60 cell line sets maintained by the National
Cancer Institute of the United States of America) for
drug sensitivity study [17,18]. The z score in a com-
pound’s activity profile indicates the cell’s sensitivity
to the medication. The greater the value, the more
potent the drug’s anticancer activity. Pearson correl-
ation analysis was used to determine the relationship
between the level of TLR gene expression and the z
score of each chemical. It should be highlighted that
the correlation analysis included only FDA-approved
medications and clinically validated substances.

2.8. Tmb correlation analysis and genomic
alteration of TLR family in pan-cancer

Tumour mutation burden (TMB) is defined as the total
number of non-synonymous mutations inside the
exon coding region per megabase of the genome
studied. Currently, it is considered that the greater the
TMB value, the more types and numbers of neoanti-
gens created by the tumour, and thus the greater the
probability of being recognised by the immune
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system. As a result, tumour patients with a high TMB
(TMB: >20 mutations/mb) are more susceptible to
immune therapy, such as PD-1/PD-L1 inhibition [19]. A
thorough analysis of TMB in 33 different cancer types
was conducted in order to characterise the mutation
in the form of log10 (TMB þ 1), using an algorithm
described by Lawrence et al. [20]. Following that,
Pearson correlation analyses were performed between
TMB and TLR family mRNA expression levels.

Moreover, we used the cBioportal browser (version,
3.4.16, http://www.cbioportal.org) [21] to identify TLR
family genomic variants in a pan-cancer analysis, with
an onco-print illustrating the mutation spectrum
across several malignancies.

2.9. Interaction of TLR family at the protein level

The first step was to determine the overall protein
level expression of TLR family members in cancer and
neighbouring normal tissues using immunohistochem-
istry (IHC) results from the Human Protein Atlas data-
base (version, 19.3, https://www.proteinatlas.org/) [22].
To determine the interaction of TLRs at the protein
level, an online bioinformatic analysis of the proteome
and RPPA data from diverse tumour types was per-
formed using the LinkedOmics browser (www.linkedo-
mics.org/) [23].

2.10. Functional enrichment analysis of TLR family
and pathway-level analysis in pan-cancer

We began by annotating TLR genes using GO (Gene
Ontology, version, 10.5281/zenodo.3954044, available
at http://geneontology.org/) [24] and KEGG (Kyoto
Encyclopaedia of Genes and Genomes, Version, 95.0,
https://www.genome.jp/kegg/) function enrichment
analysis [25] to determine the location, molecular
function, and biological process of gene products, as
well as to examine the signalling pathways linked
with TLRs.

Then, using the methodology described by Sanchez-
Vega et al., we analysed the prevalence of somatic
mutations in canonical pathways to validate the path-
way modification linked with the TLR family across dif-
ferent tumour types [12]. The 33 TCGA cancer types
were subdivided into 64 genomically distinct tumour
subtypes, and both pathway members (oncogene acti-
vating events and tumour repressing gene inactivating
events) and individual alterations (statistical recurrence
and presumed function impact) of key genes defied as
functional importance were included in the analysis. To
further validate the association between the TLR family

and signalling, we created a protein-protein interaction
(PPI) network using the String database (Version, 11.0 b,
https://string-db.org/) [26].

2.11. Expression of TLR family in single-
cell genomics

Because high-throughput mRNA sequencing employs
tissue samples made up of a mixture of millions of
cells, the results represent an average of gene expres-
sion, reflecting only the expression pattern in the
numerically dominant cell population. In comparison
to conventional mRNA sequencing, single-cell RNA
sequencing (scRNA-Seq) generates an individual gen-
etic profile for each cell and identifies uncommon cells
from diverse tumour samples, allowing for the explor-
ation of features specific to a single cell. During this
process, individual cells are isolated, their transcripts
are captured, and sequence libraries are generated, as
well as individual cells are mapped to the transcripts.

In our study, we used scRNA-Seq data from various
common tumour tissues, including colorectal cancer
(Accession no. E-MTAB-8410) [27] (Accession no. E-
MTAB-8410), lung cancer (Accession no. E-MTAB-6308)
[28], and head and neck squamous cell carcinoma
(Accession no. SRP226817) [29], which were collected by
the Single Cell Expression Atlas database (version, 12-
October-2020, https://www.ebi.ac.uk/gxa/sc/release-notes.
html) [30]. Results were visualised as t-SNE figures.

2.12. Chromatin accessibility analysis of
TLR family

The Assay for Targeting Accessible-Chromatin with
High-Throughput Sequencing (ATAC-Seq) technique
[31] is a relatively new method for detecting accessible
chromatin at the genome-wide level. In this section, we
downloaded and arranged ATAC-Seq peak counts
matrices for various cell lines. These matrices were then
combined with the TLR mRNA expression matrix in R.
We annotated the data with the names of the
sequenced chromosomes, starting and finishing sites,
genomic characteristics, ensemble ID, and gene name
after Pearson correlation analysis between peak counts
of a certain chromosomal region and mRNA expression
level. The graphic images depicted the link between
TLR gene sites and peak counts within each cell line.

2.13. Statistical analysis

We used Perl (Practical Extraction and Report
Language, https://www.perl.org), R software (version
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3.6.1, http://www.r-project.org; Institute for Statistics
and Mathematics, Vienna, Austria), and Bioconductor
packages (http://www.bioconductor.org/packages/release/
bioc/html/impute.html) to further process and analyse
raw data. And a P value less than .05 for the two tails
was considered significant.

3. Result

3.1. The differentially expressed TLR genes and
their co-expression in pan-cancer

The entire process of this study is depicted in Figure
1, and TLR gene expression profiles are included in
Figure 2. As reported in Figure 2A, TLR2 and TLR4
were found to be overexpressed; TLR3 and TLR5 were
at medium levels; TLR6, TLR7, TLR8 and TLR10 were at
low levels. Additionally, TLR9, TLR8-AS1, and TLR12P
were infrequently detected in these cancer tissues.

We discovered that the majority of TLR genes were
usually up- or down-regulated in different cancer tis-
sues to varying degrees based on differential expres-
sion analyses in cancer and surrounding tissues in 23
cancer types. TLR2 and TLR8-AS1 expression was
increased in the majority of tumours, although TLR2
expression was decreased in LUSC (P0.001), LUAD

(P0.001), PRAD (P0.001), BRCA (P0.001), and LIHC
(P0.001), and TLR8-AS1 expression was specifically
decreased in LUSC (P0.001) and PRAD (P0.001). TLR1,
TLR3, TLR4, TLR5, and TLR12P were all down-regulated
in the majority of malignancies. TLR3 was not up-
regulated in any of the cancer tissues tested, whereas
TLR1 was inversely up-regulated only in KIRC (P0.01),
CHOL (P0.05), and GBM (P0.001). Only KIRC (P0.001)
and GBM (P0.05) demonstrated increased TLR4 expres-
sion. TLR5 expression was significantly increased in
LIHC (P0.001), GBM (P0.01), and CHOL (P0.001). TLR12P
transcriptional expression was significantly increased
in THCA (P0.01) and KIRC (P0.001). Additionally, TLR6,
TLR7, TLR8, TLR9, and TLR10 expression was up- or
down-regulated in different cancer species (Figure
2B, D).

Additionally, there is a generally positive connec-
tion between the co-expression of TLR genes, demon-
strating that TLR genes have a universal co-expression
relationship (Figure 2C). Notably, there are some
strong correlations between TLR1 and TLR6 (R¼ 0.79),
TLR1 and TLR7 (R¼ 0.72), TLR1 and TLR8 (R¼ 0.72),
TLR7 and TLR8 (R¼ 0.69), and TLR1 and TLR2
(R¼ 0.66), showing that those genes share some type
of expression or functional relationship. Given that
TLR4 and TLR6 have been shown to form

Figure 1. Flow chart.
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heterodimers, our co-expression data corroborated the
relationship [26].

3.2. Clinical correlation analysis of TLR genes

Kaplan-Meier and COX regression analysis demon-
strated that all TLR genes, at the mRNA level, were

capable of classifying patients into groups with a
good or bad prognosis in at least three forms of can-
cer. The 15 survival analysis results with the lowest P
values are depicted in Figure 3A, alphabetically by
gene name. Indeed, determining the precise effect of
TLR expression on the clinical fate of cancer patients
has been difficult, as high expression of a particular

Figure 2. Differentially expressed TLR genes analysis and correlation analysis in various cancers. (A) Expression profile of TLR
genes in pan-cancer. (B) Differential expression analysis: Red indicates that the gene is up-regulated in the tumour; blue indicates
down-regulated; and white indicates no difference in expression levels. The density represents the log2 (fold change) value. (C)
Co-expression analysis between TLR family. (D) The expression level of each TLR gene in different cancer.
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TLR in different cancer types might be associated with
a favourable prognosis or can also result in a
poor outcome.

For example, high TLR2 expression in SKCM
(p< .001) indicated a longer survival duration for
patients, whereas low TLR2 expression in LGG (p< .001)
suggested a shorter survival period for patients.
Additionally, increased TLR3 expression was related to a
favourable prognosis in KIRC (p< .001) and SKCM
(p< .001) samples, but not in LGG (p< .001).

On the one hand, TLR3, TLR4, and TLR10 were the
most strongly associated with survival within the TLR

family. TLR3 and TLR10 were found to be significant
in nine malignancies, while TLR4 was shown to be
significant in eight cancers. TLR5, TLR7, and TLR8-
AS1 were found to be significant in seven cancers
each. On the other hand, TLR gene expression had
the greatest effect on the prognosis of SKCM, LGG,
and KIRC. Additionally, nine TLR genes were shown
to be substantially associated with the prognosis of
SKCM patients, eight with the prognosis of LGG
patients, and seven with the prognosis of KIRC
patients. In a nutshell, the results above revealed
that TLRs, particularly TLR3, TLR4, and TLR10, had

Figure 3. Clinical correlation analysis of TLR genes in pan-cancer. (A–P) Survival analysis of TLR genes shown as K-M curves. (Q)
COX regression analysis of TLR genes.
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the potential to serve as clinical prognostic
indicators.

Cox proportional hazards regression was used to
further investigate the relationship between TLR and
clinical outcomes (Figure 3B). Among these, TLR8-AS1
expression was associated with a favourable prognosis
in up to seven malignancies, including LAML (HR ¼
3.86, p< .05), GBM (HR ¼ 7.07, p< .001), KIRC (HR ¼
1094.82, p< .05), ACC (HR ¼ 3928.22, p< .01), THCA
(HR ¼ 996958.39, p< .01), LGG (HR ¼ 27894655.28,
p< .01), and KICH (HR ¼ 92551036.36, p< .05). This
occurrence may be related to the lncRNA’s regulatory
functions. TLR7 expression was found to be a signifi-
cant risk factor for six different forms of cancer: BLCA
(HR ¼ 1.33, p< .05), KIRC (HR ¼ 1.66, p< .01), LGG (HR
¼ 2.17, p< .001), KIRP (HR ¼ 2.52, p< .01), and THYM
(HR ¼ 3.23, p< .05). Additionally, TLR2 and TLR6
expression were found to be poor predictive markers
for five distinct forms of cancer, respectively.

Following that, we conducted investigations of the
connection between TLR expression and clinical events
in order to further establish the clinical relevance of
TLR family expression levels. In terms of clinical stages,
we discovered that the expression levels of multiple
TLR family members, including TLR3, TLR4, TLR8,
TLR10, and TLR8-AS1, were significantly different
between stage I and IV of BRCA, COAD, HNSC, and
STAD (Figure S1), implying the involvement of the TLR
family in tumour progression mechanisms, which may
have implications for diagnosis and clinical
risk prediction.

3.3. Immune subtype analysis of TLR genes

To a certain extent, the immunological subtype of can-
cer is strongly associated with its incidence, progres-
sion, and clinical prognosis. We discovered that TLR
gene expression levels varied considerably between
the six immunological subtypes of pan-cancer
(p< .001). TLR1, TLR2, TLR3, TLR4, and TLR5 expression
levels were high across the six immune subtypes in
the pan-cancer data; TLR6, TLR7, TLR8, and TLR10
expression levels were moderate; and TLR9, TLR12P,
and TLR8-AS1 expression levels were extremely low. In
general, the levels of expression of various genes were
relatively high in C6. Figure S2A).

TLR gene expression varied significantly among the
six immunological subtypes found in various cancer
types. For instance, whereas the expression trend in
LUAD was generally identical to that in pan-cancer,
TLR9 was not differentially expressed amongst any of
the six immunological subtypes. Additionally, TLR2

gene expression was significantly higher in C3 and C4
(p< .001), and the overall expression level of TLR8-AS1
also increased (p< .05). TLR gene integral expression
levels were lower in LIHC, SARK, and SKCM, indicating
that TLR genes were substantially expressed in C2 or
C6 but were absent in C1 (Figure S2C–5E). Given that
the TLR family is associated with immune-related
genes, we hypothesised that detecting TLR expression
fingerprints across different cancer types or samples
could aid in developing more accurate and effective
immunotherapies.

3.4. Tumour microenvironment analysis of
TLR genes

In addition to tumour cells, there are immune and
stromal cells in tumour tissue, which form the micro-
environment, and constant communications between
tumour and non-tumour cells jointly regulate the
growth of neoplasm. The association between TLR
gene expression levels and the stromal score,
immunological score, and estimation score was exam-
ined in 33 TCGA tumour samples. It may allow us to
better understand their involvement in the tumour
microenvironment and purity, which were found to be
substantially connected with clinical, genetic, and bio-
logical aspects of individuals with malignancies.
Almost all malignancies had a substantial positive cor-
relation between TLR gene expression and the num-
ber of interstitial cells, most notably in the study
results for TLR1, TLR2, TLR4, TLR6, TLR7, TLR8, and
TLR10 genes (Figure S3), consistent with the PRRs
function of the TLR family.

3.5. Stem cell characteristics analysis of TLR genes

In this study, we employed stemness indices such as
RNAss (derived from mRNA expression) and DNAss
(derived from DNA methylation signature) to evaluate
stemness traits that indicate self-renewal and dediffer-
entiation potential. Due to the fact that RNAss and
DNAss use distinct input files, their findings may be
inconsistent. Correlation examination of TLR expres-
sion and stemness index, on the other hand, demon-
strated that both RNAss and DNAss had a high degree
of connection with TLRs for the majority of
malignancies.

TLR gene expression was significantly negatively
associated with RNAss (Figure S4A) in BLCA, BRAC,
CESC, COAD, DLBC, ESCA, KIRP, LGG, LUAD, LUSC,
READ, and STAD tumours, implying that tumours with
high TLR expression exhibited a higher degree of
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differentiation and lacked cancer stem cell characteris-
tics. It’s worth noting that TLR1, TLR2, TLR3, TLR7,
TLR8, and TLR9 were adversely connected with RNAss
in the majority of cancers, but favourably correlated
with RNAss in a very small number of tumours (KIRC,
MESO, LAML, CHOL, KICH and THYM). Additionally,
TLR8-AS1, a lncRNA, demonstrated a positive connec-
tion with RNAss in ACC, CHOL, SARC, TGCT, and
THYM, which was inconsistent with the expression
trends of other TLR genes. Given this, we hypothesised
that TLR1, TLR2, TLR3, TLR7, TLR8, and TLR9 would be
involved in a negative regulatory mechanism medi-
ated by TLR8-AS1 that contributes to the maintenance
of cancer stem cell features.

Although there was a considerable association
between TLR family expression and DNAss in cancers,
the positive or negative correlations between 33
tumours were quite diverse (Figure S4B). DNAss ana-
lysis revealed that while high TLR gene expression was
adversely connected with stem cell features in the
majority of malignancies, it was positively correlated
in a few tumours (ACC, CHOL, KIRP, LAML, LGG, PCPG,
PRAD, THCA, THYM, and UVM). As a result, the associ-
ation between TLRs and DNAss cannot be established
definitively.

Additionally, we examined the link between TLR
family genes and the intratumor microenvironment
and stemness index in single tumour data from BRCA,
COAD, HNSC, and LIHC (Figure S5), and the correlation
pattern remained consistent with the pan-cancer
trend. TLR4 and TLR7 were the most strongly corre-
lated with tumour stemness features, but TLR9 had an
undefined connection with the stemness index in vari-
ous malignancies, and TLR4, TLR7, and TLR8 were the
most associated with the tumour microenvironment.
The verification results above were consistent with the
findings of the study on pan-cancer.

3.6. Drug sensitivity analysis of TLR genes

For correlation analysis, the data on drug sensitivity (z-
score) of the various lines of cancer cells derived from
the Cell Miner database and the TLR family of gene
expression were employed. And Figure 4 displays the
16 results with the highest correlation coefficients,
sorted by Cor value. The investigation revealed that
the degree of expression of all ten protein-coding
genes in the TLR family can alter tumour cells’ sensi-
tivity to certain medications. Among them, TLR9 was
the most highly linked gene with drug sensitivity, and
it also influenced the activity of the most drug types
(up to 81). TLR9 expression was positively linked with

sensitivity to the majority of inhibitors, implying that
patients with high TLR9 expression may be more sus-
ceptible to anti-tumour treatment. However, it is
worth mentioning that TLR7 and TLR9 expression lev-
els were negatively linked with cancer cell sensitivity
to Irofulven, an alkylating agent, indicating that as
TLR7 and TLR9 expression levels grew, the risk of
Irofulven resistance increased. We hypothesised that this
occurrence could be explained by the positive associ-
ation between TLR7, TLR9, and DNAss, although the spe-
cific mechanism required additional investigation.

3.7. Correlation of TLR family and TMB in
pan-cancer

The TMB (in the form of log10 (TMB þ 1)) of 33 TCGA
tumours was plotted in Figure 5A, from smallest to
greatest in terms of the median frequency of somatic
mutations. As illustrated in the image, SKCM, LUSC,
LUAD, and BLCA were all malignancies with a signifi-
cant mutation rate. Among them, ultraviolet radiation
is a clear mutagenic factor in SKCM, smoking is clearly
associated with the development of lung cancer (squa-
mous cell carcinoma and adenocarcinoma, respect-
ively), and unhealthy eating habits such as drinking
are strongly associated with the appearance of gastro-
intestinal tumours such as COAD, STAD, and ESCA.
However, malignant disorders of the neurological and
endocrine systems, such as PCPG and THCA, had lower
TMB levels, implying that environmental features had
some influence on the occurrence of onco-
genic mutations.

Co-expression analysis (Figure 5B) revealed that,
whereas TLR was typically negatively connected with
mutation levels in 33 cancers, a few malignancies
(such as COAD, OV, THYM, and SARC, etc.) were pre-
dominantly positively correlated. Additionally, the
association between the TLR family genes and TMB
remains unknown, but the majority of them showed a
negative correlation with TMB, except for TLR9.

Additionally, as illustrated in Figure 5C, genes in
the TLR family have low-level but rather prevalent
genomic alterations in a variety of malignancies. TLR5
had a mutation frequency of up to 4%, primarily amp-
lification, whereas TLR3 had a mutation frequency of
3%, with deep deletion being more prevalent, and
TLR4 had a mutation frequency of 3%, with the major-
ity of missense variants. Additionally, the content
above indicated that mutant TLRs potentially act as
tumour driver genes.
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3.8. Interaction of TLR family at the protein level

To begin, we determined the TLR family’s protein
expression using the Human Protein Atlas database.
Due to a lack of TLR family immunohistochemical sam-
ples, only TLR3, TLR4, TLR7, and TLR8 staining results
in colorectal cancer, breast cancer, prostate cancer,
and normal tissue were exhibited (Figure 6), which
were largely consistent with the previously reported
mRNA expression. Following that, proteomic research
of several cancers indicated that TLRs interacted with
a variety of proteins implicated in tumour-linked path-
ways such as RTK/RAS, TP53, NF-B, WNT, MYC, and cell
cycle pathways, etc. (See Figure S6).

3.9. Functional enrichment analysis of TLR family
and pathway-level analysis

The functional enrichment analysis (Figure 7A, B) was
performed to confirm the TLR family’s universal func-
tion in various cancers, noting that TLRs were closely
related to a variety of other cancer-related biological
processes, such as PD-L1 expression and the PD-1
checkpoint pathway, except for immune and inflam-
mation response.

As a large number of studies reported that TLR
blockade altered the activity of c-MYC [32–39], a pro-
tein is known to be involved in the regulation of cell
cycle progression, differentiation, apoptosis and

Figure 4. Drug sensitivity analysis of TLR genes.
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Figure 5. Tumour mutation burden analysis. (A) Overall view of tumour mutation frequency of each cancer. (B) Correlation ana-
lysis between TLR genes and tumour mutation burden (TMB): the colour and density of the dots represent the positive or nega-
tive correlation and the value of the correlation coefficient. (C) An onco-print plot shows the genomic alterations of TLR genes in
pan-cancer, containing the genetic alteration, cancer type, and overall survival status information.
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metabolism, we hypothesised that the c-MYC pathway
was involved in the TLR family’s tumour-promoting
mechanism. Taking into account the possibility of car-
cinogenic events associated with frequent genetic
modifications in signalling pathways, we determined
the amount, mechanism and co-occurrence of muta-
tions in the c-MYC pathway across various tumour
types and subtypes, as depicted in the heatmap
(Figure 7C).

MYC, MYCN, MGA, MAX, MLX, MNT, and MXI1 were
the genes examined in the c-MYC pathway, where
mutations in MYC and MYCN were defined as onco-
genes, and mutations in other genes were character-
ised as tumour suppressor genes. Clearly, MYC was
the most frequently changed gene across many
tumour types, followed by MGA. MYC and MYCN had
the largest frequency of amplification, while MGA had
the highest frequency of epigenetic silencing, whereas
other genes were primarily mutated. MYC mutations
were frequent in gynaecologic cancers (high CN UCEC,

63%), breast cancers (normal BRCA, 61%), and HPV-
negative head and neck cancers (NHSC HPV-, 48%).
Furthermore, MGA mutations were most frequently
seen in lung cancer (LUAD, 69%), prostate cancer
(TGCT seminoma, 46%), and HPV-negative head and
neck cancer (TGCT seminoma, 46%). (NHSC HPV-,
37%). On the other hand, lung adenocarcinoma
(LUAD, 115%) exhibited the greatest cumulative c-
MYC pathway change frequency among all tumours.
Other malignancies with a high prevalence of c-MYC
pathway mutations were HNSC HPV- (85%), TCGT
seminoma (72%), and high CN UCEC (70%). This find-
ing indicated that the interaction of TLR and its down-
stream components in the c-MYC pathway played a
role in the incidence and progression of these malig-
nancies. Additionally, the String database’s protein-
protein interaction network established that the TLR
family was intimately tied to not only the well-
recognised NF-jB pathway but also the c-MYC path-
way, especially MYC protein (Figure 7D).

Figure 6. The expression level of TLR3, TLR4, TLR7, and TLR8 in the proteomics level.
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Figure 7. Functional enrichment analysis of TLR family. (A) GO-term function enrichment analysis. (B) KEGG pathway enrichment
analysis. (C) C-MYC pathway alterations: a shade of dark red refers to alterations of amplification, and pink represents deletion.
The dark and light green implies the mutation and methylation respectively. And the fusion and multiple genes are shown as a
dark and light blue bar. (D) Protein and protein interaction network between TLR family and molecules associated: each line rep-
resents a connection between two proteins.
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3.10. Expression profiles of TLR family using
single-cell RNA-Seq

According to Lee HO et al. [27], tumour and paired
non-malignant colon samples of 23 Korean and 6
Belgian individuals diagnosed with colorectal cancer
were brought into a scRNA-Seq method. The transcrip-
tomes of 60,382 cells were effectively identified, and
they were further classified into 36 clusters using a
series of calculations and analyses (Figure S7A and
S7B). In this investigation, we used the online proced-
ure of Single Cell Expression Atlas to detect TLR gene
expression, and some of the most significant results
are shown in Figure S7 (whole results were displayed
in Figure S8–S10). It was shown that TLR2 and TLR4
were predominantly expressed in myeloid cells, includ-
ing SPP1þ B myeloid cells, proliferative myeloid cells,
pro-inflammatory myeloid cells, and anti-inflammatory
myeloid cells, as previously described. Additionally,
TLR10 expression was localised in CD19þCD20þ B
cells. TLR7 and TLR9, on the other hand, did not
aggregate in any cell clusters, despite the fact that
TLR7 was uniformly low expressed and TLR9 was virtu-
ally completely absent.

In another study developed by Bassez A et al. [28],
their scRNA-Seq dataset included 33,208 endothelial
cells from three lung cancer patients. The website clas-
sified the mixture automatically into 21 clusters
(Figure S11A), however, the data set did not include
cell classification information. To our surprise, the link
between TLR2 and TLR4 colocalization expression was
still apparent in distinct subtypes of lung cancer endo-
thelial cells (Figure S11C and S11D). Furthermore, the
results above were similar to an HNCSS investigation
using the scRNA-Seq technology, in which 164,276
cells from peripheral and intratumoral immune popu-
lations isolated from patients with HPV- and
HPVþHNSCC were sequenced (Figure S12) [29].

3.11. Chromatin accessibility analysis of
TLR family

We counted ATAC-Seq peaks in chromatin at TLR
gene loci (from TLR1 to TLR10, displayed in Figure
S13-S14) in several tumour cell lines to determine
chromatin availability in pan-cancer. Consistent with
the high level of mRNA expression, ATAC-Seq analysis
revealed open regions with a dense population of
peaks in all examined cell lines surrounding the TLR2
locus, near chr4:153700000 (Figure S15A). While the
TLR4 gene had open sections in all cell lines, the dens-
ity of peaks was lower than that of TLR2, and various
cell lines had a range of TLR4 chromatin accessibility

positions (Figure S15B). Near chr6:117900000, the NP-1
and NP-2 cell lines (2 human glioma cell lines) demon-
strated more accessibility than the H1-hESC-1, H1-
hESC-2, H9-hESC-1, H9-hESC-2 (4 human embryonic
stem cell lines), MSiPS-1, and MSiPS-2 cell lines (2
human pluripotent stem cell lines). While LNCaP-1 and
LNCaP2 (2 human prostate cancer cell lines) and
H1437-1 and H1437-2 (2 human lung adenocarcinoma
cell lines) demonstrated an open TLR4 gene region
close to chr6:118050000. These data suggested that
the differences in TLR4 expression between cancer
types may be due to post-transcriptional alteration.
There were no identifiable ATAC-Seq peaks for TLR7
and TLR9 in all cell lines, implying that chromatin
accessibility inhibition was the source of low TLR7 and
TLR9 mRNA expression.

4. Discussion

The pan-cancer analysis attempts to compare and con-
trast the genomic and cellular changes observed in
different tumour forms in order to deduce a common
mechanism shared by different cancer species. Other
researchers have also integrated and studied 33 TCGA
tumour samples to determine a variety of driving
events associated with cancer formation and progres-
sion, such as mutations, chromosome fragmentation,
and abnormal telomere maintenance, and etc [40].

TLRs, important components of the immune micro-
environment, are widely recognised as single-pass
membrane-spanning receptors equipped with an
extracellular domain that particularly identify PAMPs
and DAMPs. And, following activation, TLRs recruit
adaptor proteins to the cytoplasm of immune cells,
where they propagate antigen-induced signal trans-
duction pathways, so initiating the anti-tumour
immune response. However, high levels of TLR expres-
sion have been discovered in several tumour cells and
tumour-associated macrophages, indicating that TLRs
play a role in tumour growth as well. And the fascinat-
ing double-edged function of TLRs remains unknown,
and its translational medicine application also needs
additional research.

Many scientists, including Qiang Ju et al., have
investigated the prognostic significance of many
genes at the pan-cancer level. They investigated the
expression patterns of molecules such as the immuno-
related protein BRCA-1 and the anti-inflammatory and
antioxidant-related transcription factor NRF2 in a
range of malignancies at the genomic, protein expres-
sion, and clinical levels, as well as tumour immuno-
logic analysis. A correlation study was performed
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between the degree of molecular expression and MMR
gene mutation and DNA methylation at the genomic
level. Survival analysis was done at the clinical level. In
addition, tumour immunogenic correlation analysis was
performed using correlation analysis of immune infiltra-
tion, immunological score, and immuno-checkpoint
marker expression levels [41,42].

In our study, multi-omics analysis was used to eluci-
date the involvement of the TLR family in tumour
growth and prognosis. We discovered that TLRs were
significantly associated with tumour microenviron-
ment, stem cell features, and clinical prognosis in pan-
cancer and various single tumour data. As a result,
TLR genes can be further investigated as a possible
prognostic factor in clinical settings.

According to our findings, there is no consistent
pattern of TLR expression across 33 distinct types of
cancer, and the same TLR can be controlled differently
depending on the kind of cancer (Figure 2), resulting
in a favourable or negative prognosis (Figure 3). Here,
we have concentrated on the function of TLR4, TLR7,
and TLR9 in the cancer in this section.

TLR4 is the most frequently reported oncogenesis
and tumour growth gene. It is located on chromo-
some 9 and encodes a 95680Da protein with 839
amino acids. Compared with other molecules in the
TLR family, TLR4 is relatively highly expressed at the
transcriptome level in pan-cancer studies, close behind
TLR2. While the majority of 33 forms of cancer exhibit
decreased TLR4 expression in comparison to normal
tissues, only a few cancers (such as GBM, KIRC, and
STAD) exhibit the opposite trend. Additionally, there is
a correlation between TLR4 and TLR7 (R¼ 0.66), TLR8
(R¼ 0.59), TLR1 (R¼ 0.56), TLR2 (R¼ 0.42), and TLR6
(R¼ 0.40), implying functional synergy. As demon-
strated by a wide number of tests using heterodimers
of TLR4 and TLR6 on the cell membrane. As for TME,
in almost all malignancies except UVM, TLR4 is found
to be positively linked with immune and stromal cell
infiltration. Additionally, TLR4 expression is highest in
C5 (Immunologically quiet), out of six immunological
subtypes, and is also much greater than other TLRs in
C5. As previously stated, C5 has the lowest lympho-
cyte count and the greatest macrophage count [14],
which is dominated by M2-like macrophages, a kind of
tumour-infiltrating myeloid cells. Likewise, TLR2 and
TLR4 expression aggregated in a range of myeloid
cells in colorectal tissue, implying that TLR4 activity is
restricted to myeloid cells (macrophages, dendritic
cells, monocytes etc.). Taken together, these findings
suggest that therapeutic targeting of TLR4 in immuno-
therapy may be beneficial. TLR4 expression on

CD103þ DC-like cells, for example, can boost CD8þ T
cell infiltration in malignancies, making previously
unresponsive cancers susceptible to checkpoint block-
ade therapy [43].

Concerning downstream signalling pathways, acti-
vation of TLR4/TLR6 heterodimers causes the gener-
ation of IL-1 in monocytes/macrophages via the NF-jB
signalling pathway [44–47], and stimulation of mono-
cytes induces the activation of p38 MAPK and ERK1/2
mostly via TLR2 but also partially via TLR4 [48].
Additionally, it is reported that b-catenin signalling
can be triggered in colorectal cancer via a TLR4/P-
PAK1 cascade [32].

As a result, TLR4 may aid in elucidating the under-
lying intracellular regulatory networks as well as the
extracellular communication networks that govern the
immune response to malignancies. DNAss and RNAss
stemness scores estimated using the OCLR algorithm
are both lowest in normal cells, increase in initial
tumours, and are greatest in metastases [16,49]. Our
findings indicate a substantial negative connection
between TLR4 and RNAss in all TCGA tumour types,
implying that TLR4 is not involved in biological proc-
esses active in cancer stem cells. TLR4 has a negative
correlation with the majority of TCGA malignancies,
but a positive connection with a small number of
tumours, including ACC, CHOL, KIRP, LAML, PCPG,
THCA, and THYM, indicating a possible relationship
with specific epigenetic stemness traits in the cancer
types mentioned. According to drug activity studies,
TLR4 expression is associated with a lower number of
chemotherapeutic agents than other TLRs. And the
majority of the drugs described are either connected
with inflammation and immunological response (e.g.
progestin, histone deacetylase inhibitor, histone deace-
tylase inhibitor, HSP90 inhibitor, retinoid) or target TLR
pathway downstream components (e.g. tyrosine kinase
inhibitor). As TLR4 expression increases, cancer cells
become more sensitive to medicines such as meges-
trol acetate, isotretinoin, entinostat, and okadaic acid.
In these chemotherapeutic drugs, entinostat is most
closely associated with TLR family members, and its
sensitivity is also positively correlated with TLR1, TLR6,
TLR7, TLR9, and TLR10, but negatively correlated with
TLR8-AS1. Furthermore, the mechanism is based on
the observation that inhibiting class I HDACs increases
TLR signal transduction and cytokine generation in
myeloid and T cells [50,51]. TLR4 is, however, associ-
ated with medication resistance to AT-13387, Acetalax,
CUDC-305 By-Product, Lapatinib, and Ibrutinib. It has
been demonstrated that Lapatinib and Ibrutinib, both
of which are tyrosine kinase (BTK) inhibitors, partially

1932 R. HUANG ET AL.



dependent on the TLR family. The former inhibits the
cytokine storm caused by TLR pathways [52], whereas
the latter promotes apoptosis in CLL cells via TLR-7
and TLR-9 both in vitro and in vivo [53,54].

TLR7, which plays a critical role in innate and adap-
tive immunity, is typically found as homodimers on
macrophages, B lymphocytes, and mast cells. The TLR7
gene is located on chromosomes X:12,867,072–
12,890,361 and X:12,885,202–12,908,499. TLR7 expres-
sion is moderate in pan-cancer, lower than that of
TLR4. It is primarily up-regulated throughout all TCGA
malignancies, with exception of LUAD, LUSC, COAD,
and READ. Apart from TLR4, co-expression occurs
between TLR7 and TLR1 (R¼ 0.72), TLR8 and TLR4
(R¼ 0.69), TLR4 and TLR10 (R¼ 0.53), and TLR6 and
TLR6 (R¼ 0.52). TLR7 is capable to recognise single
strand RNAs (ssRNAs). Following ligand attachment,
the stimulated TLR7 initiates downstream signal trans-
duction by activating the transcription factors NF-jB
and IRF7 [55–57]. Additionally, as our modification
study revealed, the c-MYC pathway is a downstream
mechanism for TLR3, TLR7, and TLR9 in a variety of
malignancies [33–38].

In comparison to other TLRs, TLR7 expression is
rather stable among the six immunological subtypes,
being low in C1, C2, C3, and C4, and increasing from
C5 to C6. Additionally, TLR7 and TLR8 are the only
two members that exhibit a significant positive link
with the level of immune and interstitial cell infiltra-
tion in all 33 cancer types, implying that TLR7 and
TLR8 are associated with low tumour purity. Because
immune infiltration inside tumour tissues indicates an
adequate anti-tumour immune response, high TLR7
and TLR8 expression may predict a better patient
prognosis, providing support for a wide range of
immune therapies targeting TLR7 and TLR8 [58–61].
Rodell et al. recently demonstrated that a TLR7/8
agonist enhances polarisation of tumour-associated
macrophages, hence enhancing anti-tumour therapy
[60], but the detailed mechanism still needs fur-
ther detection.

As for stemness features, TLR7 is often inversely
linked with RNAss in the majority of malignancies.
Additionally, TLR7 has been shown to alter the suscep-
tibility of cancer cells to 30 medicines, with exception
of Irofulven, a semi-synthetic analog of the fungal sub-
stance illudin S, which has a negative correlation,
implying that an increase in TLR7 may result in
Irofulven resistance. This tendency, however, is also
observed in TLR9, and the chemical mechanism
remains unknown.

TLR9’s performance, which is likewise a critical com-
ponent of innate and adaptive immunity, is particu-
larly notable in the overall analysis results. This gene is
located on chromosome 3 at positions 52,221,080–
52,226,163 and 52,255,096–52,273,183. In contrast to
TLR4 and TLR7, TLR9 forms both monomers and
homodimers on the membrane and functions as a
nucleotide-sensing TLR. Unmethylated cytidine-phos-
phate-guanosine (CpG) motifs (CpG ODNs), a TLR9
agonist, can stimulate antitumor immunity by activat-
ing the NF-jB pathway [5,62–64], and increase tumour
cell death via cell cycle S phase arrest triggered by
phosphorylated CHK2 [65–69]. Additionally, TLR9’s
identification of DNA factions assists in initiating T
lymphocyte, B lymphocyte, and dendritic cell prolifer-
ation, activation, survival, and antibody produc-
tion [68–71].

Notably, while TLR9 expression remains modest, it
is up-regulated in all 33 tumours. The co-occurrence of
TLR9 and TLRs is not as clear as that of other TLRs, and
the most significant link is that of TLR6 co-expression
(R¼ 0.32). Although there are considerable differences
in TLR9 expression between the six immunological sub-
types, no trend in TLR9 expression can be detected
due to the expression level being too low. Additionally,
the TME score analysis demonstrates that the associ-
ation between TLR9 and many types of cancer exhibits
a range of features, including positive correlation, nega-
tive correlation, and irrelevance, but the positive correl-
ation is the predominant finding. TLR9 is negatively
connected with RNAss in the majority of malignancies,
but positively correlated with RNAss in CHOL, KIRC, and
THYM, and has no correlation with RNAss in ACC, LIHC,
PCPG, and UVM. However, there is no link between
TLR9 and DNAss. It exhibits positive and negative rela-
tionships with 13 types of cancer but is unrelated to
DNAss in the other seven types of cancer. The results
above show that TLR9 may play a variety of roles in
carcinogenesis and progression, which warrants add-
itional investigation.

When it comes to drug action, all members of the
TLR family influence the sensitivity of cells to medica-
tions in some way, but TLR9 has a particularly strong
effect, as the sensitivity of up to 81 compounds is
dependent on its expression level. Additionally,
numerous studies have indicated that, in addition to
its antitumor biological activity, TLR9 can enhance
tumour cells’ sensitivity to chemotherapy by increas-
ing chemotherapy-induced apoptosis and decreasing
tumour cell proliferation [72,73]. While up-regulation
of TLR9 increases the sensitivity to the majority of
medicines, only Irofulven, Kahalidof, Sonidogib,
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Trametimb, and Dasatinib are associated with
drug resistance.

It is worth noting that Irofulven (MGI-114), a new
cytotoxic anticancer drug with DNA damaging and
MAPK activating properties, can also promote tumour
cell apoptosis via ATM/CHK2 activation in the pres-
ence of BRCA1 [74–77]. Clearly, activated TLR9 and
Irofulven share a common target, CHK2, and there is
no indication that they have synergistic or antagonistic
effects. However, it is intriguing to note that intracellu-
lar expression of c-MYC, a recognised proto-oncogene
located downstream of TLR7 and TLR9, can modify
tumour cell sensitivity to Irofulven [78]. This crosstalk
may help explain drug resistance, but the precise
mechanism remains unclear.

In a word, the pan-cancer research demonstrates
that the TLR family expression pattern is strongly cor-
related with TME (both stromal and immune micro-
environment), cancer stemness, and chemotherapy
sensitivity, all of which vary among cancer types and
subtypes. Additionally, TLR-activated signalling path-
ways result in the generation of cytokines, chemo-
kines, and a variety of inducible molecules related to
cell metabolism, indicating TLRs’ significant function in
tumour cells and the tumour microenvironment.

Although the effect of TLR on tumour prognosis
has been documented in a significant number of
tumour studies, this is the first study to integrate and
analyse the TLR family of genes at the pan-cancer
level, and to investigate their association with tumour
formation. The findings indicate that TLR, as a possible
prognostic marker, merits more investigation and dis-
cussion. However, the following unavoidable limita-
tions remain: 1) This study analyzes mRNA-seq data
from a single database, and the sample size is insuffi-
cient; 2) As a pure bioinformatics study, this study
lacks experimental validation at the cellular or animal
level; and 3) The data we collected are predominantly
from Caucasians, and ethnic heterogeneity makes
expansion difficult. As a result of this study’s premise,
we want to further investigate the role of TLR in car-
cinogenesis and development via cell research, animal
investigations, and clinical trials, as well as to validate
TLR’s utility as a potential clinical biomarker.

Conclusion

In our research, we investigated the TLR family’s func-
tions at the transcriptomic, genomic, and proteomic
levels in 33 TCGA malignancies and also validated
them using single-cell data and chromosome accessi-
bility studies. The results indicate that the TLR gene

plays a role in tumour growth and has an effect on
tumour cells’ sensitivity to chemotherapy. As a conse-
quence, we believe that TLRs, particularly TLR4, TLR7,
and TLR9, may be useful as predictive biomarkers.
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