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Abstract

Time series classifiers are not only challenging to design, but they are also notoriously difficult 

to deploy for critical applications because end users may not understand or trust black-box 

models. Despite new efforts, explanations generated by other interpretable time series models 

are complicated for non-engineers to understand. The goal of PIP is to provide time series 

explanations that are tailored toward specific end users. To address the challenge, this paper 

introduces PIP, a novel deep learning architecture that jointly learns classification models and 

meaningful visual class prototypes. PIP allows users to train the model on their choice of 

class illustrations. Thus, PIP can create a user-friendly explanation by leaning on end-users 

definitions. We hypothesize that a pictorial description is an effective way to communicate a 

learned concept to non-expert users. Based on an end-user experiment with participants from 

multiple backgrounds, PIP offers an improved combination of accuracy and interpretability over 

baseline methods for time series classification.

Index Terms—

Interpretability; Trustworthy Machine Learning; Time Series Classification

I. Introduction

Systems that use machine learning (ML) to process time series data are increasingly being 

integrated into our everyday lives, from voice recognition in many consumer products [1] to 

assistive medical tools [2]. However, the growing complexity of ML algorithms has made 

the reasoning behind their predictions difficult for end-users, and even algorithm developers 

[3] to understand. The enigmatic quality of popular ML algorithms for critical applications, 

such as deep neural networks (DNNs) for medical applications, may cause a sub-optimal 

user experience because the mistakes made by these algorithms are incomprehensible. As an 

example of a safety-threatening error, one DNN labeled a ‘stop’ sign with a few added black 

tape strips as a ‘speed limit 45’ sign [4].

Recently within the ML community, there has been a growing body of research attempting 

to develop interpretability techniques. There are two common approaches: 1) glass-box ML 
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models that are inherently interpretable (e.g., ProSeNet [5], and GAM [6]) and 2) post-hoc 

explanation techniques that are designed to interpret the prediction of black-box models 

(e.g., SHAP [7], and LEFTIST [8]). Despite this proliferation of techniques, there is a lack 

of methods for explaining ML-learned classes to non-expert users, especially for time series 

classification. Additionally, a non-expert user references a person that has minimal expertise 

in ML and has a rudimentary understanding of raw time series data that are collected in 

their application domain. For example, nurses may want to understand an ML model that 

processes smartwatch data for automated activity recognition. By understanding the data 

and generated model, these care providers can better assess a patient’s health status and 

intervene in a timely manner. Viewing the raw time series data (especially multi-variate 

data) may not conjure up the concept they represent to a non-expert user. Consequently, 

discerning time series classes is difficult for non-experts.

While time series data such as raw sensor data may be difficult for domain experts to 

interpret, most people can understand the concept represented by a descriptive image. In 

this work, we introduce a network architecture with built-in interpretability – PIP (Pictorial 
Interpretable Prototype learning), that jointly learns a set of prototypes and a function to 

transform the prototypes into meaningful pictures. In PIP, the prototype pictures illustrate 

the learned classes, as shown in Figure 1. A user may sketch a picture for each class before 

initiating PIP training. We hypothesize that prototype pictures derived from such sketches 

will enhance user understanding of the data, the learned model, and resulting predictions. 

While hand-drawn pictures have been utilized to visually convey information that may be 

difficult to express in writing or speech, they have not been utilized to explain a time series 

model’s predictions. Prior work in cognitive and educational psychology illustrates that 

sketching concepts enhanced learning and resulted in realistic judgments [9].

Rather than explicitly explaining how a learned model generates a prediction, PIP instead 

learns a set of prototypes for each class, building on the users’ pictorial interpretation 

of those classes. PIP’s classification of an instance can then be interpreted based on its 

similarity to the visual prototypes. Figure 1 illustrates the difficulty of interpreting raw 

time series data. In this example, wearable sensor data are used to identify a person’s 

current activity. To aid with the interpretation of learned classes, PIP compares the similarity 

of the input to the set of learned prototypes and generates a prediction based on the 

similarity score. Additionally, end-users design the pictorial prototypes, thereby tailoring the 

model’s explanation to suit their needs. Because PIP learns the final set of prototypes, the 

resulting pictures may represent a combination of the original user sketches. These learned 

pictorial representations offer novel insights to the end-user. For example, when a prototype 

blends two sketches, this indicates that the corresponding data points lay on the boundary 

between two similar classes. This process helps users understand and mirror the algorithm’s 

inferences.

To evaluate the effectiveness of PIP visual explanations, we assessed an end-user experience 

by comparing the PIP explanation with another prototype learning model and a decision tree. 

Based on the result from 35 users, we found that end-user experience was enhanced across 

the dimensions of classification accuracy, response time, and model comprehensibility using 

PIP explanations compared to the decision tree and other prototype models. As one of 
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the clinicians suggested, PIP’s prototypes can help them make timely decisions based on 

sensor data, thus improving response time in critical situations and providing more-informed 

treatment plans. These results suggest that PIP’s approach to automatically generate pictorial 

explanations based on end-user sketches offers a useful explanatory mechanism for time 

series data. Contributions: (1) We introduce a novel method to jointly learn visual prototypes 

and models for time series classification. (2) Our algorithm incorporates user-provided 

sketches to enhance model interpretation. (3) We demonstrate the improved efficacy of our 

approach over prior methods for a variety of end-users for interpreting activity classes from 

sensor-based time series data.

II. Related Work

Our work contrasts with prior research that seeks to improve the understanding of 

time series predictions using post-hoc interpretations [8], [10]–[13]. These approaches 

provide feature importance, or relevance, at a given time step. Although listing the 

most discriminating features is insightful, the resulting explanations are often regarded 

as misleading and unreliable [14]. In contrast, PIP weaves interpretability into its training 

process. While domain knowledge is needed to understand post-hoc visualizations, PIP 

pictures are based on the end-users’ background. For example, post-hoc methods can 

isolate portions of an accelerometer signal that cause the learned model to predict human 

activity. However, the provided information may not be useful to a nurse nor informative. 

Alternatively, PIP provides a picture explanation of the classification, offering patients and 

caregivers an intuitive explanation of the finding.

Creating glass-box models for time series classifiers has also previously been considered. 

IETNet [15] graphs a heatmap of the class-influential channels during multivariant time 

series classification. DPSN [16] tackles few-shot learning by employing a prototypical 

network [17] to learn a prototype for each class from a symbolic Fourier approximation 

transformation of the data. Gee et al. [18] and ProSeNet [5] utilize prototype networks. 

These models integrate a designed layer into the network architecture to learn the 

prototypes.

The approach of Gee et al. [18] and the ProSeNet algorithm [5] can be considered 

case-based approaches to interpretability. These methods learn explainable prototypes and 

classify new data based on similarity to the prototypes. This type of network includes an 

encoder and a prototype layer. The encoder can be any network structure that encodes input 

data, such as a convolutional neural network (CNN) or a recursive neural network (RNN). 

The prototype layer aims to learn a prototype that is close to at least one of the encoded 

inputs. Gee et al. [18] adapt an image prototype classifier introduced by Li et al. [19] by 

coercing time series data to appear as graph images. The image prototype classifier contains 

a decoder that transforms the encoded data and prototypes into the original image. Likewise, 

Gee et al. [18] employ a decoder to transform learned prototypes into time series graphs. 

Since time series are not readily interpretable as images, Gee et al. [18] feed training inputs 

into the model post-training to determine what class each prototype represents. ProSeNet 

[5] does not include a decoder in its architecture and illustrates the prototypes as it learns. 
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ProSeNet’s learned prototypes are intangible because they are based on encoded inputs. Like 

Gee et al. [18], ProSeNet [5] adds a post-training step to determine each prototype’s class.

PIP represents a case-based prototype learner that offers distinct contributions from 

these previous works. Unlike prior approaches, PIP learns visual interpretations based 

on externally-provided sketches; thus, they do not need to be labeled after training. 

Furthermore, PIP’s prototypes do not require significant expertise to understand. Because 

these methods optimize multiple criteria (e.g., classification accuracy and interpretability), 

they rely upon multi-term loss functions. While previous methods employ a costly cross-

validation step to tune the ratios between these loss terms, PIP directly learns these ratios 

during training.

III. Methods

Complex models such as ensemble and deep neural networks have demonstrated the ability 

to achieve high accuracy on time series data [20], [21], but they are difficult to interpret. 

To address this dichotomy between performance and interpretability [7], PIP learns a set of 

prototypes by leaning on user-defined explanations (hand-drawn sketches). Before training, 

users sketch a picture for each of the C classes. This customization allows PIP to adapt its 

prototypes to suit the needs of each audience. For instance, a clinician may design different 

signs than an engineer for a set of wearable sensor data.

a) PIP Architecture:

Figure 2 illustrates the PIP architecture. Our model consists of four main components: an 

encoder, a prototype layer, a generator, and a fully-connected layer. The encoder f(x) maps 

the input time series to a fixed-length vector, z. The encoder can be any block of neural 

networks that process time series input data. We employ a 1D-CNN as the encoder in our 

study because of its demonstrated ability to handle time series data [20]. The prototype layer 

contains m prototypes, where the number of prototypes is at least as large as the number of 

classes, m ≥ C. The goal of the prototype layer is to learn a set of vectors that are positioned 

close to the encoded input data. Therefore, the length of each prototype pi is equal to the 

length of the encoded input z. The prototype layer computes the squared Euclidean distance 

between the encoded input z and each prototype, di
2 = z − pi 2

2. To normalize these values, 

we then compute the final score as ai = (di − min(d))/(max(d) − min(d)). A score of one 

means the prototype pi is identical to the encoded input z, and zero means that they are 

completely different. Finally, a fully-connected layer (FC) computes a weighted sum of 

these scores υ = Wa, where W is a C × m weight matrix. A Softmax layer is then applied 

to compute the probability distribution over C classes. The prototypes are not interpretable 

on their own because the distance measure between prototypes and observation is measured 

in a flexible latent space. The generator transforms the encoded input z to its corresponding 

picture ypic by reshaping the encoded vector z to a n × n matrix and employing a 2D-CNN. 

The advantage of including a generator is that it can transform the learned prototypes into 

their pictorial representations after training.
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b) Optimization:

PIP’s objective is to simultaneously achieve both high accuracy and high interpretability. 

To obtain this goal, we jointly minimize the parameters of all model components using 

stochastic gradient descent, similarly to work described by Gee et al. [18] and Li et al. [19]. 

Let D = xk
t

t = 1
T , y, ypic  be a labeled time series dataset having k dimensions. Throughout 

the remainder of the paper we use xt to denote the set of k values observed at time t. Here, 

T is the length of multivariate sequence x, y ∈ {1, ⋯, C} is the true label, and ypic ∈ {1, 

⋯, C} is a corresponding picture for the true class. The optimization problem minimizes the 

following:

ℒ = λEE(Θ, D) + λMM(Θ, D)
+ λ1R1(Θ, D) + λ2R2(Θ, D), (1)

where Θ represents the set of all trainable model parameters and λ = {λE, λM, λ1, and λ2} 

represent the term ratios. E is the cross-entropy loss defined as:

E(Θ, D) = ∑
x(t)

t = 1
T , y ∈ D

ylog(y) + (1 − y)log(1 − y)
(2)

and M is the mean squared error of the generator, as follows:

M(Θ, D) = 1
n ∑

x(t)
t = 1
T , ypic ∈ D

ypic − ypic
2 .

(3)

We introduce a regularizer, R1, that encourages each prototype to be positioned close to at 

least one of the training samples. Additionally, regularizer R2 ensures that similar inputs 

cluster around one prototype:

R1(Θ, D) = 1
m ∑

j = 1

m
min

i ∈ [1, n]
pj − zi 2

2, (4)

R2(Θ, D) = 1
n ∑

i = 1

n
min

j ∈ [1, m]
zi − pj 2

2 . (5)

PIP learns the weights for the individual loss terms during model training. For each of a 

specific number of epochs, we adjust the ratio, λ, for one selected term, ℓ ∈ (E, M, R1, R2). 

The selected term is penalized if the corresponding value is greater than a threshold τ. The 

term is penalized by increasing its ratio, λℓ. Similarly, we reward the term if it performs 

better than the threshold τ by lowering the corresponding λℓ. This method is inspired by 

game theoretic methods introduced by Arora et al., which supports data-driven learning 

of the parameters [22]. For our experiments, we set τ = 0.1. We initialize all λs to one 

for a fixed learning rate ϵ ≤ 0.5. At the end of each epoch e, we choose a term to adjust 

during the next epoch. Ratios λ are selected with probability proportional to their values 
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p(e) = λE
(e)/Φ(e), λM

(e)/Φ(e), λ1
(e)/Φ(e), λ2

(e)/Φ(e) , where Φ(e) = λE
(e) + λM

(e) + λ1
(e) + λ2

(e). We update 

the selected λ based on its loss function value m, as follows:

λ(e + 1) = λ(e)(1 + ϵ)−ℓ(e)
, if  ℓ < τ

λ(e)(1 − ϵ)−ℓ(e)
, otherwise.

(6)

We terminate this procedure after a specific number of epochs in which ℒ consistently 

decreases since indefinite updates of λs could make the model training unstable. We observe 

that updating λs for 20 consecutive epochs of decreasing ℒ values is enough to learn the λs. 

Algorithm 1 details the PIP training process.1

An important question is how to select the number of prototypes to learn. Previous work 

[5], [18], [19], [23] specifies a number of prototypes that is greater than the number of 

classes. This allows the model to learn at least one prototype for each class.. When classes 

are complex, such detailed explanations can be helpful. At the same time, users may be 

confused when a single class is represented by multiple pictures. In earlier work, anecdotal 

observations analyzed these tradeoffs. In our case, we report results for alternative numbers 

of prototypes. To make a final selection, we first consider the number of prototypes to be 

equal to the number of classes. We then select the final number of prototypes by increasing 

the number until performance (loss minimization) converges.

While we demonstrate the learning process using greyscale images, PIP can also learn 

colored prototypes. In cases containing a large number of classes, colored input images will 

further enhance interpretability of the blended prototypes that PIP learns. Such colors can be 

selected by the user based on domain knowledge. For example, in Figure 3 the user defines 

warmer colors for dynamic-movement activities (e.g., walking up/down stairs, walk) and 

cooler colors for static activities (e.g., sit, stand, lie down). Alternatively, a user may assign 

1Code: https://github.com/alirezaghods/PIPNet
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colors on opposite ends of the spectrum for classes that are similar to aid in distinguishing 

them. In future work, PIP will optionally assign these colors automatically to further boost 

interpretation.

In summary, PIP not only learns a set of prototypes but also generates images for 

each prototype. These prototypes aid in understanding the learned classes as well as the 

classification for a particular instance. By learning prototypes and corresponding images, 

PIP can provide insights into the data and learned concepts which were not available to 

the end-users otherwise. PIP does not merely map each target class onto a corresponding 

user-defined picture. Rather, PIP learns new prototypes which may represent a single input 

picture or a unique blend of these pictures. Considering Figure 4, pictures from similar 

activities such as “walking” and “walking upstairs” blend into a unique generated prototype 

which exhibits aspects of each original picture. Such blending occurs for cases that appear 

on the boundary between target classes.

IV. Experiments

The goal of this work is to create a time series classifier that is both accurate and 

interpretable. To assess PIP’s performance for both of these objectives, we evaluate the 

algorithm based on end-user evaluations of raw time series and alternative ML models. 

Model interpretability is estimated by quantifying:

1. The user’s ability to correctly classify samples using the prototypes.

2. The user’s confidence about their answer.

3. The user’s trust in the learned models.

4. The time that the user spent manually classifying samples based on the 

prototypes.

a) Datasets:

We selected three time series datasets to evaluate PIP. The datasets are UCI-HAR 

(human activity recognition) [24], UCR-FordA (automotive diagnosis) [25], and UEA-

SpokenArbaicDigits (spoken Arabic digits) [25]. These are selected from multiple domains 

with varying complexity to evaluate PIP’s broad applicability (see Table I). We designed 

a 28 × 28 gray scale picture for each class (see Figure 5). Each user can design a picture 

and train PIP to receive a personalized explanation. Since our study participants come from 

a diverse range of backgrounds, we created images that provide general understandability. 

Future experiments that target a specific user group will utilize images designed by that 

group.

b) Experiment Design:

For each dataset, we pose a series of questions:

1. Participants score the interpretability of raw time series data by looking at graphs 

of the series values.
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2. Participants emulate the model’s prediction based on the provided interface (this 

task is timed).

3. Participants assess a specific model’s interpretability on the given dataset.

Interpretability responses are provided on a Likert scale from Extremely easy = 1 to 

Extremely difficult = 5. To conclude the survey, participants are asked to choose the 

most interpretable model, as well as their preference for either a highly-accurate or a 

highly-interpretable model.

We recruited 35 end-user participants to evaluate the generated prototypes. Previous studies 

indicate that age, education, and experience impact task performance [26], [27]. To evaluate 

PIP interpretability for a broad audience, we included a diverse sample of participants. 

Participant age is 35 ± 11, and education ranges from high school to advanced degree (PhD, 

MD). The participants are grouped into three categories: STEM (n=19), Clinician (n=10), 

and Other (n=6), based on their discipline and experience with ML.

c) Interpretability Metrics:

To measure the interpretability of PIP’s jointly learned model and prototypes, we draw 

on the metrics of end-user accuracy, end-user response time, model accuracy, end-user 

understandability, and end-user trust. The first three metrics build on work by Kim et al. 

[28]. The authors define model interpretability as “the degree to which a human consistently 

predicts the model’s result.” We mirror this definition by measuring human accuracy, human 

response time, and model accuracy. Because the goal of the ML algorithm is to correctly 

predict the target attribute of a data point, usability can be measured as the speed and 

accuracy with which an end-user can replicate the learned model’s prediction using the 

explanation. These metrics are consistent with traditional evaluation in the human-computer 

interaction literature, in which user speed and accuracy are utilized to measure a person’s 

attitude toward a system [29]. To ensure that the end-user provides predictions that are 

consistent with ground truth, we also need to evaluate the predictive performance of the 

learned model itself.

Furthermore, according to the user-centered design supported by the work of Xu et al. 

[30], an interpretable model must incorporate the preferences and skills of target users. The 

explanation must ensure that end-users can understand the learned model. We measure these 

components by asking end-users to rate their understandability of the raw time series data 

as well as the learned model. These two points provide an estimate of the amount that 

PIP improved comprehensibility in comparison with the raw time series data and the other 

evaluated ML models.

Finally, Hoffman et al. [31] argue that trust is a concern for explainable systems. Lack 

of initial trust or loss of trust will significantly reduce the use of a learned model. We, 

therefore, add the interpretability metric of trust and reliance to our experimental design and 

evaluation.
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d) Models:

The participants evaluate four interfaces: raw time series data (Raw), a decision tree model 

of the learned concept (DT), non-pictorial representation of prototypes (Ptype), and PIP 

pictorial representation of prototypes (PIP). The first baseline measures the interpretability 

of raw time series data. Traditionally, experts have examined such time series graphs as part 

of their job, such as physicians looking at EKG graphs. The method proposed by Gee et al. 

[18] converts learned prototypes back to such a raw representation; thus, this is an important 

baseline to include. The second baseline, a decision tree (DT), has previously been adopted 

in clinical settings because of its explainability [32]. The third baseline, a non-pictorial 

representation of prototypes (Ptype), generates prototypes that have not been transformed 

into their graphic representation. This interface reflects the representation of the prototypes 

described by Ming et al. [5].

In the survey, we provide the network scores for Ptype and PIP above their depicted 

prototype, representing the similarity between the input data and each prototype (see Figure 

6). Participants did not receive any information about the accuracy of any of the models 

prior to completing the survey. Participants judge the interpretability of the models based 

solely on their interface, as shown in Figure 6.

In addition, we compared PIP’s accuracy with DT, Residual Networks (ResNet) [10], and 

RandOm Convolutional KErnel Transform (ROCKET) [33]. We select DT because it is 

one of the most widely used interpretable models by many experts in different domains. 

We also compute accuracy for ResNet, a method that optimizes only accuracy and not 

interpretability. According to a survey by Fawaz et al. [20], ResNet performs consistently 

best over a variety of time series domains. Finally, we compare classification performance 

with ROCKET, another recent approach to time series classification that was selected both 

because of its consistent performance and computational efficiency [33].

e) PIP Architecture and Hyperparameter Selection:

The architecture of PIP is similar for all datasets except the encoding length and number of 

prototypes. The encoder consists of two layers of a 1D-CNN (kernel size = 16) followed 

by a Maxpool layer and a fully connected layer (length = encoding size). The generator 

consists of a fully-connected layer (length = 1568) followed by three 2D-CNN layers (kernel 

sizes = 64, 32, 1). The number of prototypes in the prototype layer is equal to the number 

of prototypes defined by the user (length = encoding size). This layer is followed by a 

fully connected layer (length = number of classes). Hyperparameters τ and ϵ are selected 

empirically. For our experiments, we observe that τ = 0.1 and ϵ = 0.08 perform well across 

diverse datasets. Similarly, we terminate weight updates after observing 10 to 20 consecutive 

epochs of decreasing ℒ values. The hyperparameters are summarized below.

• Learning rate {3e−3, 2e−3, 1e−3, 1e−2}

• Batch size {16, 32, 64}

• Encoding size {32, 64, 128}

• Weight learning rate (ϵ) {0.5, 0.1, 0.08, 0.05}
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• Weight threshold (τ) {0.1, 0.05}

• Updating weight period {10, 20, 30}

We employed a grid search to find the set of hyperparameters that are most effective across 

multiple datasets. The reason for selecting the same hyperparameters for each reported 

experiment is to study the effect of the number of prototypes on PIP’s accuracy. We 

optimized the cross-entropy loss using Adam [34] with base learning rate = 3e−3, batch size 

= 32, encoding size = 64, ϵ = 0.08, τ = 0.1, and updating weight period = 20. The number 

of prototypes selected is equal to the number of classes to increase the interpretability. As 

we show later, a larger number of prototypes will in some cases increase the accuracy of the 

model.

V. Results and Analysis

To validate PIP’s performance, we ran a user experiment to measure the interpretability of 

models generated by PIP. Moreover, we assessed the user’s trust to employ PIP for their 

application. Lastly, we compared PIP’s accuracy to other time series classifiers.

a) Interpretability of Raw Time Series Data:

The results of this experiment are summarized in Table II). These results reflect that raw 

time series data (Raw) do not provide adequate interpretability in most cases, as shown in 

Figure 7. Participants were asked to differentiate between multiple class pairs. These include 

walking vs. walking upstairs (UCI-HAR), walking vs. laying (UCI-HAR), malfunction vs. 

no malfunction (UCR-FordA) and number-one vs. number-three (UEA-Arabic). The results 

reveal that only in cases such as walking vs. laying, where the difference between two 

signals is noticeable, the overall averaged participant response is close to Extremely Easy 
(1). This contrasts with the other pairs, where the overall averaged participant response is 

close to Neither Easy nor Difficult(3) or Somewhat Difficult (4).

b) End-user Accuracy:

A fundamental measure of model interpretability is whether end-users can predict the 

outcome of a model based on its interface. As shown in Table III, most participants did 

select the correct outcome using the PIP pictorial representation. We observe that the 

participants’ performance increases as they progress in the survey for classification using 

decision trees. On the other hand, for PIP representations, participants did not experience 

a significant learning curve because their performance was high from the beginning. The 

survey results reveal that the Ptype representation is not an interpretable interface. For 

example, none of the participants could find the correct outcome of the Ptype interface for 

the UEA-Arabic dataset. It is evident that as the number of prototypes increases, it is harder 

for participants to distinguish between waveform graphs. This aligns with our result from 

the interpretability of raw sensor data. The results demonstrate that users are less prone 

to making a mistake when using the PIP pictorial representations. As Table III shows, the 

novice group (Other) was able to predict the outcome of PIP without having any prior 

knowledge. However, that was not the case when using DT or Ptype.
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c) End-user Response Time:

The time a user spends finding the outcome of a model is an essential indicator of 

interpretability. Although many of the participants were familiar with decision trees, the 

participants spend more time discerning its prediction. As shown in Table IV, PIP decreases 

interpretation time by >24 seconds in comparison with Ptype, which method also suffered 

from model misinterpretation.

d) End-user Perceived Understandability:

To investigate users’ perception towards the interpretability of the model, we ask users: 

How easy was the task you performed? The easier a task is to perform, the greater is the 

likelihood of user understanding. To measure the participants’ perception, they provided a 

Likert-scale response on task simplicity. The Likert-scale values range from 1 (Extremely 
Easy) to 5 (Extremely Difficult). As shown in Figure 8, the pictorial representation of PIP 

was the easiest model to use, and raw time series data was the hardest. The result of the 

experiment (see Table V) aligns with the end-user accuracy result in that all participant 

groups perform better using PIP than any of the other model interfaces.

e) End-user Trust and Reliance:

At the end of each task, participants assess if they trust and would rely on the explanation 

provided by the given model. To measure trust and reliance, we take the attitudinal 

viewpoint proposed by Lee et al. [35], which has been widely used in empirical studies 

of trust in human-machine interaction [36]. Lee et al. [35] define trust as “the attitude that an 

agent will help achieve an individual’s goals in a situation characterized by uncertainty and 

vulnerability.” We employ a similar assessment as has been utilized to measure human trust 

in automation [37]. The Trust scale asks participants: Does the explanation of the model 
increase your trust to use it compared to a black-box model (a model with no explanation)? 
The Reliance scale asks participants: Does the explanation provided by the model make the 
prediction of the model clear? We average participant responses from Strongly Agree = 1 to 

Strongly Disagree = 5 to measure models’ trustworthiness. We observe that the additional 

details provided by a DT may increase trust for some users, as shown in Table VI. However, 

PIP reliance score was better than the other two models as shown in Table VII. Figures 9 and 

10 depict participants’ views of user trust and user reliance, respectively, for each model.

f) PIP Accuracy:

In addition to interpretability, we consider PIP’s accuracy. Table VIII summarizes PIP’s 

performance, averaged over 10 random initializations. We note that an increase in the 

number of prototypes beyond #classes + 5 does not improve the PIP’s accuracy. In some 

cases, several of the prototypes look repetitive. Other times, PIP blends two or more of 

the base pictures, as illustrated in Figure 11 (5th picture from the left), likely because 

the learned prototype lies on class boundaries. While PIP’s accuracy is lower than that of 

ResNet and ROCKET, PIP provides a blend of accuracy and interpretability that cannot be 

achieved by ResNet or DT. The question of whether to prefer accuracy or interpretability is 

often dependent on the needs of each user. Accordingly, we ask our participants how they 

value interpretability versus accuracy. The participants select a point on a linear scale, where 
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0 indicates a preference for interpretability, and 100 prefers accuracy. The average selection 

was 64 ± 21 (STEM:65±21, Clinician:82±21, Other:54±21). This result indicates that users 

prefer a blend of interpretability and accuracy. At the end of the survey, participants chose 

the most interpretable model. 24 participants selected PIP, while 11 participants selected the 

decision tree. Interestingly, 10 out of the 11 participants who selected the decision tree as 

the most interpretable model in our survey are from the STEM group. Most participants who 

selected PIP are clinicians or work in other non-STEM disciplines.

To assess the impact of algorithmic parameters, we performed an ablation study to 

investigate the effect of each regularizer (R1, R2) and the prototype generator (M) on PIP’s 

performance. The results are shown in Table VIII. Eliminating R1 or R2 can destabilize 

the learning, especially for smaller datasets. We observe that R2 has a greater effect on 

the results than R1. When both regularizers are removed, the learned prototypes represent 

multiple copies of the same image or heavily-blended versions of multiple images. While the 

role of M is primarily to support generation of understandable prototypes, omitting M does 

not have a large impact on recognition accuracy.

While Gee et al. [18] note that a large number of prototypes can increase accuracy at the cost 

of making the prototypes noisy, we did not observe that increasing the number of prototypes 

improved PIP’s accuracy nor created noisier prototypes. We advocate that the number of 

prototypes be systematically increased until performance converges.

VI. Conclusions

In this paper, we proposed a method for interpretable time series classification (PIP) 

that helps the end-user to understand model prediction. PIP-generated prototypes provide 

a simple, intuitive explanation of model predictions. While the decision tree provides a 

detailed explanation of the prediction method, clinicians and people from other disciplines 

preferred the PIP pictorial representation. In fact, clinicians provided specific feedback that 

they “would not spend time viewing either the raw data graph or the decision tree in a time-

sensitive clinical setting”. Based on the clinicians’ feedback, they prefer the PIP pictorial 

representations in particular because the prototypes help them to make a fast decision in 

emergency conditions. On the other hand, 52% of participants in the STEM group prefer 

the decision tree’s interpretability because they can understand the decision model and fix 

the model or data. PIP provides a blend of interpretability and accuracy. Furthermore, the 

PIP’s ability to incorporate user-provided picture prototypes makes this method applicable 

to a larger group of end-user preferences. The result of our experiment illustrates that most 

people, especially those with less expertise, prefer a simple and understandable ML model 

interface. However, we believe that DT is still a powerful method, and as some participants 

reminded us, they appreciate seeing how the decision tree was constructed.

A limitation of the current PIP design is the difficulty of interpreting prototype images 

when user-provided pictures are blended or morphed. The process is most effective when 

simple sketches are provided. We postulate that interpretability may be challenging when the 

initial pictures are very detailed diagrams. A future research direction is to systematically 

determine the impact of picture detail on prototype interpretability. In this study, we focus 
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on designing an interpretable model for an end-user who is not able to directly interpret raw 

time series data. Our goal is to create an easy-to-understand explanation that such a user can 

interpret without the requisite time series expertise. Our experiments highlight the unique 

features and benefits of PIP.

In future work, we will analyze the impact of learning more complex image prototypes. 

Future experiments that target specific user group will also utilize images designed 

specifically by that group. Moreover, we would like to explore the possibility of representing 

time series prototypes as videos or text captions. These new directions will indicate the 

generalizability of the approach to multiple types of interfaces. To further investigate PIP 

usability, we will also conduct experiments with user-provided prototypes for applications 

that span multiple disciplines.

Acknowledgment

The authors would like to thank all the participants in our study. This work was supported by the National Institutes 
of Health under Grants R01NR016732 and R01EB009675.

References

[1]. Song Z, “English speech recognition based on deep learning with multiple features,” Computing, 
vol. 102, no. 3, pp. 663–682, 2020.

[2]. Haghayegh S, Khoshnevis S, Smolensky MH, Diller KR, and Castriotta RJ, “Deep neural network 
sleep scoring using combined motion and heart rate variability data,” Sensors, vol. 21, no. 1, p. 
25, 2021.

[3]. Eiband M, Schneider H, Bilandzic M, Fazekas-Con J, Haug M, and Hussmann H, “Bringing 
transparency design into practice,” in International Conference on Intelligent User Interfaces, 
2018, pp. 211–223.

[4]. Eykholt K, Evtimov I, Fernandes E, Li B, Rahmati A, Xiao C, Prakash A, Kohno T, and Song D, 
“Robust physical-world attacks on deep learning visual classification,” in IEEE Conference on 
Computer Vision and Pattern Recognition, 2018, pp. 1625–1634.

[5]. Ming Y, Xu P, Qu H, and Ren L, “Interpretable and steerable sequence learning via prototypes,” in 
ACM International Conference on Knowledge Discovery & Data Mining, 2019, pp. 903–913.

[6]. Caruana R, Lou Y, Gehrke J, Koch P, Sturm M, and Elhadad N, “Intelligible models for healthcare: 
Predicting pneumonia risk and hospital 30-day readmission,” in ACM International Conference 
on Knowledge Discovery and Data Mining, 2015, pp. 1721–1730.

[7]. Lundberg S and Lee S-I, “A unified approach to interpreting model predictions,” in Advances in 
Neural Information Processing Systems, vol. 30, 2017, pp. 4765–4774.

[8]. Guillemé M, Masson V, Rozé L, and Termier A, “Agnostic local explanation for time series 
classification,” in IEEE International Conference on Tools with Artificial Intelligence, 2019, pp. 
432–439.

[9]. Wiley J, “Picture this! effects of photographs, diagrams, animations, and sketching on learning and 
beliefs about learning from a geoscience text,” Applied Cognitive Psychology, vol. 33, no. 1, pp. 
9–19, 2019.

[10]. Wang Z, Yan W, and Oates T, “Time series classification from scratch with deep neural networks: 
A strong baseline,” in International Joint Conference on Neural Networks, 2017, pp. 1578–1585.

[11]. Arnout H, El-Assady M, Oelke D, and Keim DA, “Towards a rigorous evaluation of XAI 
methods on time series,” in IEEE/CVF International Conference on Computer Vision Workshop, 
2019, pp. 4197–4201.

[12]. Siddiqui SA, Mercier D, Munir M, Dengel A, and Ahmed S, “Tsviz: Demystification of deep 
learning models for time-series analysis,” IEEE Access, vol. 7, pp. 67 027–67 040, 2019.

Ghods and Cook Page 13

IEEE Comput Intell Mag. Author manuscript; available in PMC 2022 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[13]. Strodthoff N and Strodthoff C, “Detecting and interpreting myocardial infarction using fully 
convolutional neural networks,” Physiological Measurement, vol. 40, no. 1, p. 015001, 2019. 
[PubMed: 30523982] 

[14]. Rudin C, “Stop explaining black box machine learning models for high stakes decisions and use 
interpretable models instead,” Nature Machine Intelligence, vol. 1, no. 5, pp. 206–215, 2019.

[15]. Madiraju N and Karimabadi H, “Instance explainable temporal network for multivariate 
timeseries,” arXiv preprint arXiv:2005.13037, 2020.

[16]. Tang W, Liu L, and Long G, “Interpretable time-series classification on few-shot samples,” in 
International Joint Conference on Neural Networks. Glasgow, United Kingdom: IEEE, 2020, pp. 
1–8.

[17]. Snell J, Swersky K, and Zemel R, “Prototypical networks for few-shot learning,” in Advances in 
Neural Information Processing Systems, 2017, pp. 4077–4087.

[18]. Gee AH, Garcia-Olano D, Ghosh J, and Paydarfar D, “Explaining deep classification of time-
series data with learned prototypes,” in International Workshop on Knowledge Discovery in 
Healthcare Data, vol. 2429, 2019, pp. 15–22.

[19]. Li O, Liu H, Chen C, and Rudin C, “Deep learning for case-based reasoning through prototypes: 
A neural network that explains its predictions,” in AAAI Conference on Artificial Intelligence, 
2018, pp. 3530–3537.

[20]. Fawaz HI, Forestier G, Weber J, Idoumghar L, and Muller P-A, “Deep learning for time series 
classification: a review,” Data Mining and Knowledge Discovery, vol. 33, no. 4, pp. 917–963, 
2019.

[21]. Bagnall A, Lines J, Bostrom A, Large J, and Keogh E, “The great time series classification 
bake off: a review and experimental evaluation of recent algorithmic advances,” Data Mining and 
Knowledge Discovery, vol. 31, no. 3, pp. 606–660, 2017. [PubMed: 30930678] 

[22]. Arora S, Hazan E, and Kale S, “The multiplicative weights update method: A meta-algorithm and 
applications,” Theory of Computing, vol. 8, no. 1, pp. 121–164, 2012.

[23]. Chen C, Li O, Tao D, Barnett A, Rudin C, and Su JK, “This looks like that: deep learning for 
interpretable image recognition,” in Advances in Neural Information Processing Systems, 2019, 
pp. 8928–8939.

[24]. Anguita D, Ghio A, Oneto L, Parra X, and Reyes-Ortiz JL, “A public domain dataset for human 
activity recognition using smartphones.” Sensors, vol. 20, no. 8, 2020.

[25]. Dau HA, Keogh E, Kamgar K, Yeh C-CM, Zhu Y, Gharghabi S, Ratanamahatana CA, Hu 
Yanping, B., Begum N, Bagnall A, Mueen A, Batista G, and Hexagon-ML, “The UCR time 
series classification archive,” 2018.

[26]. Benbasat I and Taylor RN, “Behavioral aspects of information processing for the design of 
management information systems,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 
12, no. 4, pp. 439–450, 1982.

[27]. Lee C-C, Cheng HK, and Cheng H-H, “An empirical study of mobile commerce in insurance 
industry: Task–technology fit and individual differences,” Decision Support Systems, vol. 43, no. 
1, pp. 95–110, 2007.

[28]. Kim B, Koyejo O, Khanna R et al. , “Examples are not enough, learn to criticize! criticism for 
interpretability.” in Advances in Neural Information Processing Systems, 2016, pp. 2280–2288.

[29]. Chin JP, Diehl VA, and Norman KL, “Development of an instrument measuring user satisfaction 
of the human-computer interface,” in Human Factors in Computing Systems, 1988, pp. 213–218.

[30]. Xu W, “Toward human-centered AI: a perspective from human-computer interaction,” 
Interactions, vol. 26, no. 4, pp. 42–46, 2019.

[31]. Hoffman RR, Mueller ST, Klein G, and Litman J, “Metrics for explainable AI: Challenges and 
prospects,” arXiv preprint arXiv:1812.04608, 2018.

[32]. Sasani K, Catanese HN, Ghods A, Rokni SA, Ghasemzadeh H, Downey RJ, and Shahrokni A, 
“Gait speed and survival of older surgical patient with cancer: Prediction after machine learning,” 
Journal of Geriatric Oncology, vol. 10, no. 1, pp. 120–125, 2019. [PubMed: 30017733] 

[33]. Dempster A, Petitjean F, and Webb GI, “ROCKET: exceptionally fast and accurate time series 
classification using random convolutional kernels,” Data Mining and Knowledge Discovery, vol. 
34, no. 5, pp. 1454–1495, 2020.

Ghods and Cook Page 14

IEEE Comput Intell Mag. Author manuscript; available in PMC 2022 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[34]. Kingma DP and Ba J, “Adam: A method for stochastic optimization,” in International 
Conference on Learning Representations, 2015.

[35]. Lee JD and See KA, “Trust in automation: Designing for appropriate reliance,” Human Factors, 
vol. 46, no. 1, pp. 50–80, 2004. [PubMed: 15151155] 

[36]. Kulms P and Kopp S, “A social cognition perspective on human-computer trust: The effect of 
perceived warmth and competence on trust in decision-making with computers,” Frontiers in 
Digital Humanities, vol. 5, p. 14, 2018.

[37]. Adams BD, Bruyn LE, Houde S, Angelopoulos P, Iwasa-Madge K, and McCann C, “Trust in 
automated systems,” Toronto: Ministry of National Defence, 2003.

Ghods and Cook Page 15

IEEE Comput Intell Mag. Author manuscript; available in PMC 2022 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1: 
(left) Time series plots of accelerometer and gyroscope readings (top: walking upstairs, 

bottom: walking downstairs). (right) Learned prototypes and corresponding similarity 

scores. PIP learns concepts from multivariate time series data, thus similarity scores are 

based on a combination of the lines shown in the graph. Red squares highlight PIP 

predictions.
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Fig. 2: 
The PIP architecture. The model consists of four components: an encoder f(x) that 

transforms the input to the latent space z, a prototype layer p with m prototypes, a fully 

connected layer FC with a softmax layer for multi-class classification, and a generator g(z) 

for converting the latent space to a correct sketch representation of the data. PIP learns 

the prototypes p by minimizing the distance between embedded input z and each prototype 

pi. Additionally, PIP minimizes the distance between each prototype pi and the embedded 

data z, thus encouraging each prototype to cluster around one class. The input to the fully 

connected layer FC is the normalized distance a between the encoded data z, and each 

prototype p. PIP simultaneously utilizes the generator to transform the encoded data g(z) 

into their respective picture ypic. Since the prototypes are based on the encoded data, the 

generator converts the learned prototypes into their corresponding pictures after training.
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Fig. 3: 
Example of learned color prototypes for HAR dataset.
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Fig. 4: 
Example of a learned blend of pictures.
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Fig. 5: 
Pictorial representations for each class used in the experiments.
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Fig. 6: 
Example model interfaces using (top-left) Decision tree (right) non-pictorial prototype 

representation (PType), and (bottom-left) PIP pictorial representation (PIP) for UCI-HAR 

datasets.
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Fig. 7: 
The number of participants’ response to the interpretability of raw time series data.
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Fig. 8: 
The number of end-user perceived understandability of performing a task for alternative 

methods.
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Fig. 9: 
Participant responses to the trust of performing a task.
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Fig. 10: 
Participant responses to the reliance of performing a task.
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Fig. 11: 
Example PIP-generated prototype pictures for UCI-HAR.
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TABLE I:

Dataset summary.

Dataset time steps channels classes training testing

UCI-HAR 128 9 6 7352 2947

UCR-FordA 500 1 2 3601 1320

UEA-ArabicDigits 93 13 10 6600 2200
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TABLE II:

Average Likert responses for raw time series data.

STEM Clinician Other Overall

walking vs. walking upstairs 3.1 3.4 2.0 3.0

walking vs. laying 1.3 1.1 1.5 1.2

malfunction vs. no malfunction 2.7 2.4 3.1 2.7

number-one vs. number-three 3.7 3.7 3.8 3.7
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TABLE III:

Accuracy of participant classification for three alternative approaches, averaged over all of the datasets.

STEM Clinician Other Overall

PIP 0.92 0.90 0.83 0.90

DT 0.87 0.83 0.40 0.79

Ptype 0.29 0.33 0.55 0.35
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TABLE IV:

Time spent by participants (in seconds) to perform prediction for three alternative approaches, averaged over 

all of the datasets.

STEM Clinician Other Overall

PIP 6.89 15.86 20.50 11.79

DT 36.03 75.33 110.00 58.47

Ptype 21.43 49.63 60.38 36.17
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TABLE V:

Participant Perceived Understandability in four alternative representations, averaged over all of the datasets.

STEM Clinician Other Overall

PIP 1.22 1.53 1.94 1.43

DT 2.19 2.96 3.83 2.69

Ptype 2.29 2.66 3.38 2.59

Raw 3.77 3.83 4.16 3.85
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TABLE VI:

Participant trust in three alternative types of explanation, averaged over all of the datasets.

STEM Clinician Other Overall

PIP 2.45 2.13 2.55 2.38

DT 2.14 1.93 2.83 2.20

Ptype 3.03 2.56 3.38 2.96
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TABLE VII:

Participant reliance in three alternative types of explanation, averaged over all of the datasets.

STEM Clinician Other Overall

PIP 1.66 1.46 2.38 1.73

DT 1.71 2.20 3.38 2.14

Ptype 2.84 2.93 3.44 2.97
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