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Abstract

The p-persistent q-combinatorial Laplacian defined for a pair of simplicial complexes is a 

generalization of the q-combinatorial Laplacian. Given a filtration, the spectra of persistent 

combinatorial Laplacians not only recover the persistent Betti numbers of persistent homology but 

also provide extra multiscale geometrical information of the data. Paired with machine learning 

algorithms, the persistent Laplacian has many potential applications in data science. Seeking 

different ways to find the spectrum of an operator is an active research topic, becoming interesting 

when ideas are originated from multiple fields. In this work, we explore an alternative approach 

for the spectrum of persistent Laplacians. As the eigenvalues of a persistent Laplacian matrix are 

the roots of its characteristic polynomial, one may attempt to find the roots of the characteristic 

polynomial by homotopy continuation, and thus resolving the spectrum of the corresponding 

persistent Laplacian. We consider a set of simple polytopes and small molecules to prove the 

principle that algebraic topology, combinatorial graph, and algebraic geometry can be integrated to 

understand the shape of data.
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1. Introduction.

Recent years witness the burst of advanced mathematical tools for data science [27, 22, 31, 

12]. Persistent homology has been proved to be a powerful tool in analyzing the geometry 

shape and topological persistence of data [8, 10]. It has had much success in machine 

learning [7, 23, 26] ([7] is one of the first papers that combine persistent homology with 

machine learning), computational chemistry [31] and biology [29, 36, 25]. The methods of 

persistent homology start with constructing a filtration of simplicial complexes from the data 

so that multiscale geometrical information can be extracted thereafter from the computations 
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of a family of topological invariants. Persistent homology is a quite informative method, 

since it can detect features that are persistent over a wide range of scales, rather than 

features that depend on a particular choice of parameters. Inspired by the theory of persistent 

homology, one recent generalization of a classical operator to its persistent version is the 

so-called persistent combinatorial Laplacian or persistent Laplacian for simplicity [34].

The applications of Laplace operators are ubiquitous in mathematics, physics, and data 

science. The graph Laplacian has been a fundamental concept in the study of graphs, partly 

because the spectrum of the graph Laplacian contains the topological information of the 

graph [11]. As one can think of a graph as a 1-dimensional simplicial complex and define 

the graph Laplacian as a sum of compositions of boundary operators, one can readily 

define a more general Laplacian called the combinatorial Laplacian for a high dimensional 

simplicial complex. The persistent combinatorial Laplacian, defined for a pair of simplicial 

complexes K ↪ L, is an extension of the aforementioned combinatorial Laplacian. When 

a filtration is given, it is natural to compute persistent Laplacians, and one may ask how 

persistent Laplacian and persistent homology are related. It turns out that the nullity of a 

persistent Laplacian is equal to the corresponding persistent Betti number (see Theorem 

2.11). Moreover, nonzero eigenvalues and eigenvectors of a persistent Laplacian contain 

extra geometrical information of the filtration, and can be used to resolve a challenge about 

protein flexibility [34], therefore the theory of persistent Laplacian is a powerful tool for 

data analysis. Persistent Laplacians can be computed by software package HERMES [35].

Although the spectrum of an operator can be numerically computed in different ways, 

seeking new ways to calculate the spectrum of an operator is an active research topic [2]. 

In addition to the traditional methods of numerical linear algebra, one may alternatively 

resolve the spectrum by finding the roots of the characteristic polynomial associated with the 

operator. Homotopy continuation is an interesting method for solving a single polynomial 

or systems of polynomial equations. The essential idea is to build a homotopy between 

the system to be solved (called the target system) and an easier system with known roots 

(called the start system) and track down the known roots of the start system to the roots 

of the target system. As systems of polynomial equations arise in mathematics, science, 

and engineering, homotopy continuation methods have found applications in various areas, 

such as algebraic geometry [19, 20], robot kinematics [33], optimal control [3], differential 

equations [1, 17], and biology [14, 16, 28]. Several software packages implement homotopy 

continuation methods, such as Bertini [4], HomotopyContinuation.jl [6], Hom4PS-3 [9], and 

PHCpack [32].

In this work, we propose to solve the spectra of persistent Laplacians using homotopy 

continuation. In Section 2, we present the theory of persistent homology and persistent 

Laplacian. In section 3, we briefly explain how homotopy continuation works. In Section 

4, we give a proof of principle application of our approach to some simple polytopes and 

small molecules. Our goal is to stimulate further research at the interface of algebraic 

geometry, algebraic topology, combinatorial graph, and data science. We use HERMES 

[35] to calculate the matrix representations of persistent Laplacians and then use Bertini 

[4] to find the roots of their associated characteristic polynomials. We hope this work can 
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exposit the theory of persistent Laplacian and shed some light on the potential application of 

homotopy continuation methods in data science.

2. Persistent homology and persistent Laplacian.

In this section, we introduce basics of persistent homology and persistent Laplacian. Readers 

familiar with persistent homology can skip the subsection on simplicial homology and 

persistent homology. As to subsections on different versions of Laplacians, Proposition 1, 

Theorem 2.10, Theorem 2.11, and many examples can be skipped on a first read, as they are 

not directly related to the main contribution of this paper.

2.1. Simplicial homology and persistent homology.

We present here a very short introduction of persistent homology to establish concepts and 

notations [10].

Definition 2.1 (Simplex).—A q-simplex denoted as σq = [u0,..., uq] is the convex hull of 

q+1 affinely independent points {u0,..., uq} in ℝn. The orientation of σq is determined by the 

ordering of the vertices {u0,..., uq} and two orderings define the same orientation if and only 

if they differ by an even permutation. The dimension of σq = [u0,..., uq] is defined as q. For 0 

≤ i ≤ n, u0, …, ui, …, uq  is said to be a face of σq, where the hat indicates the omission of the 

vertex.

Definition 2.2 (Simplicial complex).—A finite set of simplices, K, is a simplicial 

complex if the following conditions are satisfied: (1) all faces of any simplex in K are also 

in K; (2) the non-empty intersection of any two simplices in K is a common face of the two 

simplices. The dimension of a simplicial complex K is defined as the maximal dimension of 

its simplices.

Another important notion is the abstract simplicial complex.

Definition 2.3 (Abstract simplicial complex).—Suppose we have a finite collection of 

sets called K. For any set σ in K, if all subsets of σ are also in K, K is said to be an abstract 

simplicial complex. Subsets of σ are called faces of σ.

The notions of abstract simplicial complex and simplicial complex are closely related. One 

may build a simplicial complex from an abstract simplicial complex or vice versa [10]. They 

contain exactly the same combinatorial information. From now on we will not distinguish 

abstract simplicial complexes from simplicial complexes.

Definition 2.4 (Chain complex).—Suppose we have a simplicial complex K. For any 

q, the formal sums of all q-simplices with coefficients in a field, for instance ℤ2, form an 

abelian group denoted by Cq(K). Such a group is called a chain group and the elements of it 

are called q-chains. The boundary operator ∂q : Cq(K) → Cq−1(K) is defined as
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∂q u0, …, uq = ∑
i = 0

q
( − 1)i u0, …, ui, …, uq .

For simplicity we usually omit the subscript q and only write ∂. The collection of boundary 

operators and chain groups forms the so called chain complex of K

⋯
∂q + 2

Cq + 1(K)
∂q + 1

Cq(K)
∂q

Cq − 1(K)
∂q − 1

⋯ .

As ∂2 = 0, the homology group Hq is defined as ker ∂q/im∂q−1. The rank of Hq is called the 

qth Betti number and denoted by βq.

Definition 2.5 (Cochain complex).—Given a chain complex

⋯
∂q + 2

Cq + 1(K)
∂q + 1

Cq(K)
∂q

Cq − 1(K)
∂q − 1

⋯,

the dual spaces Cq(K) of Cq(K) and dual maps d of ∂ form a cochain complex

⋯
∂q + 2*

Cq + 1(K)
∂q + 1*

Cq(K)
∂q*

Cq − 1(K)
∂q − 1*

⋯

where ∂i* is called a coboundary operator. The cohomology group Hq is defined as 

ker∂q + 1* /im∂q*. As Cq(K) is formally generated by q-simplices, there is a canonical 

isomorphism between Cq(K) and Cq(K) such that any simplex σ is identified with σ∗.

Definition 2.6 (Filtration).—A filtration X = Xr ∣ r ∈ ℝ  is a series of finite simplicial 

complexes indexed over real numbers such that Xa ⊂ Xb if a ≤ b. When X is a finite set, we 

say that it is a finite filtration.

A filtration can be constructed in various ways from a set of points in ℝd.

Example 2.1 (Rips complex).—The Rips complex is an abstract simplicial complex. 

Given a set S ⊂ ℝd and a radius r, if a subset T of S has the property that the distance 

between any pair of points in T is at most 2r, then T is include in the Rips complex (see 

figure 2).

Example 2.2 (Alpha complex).—Now we build an alpha complex from a finite set 

S ⊂ ℝd. First we define the Voronoi cell. The Voronoi cell of a point u in S is

V u = x ∈ ℝd ∣ x − u ≤ x − v , v ∈ S .

Let Bu(r) be the closed ball with center u and radius r. Denote the intersection Bu(r) ∩ Vu by 

Ru(r). Then the alpha complex is defined as
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Alpha(r) = σ ⊂ S ∣ ∩
u ∈ σ

Ru(r) ≠ ∅ .

In other words, Alpha(r) is the nerve of cover {Ru(r), u ∈ S}. Let r go from 0 to the diameter 

of S, then we get a filtration of alpha complexes.

Definition 2.7 (Persistent Betti number).—Suppose a finite filtration X = {Xt | t ∈ T} 

is given. The inclusion Xt ↪ Xt+p induces a homomorphism

fqt, p:Hq Xt Hq Xt + p

on the simplicial homology groups for each dimension q. The qth persistent homology 

groups are the images of such homomorphisms, and the qth persistent Betti numbers βq
t, p are 

the ranks of persistent homology groups.

2.2. Graph Laplacian.

Let G(V, E) be a simple graph with V = {vi} the vertex set and E the edge set.

Definition 2.8.—The Laplacian matrix ℒ (also called the graph Laplacian) of G is defined 

as

ℒij =
degvi, if i = j
−1, if i ≠ j and vi is adjacent to vj
0, otherwise

Example 2.3.—Take a 2-simplex [a, b, c]. Its graph Laplacian is

a
b
c

2 −1 −1
−1 2 −1
−1 −1 2

a b c

.

The Laplacian matrix is a symmetric positive semi-definite matrix. The topology of a graph 

can be inferred from the spectrum of the graph Laplacian. For instance, the number of 

connected components of a graph G is equal to the algebraic multiplicity of 0 in its graph 

Laplacian. The second smallest eigenvalue of a graph Laplacian is called the Fiedler value 

and can be regarded as a measure of topological connectivity. See [37] for more results 

concerning the graph Laplacian.

2.3. Combinatorial Laplacian.

Recall there is a canonical isomorphism between Cq(K) and Cq(K). The q-combinatorial 

Laplacian Δq : Cq(K) → Cq(K) is defined as
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Δq = ∂q + 1 ∂q + 1* + ∂q* ∂q, (1)

and Δ0 = ∂1 ∂1*. Alternatively, we may equip Cq(K) with an inner product ⟨·, ·⟩ such that for 

any two simplices σi and σj, ⟨σi, σj⟩ = δij. Then one may regard ∂q + 1*  as the adjoint map 

with respect to this inner product. Denote the matrix representation of the boundary operator 

∂q by ℬq, then the matrix representation ℒq of Δq is

ℬq + 1ℬq + 1
T + ℬq

Tℬq . (2)

As the combinatorial Laplacian is symmetric and positive semi-definite, its spectrum 

consists of non-negative real eigenvalues.

Example 2.4.—ℒ0 coincides with Δ0. Take a 2-simplex [a, b, c]. ℬ1 is

a
b
c

−1 0 −1
1 −1 0
0 1 1

ab bc ca

.

Then

−1 0 −1
1 −1 0
0 1 1

−1 1 0
0 −1 1

−1 0 1
=

2 −1 −1
−1 2 −1
−1 −1 2

,

i.e., ℬ1ℬ1
T = ℒ0.

Definition 2.9.—Two q-simplices σi, σj are said to be lower adjacent, denoted by σi
Lσj, if 

they share a common (q − 1)-face. They are said to be upper adjacent, denoted by σi
Uσj, if 

they both are faces of a (q + 1)-simplex. The lower degree degL(σ) of a q-simplex σ is q +1, 

the number of its (q −1)-faces. The upper degree degU(σ) of a q-simplex σ is defined as the 

number of (q+1)-simplices in K of which σ is a face. The degree of q-simplex σ is defined 

as

degU(σ) + degL(σ) = degU(σ) + q + 1.

Now suppose σi
Uσj with common upper (q+1)-simplex τ. Let’s examine the signs of the 

coefficients of σi, σj in ∂τ. We say that σi and σj are similarly oriented if the signs are the 

same; dissimilarly oriented if the signs are different. Next suppose σi
Lσj with common lower 

(q − 1)-simplex η. Let’s examine the signs of the coefficients of η in ∂σi and ∂σj. We say 

that η is a similar common lower simplex of σi and σj if the signs are the same; a dissimilar 

common lower simplex if the signs are different.
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The following proposition gives an explicit formula for ℒq.

Proposition 1.—[13, Thm. 3.3.4] Suppose we have a finite simplicial complex K and its 
set of q-simplices is {σ1,..., σn}.

1. When q = 0,

ℒij =

degUσi, if i = j

−1, if i ≠ j and σi
Uσj

0, if i ≠ j and σi ≁U σj

1. If q > 0, then

ℒij =

degUσi + q + 1, if i = j

1, if i ≠ j, σi ≁U σj and have a similar common
lower simplex

−1, if i ≠ j, σi ≁U σj and have a dissimilar common
lower simplex
if i ≠ j and either σi and σj are upper adjacent

0, or are not lower adjacent

The kernel of a combinatorial Laplacian contains topological information. We have

βq = dimker∂q − dimim∂q + 1 = dimkerΔq . (3)

Later we will prove a generalized version of the above equality for persistent Laplacians.

2.4. Persistent Laplacian.

Suppose we have two simplicial complexes Kt ⊂ Kt+p from a filtration and boundary 

operators ∂q
t :Cq Kt Cq − 1 Kt  and ∂q + 1

t + p :Cq + 1 Kt + p Cq Kt + p . From now on we use 

Cq
t  to denote Cq(Kt) for simplicity. Bearing in mind the inclusion map from Cq

t  to Cq
t + p, we 

define

ℂq + 1
t, p = e ∈ Cq + 1

t + p ∣ ∂q + 1
t + p (e) ∈ Cqt ,

i.e., ℂq + 1
t, p  consists of elements whose images under ∂q + 1

t + p  are in Cq
t . One can define an 

inner product ⟨·, ·⟩ on Cq
t  such that for any two simplices σi and σj, ⟨σi, σj⟩ = δij. Denote 

∂q + 1
t + p

ℂq + 1
t, p  as ðq + 1

t, p . As ℂq + 1
t, p  inherits the inner product from Cq + 1

t + p, the adjoint map 

ðq + 1
t, p * of ðq + 1

t, p  is well defined. The p-persistent q-combinatorial Laplacian operator [34] 

is defined as
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Δq
t, p = ðq + 1

t, p ðq + 1
t, p * + ∂q

t *∂q
t . (4)

Theorem 2.10.—[The matrix representation of Δq
t, p] [34, 24] Suppose we pick up a basis 

{v1,··· ,vm} of ℂq + 1
t, p  and the associated inner product matrix is P. Let ℬq + 1

t, p  be the matrix 

representation of ðq + 1
t, p  with respect to {v1,··· , vm} and the canonical basis of Cq

t , ℬq
t  the 

matrix representation of ∂q
t  with respect to the canonical bases of Cq

t  and Cq − 1
t . Then the 

matrix representation ℒq
t, p of Δq

t, p is

ℬq + 1
t, p P−1 ℬq + 1

t, p T + ℬq
t Tℬq

t . (5)

Proof.: Denote the matrix representation of the adjoint map ðq + 1
t, p * by X. It suffices to 

determine X. Take two vectors v ∈ ℂq + 1
t, p , w ∈ Cq

t . We abuse the notation a bit and use v, w to 

denote their coordinates in the form of column vector as well. We have

ðq + 1
t, p v, w Cqt = v, ðq + 1

t, p *w ℂq + 1
t, p

ℬq + 1
t, p v

T
w = vTPXw

vT ℬq + 1
t, p T

w = vTPXw .

As v, w are arbitrarily taken, we conclude that X = P−1 ℬq + 1
t, p T

. □

Example 2.5.—Consider the ordered point set

0, 0, 0.001 , 3, − 4, − 0.001 , 6, 0, 0.001 , 3, 4, − 0.001 , 11, 0, 0.001 .

From now on we denote these points as 0, 1, 2, 3, and 4 according to the order and we omit 

brackets and commas in the notation of any simplex. For example, the simplex [(0, 0, 0.001), 

(3, −4, −0.001)] will be denoted as 01. Using GUDHI [15] we can build the filtration K of 

alpha complexes up to 9.77:

(0, 1, 2, 3, 4 0.00), (14, 02, 23, 04, 34 6.25), (24 9.00),
(024, 234 9.77) ,
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where (0, 1, 2, 3, 4 → 0.00) means that K0 = {0, 1, 2, 3, 4} and (14, 02, 23, 04, 34 → 

6.25) means that K6.25 = K0 ∪ {14, 02, 23, 04, 34} and so on. Let’s first calculate ℒ1
6.25, 3.52. 

ℬ1
6.25 is equal to

0
1
2
3
4

0 −1 0 −1 0
−1 0 0 0 0
0 1 −1 0 0
0 0 1 0 −1
1 0 0 −1 1

.

14 02 23 04 34

ℬ2
9.77 is equal to

14
02
23
04
34
24

0 0
1 0
0 1

−1 0
0 1
1 −1

024 234

.

Note that 24 ∉ C1
6.25. It is easy to see that span 024 + 234 = ℂ2

6.25, 3.52. So ℬ2
6.25, 3.52 is equal 

to

14
02
23
04
34

0
1
1

−1
1

024 + 234

and P is equal to ⟨024 + 234, 024 + 234⟩. So ℒ1
6.25, 3.52 is equal to

2 0 0 1 1
0 2.5 −0.5 0.5 0.5
0 −0.5 2.5 −0.5 −0.5
1 0.5 −0.5 2.5 0.5
1 0.5 −0.5 0.5 2.5

.

Example 2.6.—Consider the graph

and the filtration {(1, 2 → 0), (3, 4, 13, 34, 42 → 1)}. Let’s compute ℒ0
0, 1. ℬ1

1 is equal to
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1
2
3
4

−1 0 0
0 0 1
1 −1 0
0 1 −1

13 34 42

.

After a few steps of Gauss elimination we get

1
2
3
4

−1 −1 −1
0 0 1
1 0 0
0 1 0

13 13 + 34 13 + 34 + 42

.

It is clear that ℂ1
0, 1 = span 13 + 34 + 42 , P = 3 and ℬ1

0, 1 is equal to

1
2

−1
1

13 + 34 + 42
.

Then ℒ0
0, 1 is

1/3 −1/3
−1/3 1/3 .

Its spectrum is {0, 2/3}.

As stated earlier, now we prove the theorem that connects the nullity of persistent Laplacian 

with persistent Betti number.

Theorem 2.11 (Persistent Betti numbers from persistent Laplacians).—[34, 24] 

Given a filtration K of simplicial complexes, for any positive integer q, we have

βq
t, p = nullity Δq

t, p . (6)

To prove Theorem 2.11, we need the following lemma.

Lemma 2.12.—[21] Suppose A : U → V and B : V → W are two linear maps where U, V 
and W are inner product spaces. We have

1. ker(A∗) = im(A)⊥;

2. ker(A∗A) = ker A;

3. If BA = 0, then

ker AA* + B*B = ker A* ∩ ker(B);
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4. If BA = 0, then

ker(B)/im(A) ≅ ker(B) ∩ ker A* ;

5. If BA = 0, then from 4) and 5) we know

ker(B)/im(A) ≅ ker AA* + B*B .

Proof.

1. If x ∈ im(A)⊥, then for any y ∈ V,

0 = x, Ay = A*x, y .

So A∗x = 0. If x ∈ ker(A∗), then for any y ∈ V,

0 = A*x, y = x, Ay .

So x ∈ im(A)⊥.

2. ⊃: obvious; ⊂: Let v ∈ ker(A∗A), then

0 = A*Av, v = Av, Av ,

implying Av = 0.

3. ⊃: obvious; ⊂: Let v ∈ ker(AA∗ + B∗B). Then AA∗v = −B∗Bv. Apply B to both 

sides, we get −BB∗Bv = 0. As B∗Bv ∈ ker(B)∩im(B∗) (recall that ker(B∗B) = 

ker(B)), Bv must be 0. Applying A∗ to both sides and reasoning similarly, one 

can show that A∗v = 0.

4. Let π : V → im(A)⊥ be the projection and πB = π|ker(B). ker(πB) ⊂ ker(π) = 

im(A), and since ker(B) ⊃ im(A), we get ker(πB) = im(A). Next we show that 

imπB = ker(B)∩im(A)⊥. It suffices to show that im πB ⊂ ker (B). This is true 

since for any v ∈ ker(B),

B πB(v) = B(πv) = B(πv) + B((1 − π)v) =(1 − π)v ∈ im(A) B(v) = 0.

Now

ker(B)/ker πB ≅ im πB

ker(B)/im(A) ≅ ker(B) ∩ im(A)⊥
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ker(B)/im(A) ≅ ker(B) ∩ ker A* .

□

Proof of Theorem 2.11.: Since ∂q
t ðq + 1

t, p = 0, ker Δq
t, p ≅ ker∂q

t /im ðq + 1
t, p . Also bear in mind 

that dim ∂q
t /im ðq + 1

t, p = βq
t, p. □

3. Method of homotopy continuation.

Our exposition of homotopy continuation follows [5]. A more theoretical treatment of this 

topic can be found elsewhere [30].

3.1. Path tracking.

Solving a system of polynomial equations f by homotopy continuation basically consists of 

three steps: 1) build a start system g such that g can be solved easily; 2) build a homotopy 

between two systems f and g; 3) track the roots of g to the roots of f.

We first look at a simple example. Let us say we wish to solve the following polynomial in 

one complex variable

f(z) = − 2z3 − 5z2 + 4z + 1.

We take a similar and simpler polynomial g(z) and deform the roots of g(z) to f(z). For 

instance we may take g(z) = z3 + 1 and construct a linear homotopy

ℎ z, s = sg z + 1 − s f z

where s is a complex variable. Though the second parameter of h is a complex variable, we 

still call h a homotopy between f and g for convenience. Then we parametrize s by a curve

s(t) = γt
γt + (1 − t) , t ∈ [0, 1], γ ∈ ℂ\ℝ

(this is called the gamma trick [5, Section 6.1] and there are technical reasons behind such 

choice of parametrization). We substitute s(t) in h(z, s) and clear denominators, then obtain a 

usual homotopy

H(z, t) = γtg(z) + (1 − t)f(z), t ∈ [0, 1] .

For each t0 ∈ [0, 1], H(z, t0) is a polynomial. Once we know how to numerically solve H(z, 
t0 − Δt) = 0 from the known roots of H(z, t0), we can pick a grid of [0, 1] and track the 

known roots of g step by step all the way to the solutions of f. This process is called the path 

tracking. Now suppose H(z(t), t) = 0 for any t ∈ (0, 1] with z(1) a root of g. Differentiate 

H(z(t), t) with respect to t, we have the Davidenko differential equation
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∂H
∂t (z(t), t) + ∂H

∂z (z(t), t)dz(t)
dt = 0.

If ∂H
∂z (z(t), t) is nonzero, the Davidenko differential equation can be rewritten as

dz(t)
dt = − ∂H

∂z (z(t), t)
−1∂H

∂t (z(t), t)

As we know the value of z(t) at t0, we have indeed transformed our original problem of 

tracking roots to the classical initial value problem of ordinary differential equation (ODE). 

One may use any ODE method to predict z(t0 −Δt) (The default ODE solver employed by 

Bertini is RKF45). For instance we can apply the simplest Euler’s method and get

z t0 − Δt = z t0 − ∂H
∂z z t0 , t0

−1∂H
∂t z t0 , t0 Δt .

Since we also know that H(z(t0 − Δt),t0 − Δt) should be zero, we can apply several iterations 

of Newton’s method to update z(t0 −Δt). Such a combination of an ODE predictor with 

Newton’s method is called a predictor-corrector method.

Now after the path tracking from t = 1 to t = 0, we get a sequence {z(ti)}. If the limit 

lim
ti 0

z ti  exists and is finite, we think of lim
ti 0

z ti  as a solution of f.

Example 3.1.—The reader may wonder why we do not just use

H(z, t) = tg(z) + (1 − t)f(z), t ∈ [0, 1] .

Consider the example H(z, t) = t(z2−1)+(1−t)(5−z2). When t = 1/2, H(z, 1/2) = 2 has no 

roots. When t = 5/6, H(z, 5/6) = 2/3z2 has a singular root 0, and the derivative of it at z = 0 is 

zero.

Example 3.2.—Though usually we are only interested in real roots of the target system, we 

should also track complex roots. Consider the homotopy

ℎ(z, t) = z4 − e2πi(1 − t) + 0.25 = 0, t ∈ [0, 1] .

At t = 1, h(z, 1) has two real roots ± 0.754  and two imaginary roots s± 0.754 i. As t goes from 

1 to 0, e2πi(1−t) travels around the unit circle in the complex plane counterclockwise. The 

two real roots will be deformed to the two imaginary ones and vice versa.

We have discussed how to apply homotopy continuation to solve a single polynomial. The 

procedure for a single polynomial can be generalized to solve a square system. We introduce 

some concepts first.
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Definition 3.1 (Square system).—A system of polynomial equations

f(z) =
f1 z1, …, zN

⋮
fn z1, …, zN

= 0

with n polynomials and N variables is said to be square if n = N.

Definition 3.2 (Isolated solution).—For any solution z∗ of f, if there is r > 0 such that 

there is no other solutions but z∗ contained in

Br z* = z ∈ ℂN z − z* ∣ < r ,

we say that z∗ is isolated.

Definition 3.3.—We say that a solution z∗ is nonsingular if

J f, z* =

∂f1
∂z1

z* …
∂f1
∂zN

z*

⋮ ⋱ ⋮
∂fN
∂z1

z* …
∂fN
∂zN

z*

is non-singular. Otherwise z∗ is said to be a singular solution.

Definition 3.4 (Good homotopy).—Suppose we have a square system of polynomial 

equations f, a start system g, a set of D distinct solutions S1 of g(z) = H(z, 1) = 0, and a 

system of infinitely differentiable functions

H(z, t) =
H1 z1, …, zN, t

⋮
HN z1, …, zN, t

satisfying the following property:

1. For any t ∈ [0, 1], H(z, t) is a system of polynomial equations;

2. For any ωj ∈ S1, there exists a smooth map pj(t): (0, 1] ℂN such that pj(1) = ωj;

3. For any t∗ ∈ (0, 1]:

a. The associated paths of solutions S1 do not cross each other, i.e., there 

do not exist two integers j, k with 1 ≤ j < k ≤ D such that pj(t∗) = pk(t∗);

b. All pj(t∗) are isolated solutions of H(z, t∗) = 0.

4. If we denote the two-norm of a vector v by ‖v⃦2, the set of finite limits
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S0 = z ∈ ℂN ∣ z
2

< ∞ and z = lim
t 0

pj(t), 1 ≤ j ≤ D

contains every isolated solution of f(z) = 0.

Then we say that H is a good homotopy.

Now suppose we take a start system

g(z): =
g1 z1, …, zN

⋮
gN z1, …, zN

= 0

with known roots and a good homotopy

H(z, t) =
H1 z1, …, zN, t

⋮
HN z1, …, zN, t

such that for any solution p of g there is a map z(t): [0, 1] ℂN satisfying

a. H(z(t),t) = 0 when t ∈ (0,1] and

b. The Jacobian ∂H/∂z of H with respect to z is non-singular for points (z(t), t) with 

t ∈ (0, 1].

In this multidimensional case, the Davidenko differential equation is

∂H
∂t (z(t), t) + ∑

i = 1

N ∂H
∂zi

(z(t), t)
dzi(t)

dt = 0

where

∂H
∂zi

=

∂H1
∂zi
⋮

∂HN
∂zi

.

Let

dz
dt =

dz1
dt
⋮

dzN
dt

.
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We rewrite the Davidenko equation as

∂H
∂t (z(t), t) + ∂H

∂z (z(t), t)dz(t)
dt = 0.

Since ∂H
∂z  is invertible on the path (z(t), t), we get

dz(t)
dt = − ∂H

∂z
−1∂H

∂t (z(t), t) .

As in the one-dimensional case, we use predictor-corrector methods to track the roots of g to 

the roots of f.

Here we remind the reader that the predictor-corrector method may have trouble in dealing 

with singular solutions of f. If p∗ is a singular solution of f = H(z, 0) and z(t) is its path, the 

Jacobian of H can be very small when (z(t), t) → (p*, 0). This would make the path tracking 

very slow and require high precision. A couple of methods called the endgames are invented 

to deal with singular solutions of f [4].

3.2. Bertini’s theorem.

We have described in previous sections how to solve a square system. How to tackle a non-

square system? We need Bertini’s theorem. We introduce some basic definitions regarding 

algebraic sets first.

Definition 3.5 (Affine complex algebraic set).—Given a system f of n polynomials 

and N complex variables, an affine complex algebraic set V (f1,..., fn) is the locus of 

solutions on ℂN.

Definition 3.6 (Manifold point).—A point p* = p1*, …, pN*  of X = V f1, …, fn ⊂ ℂN is 

said to be a manifold point if there is a neighborhood U ⊂ X such that for some mapping Φ 
defined on ℂN, Φ|U is a bijection from U to a neighborhood of 0 in ℂk. The set of regular 

points in X is refered to as Xreg. The dimension of p∗ is defined as k. It can be shown that in 

the usual topology of ℂN Xreg is dense in X.

Definition 3.7 (Zariski topology).—The Zariski topology is a weaker topology 

compared to the usual topology of Euclidean space. Given an affine algebraic set X, its 

open sets are taken to be intersections of X with sets of the form ℂN\Y , where Y is an affine 

algebraic subset of ℂN.

Example 3.3.—The Zariski open sets of ℂ are the complements of finite sets.

Definition 3.8 (Irreducible components of an algebraic set).—Given an affine 

algebraic set X, the irreducible components of X are closures of the connected components 

of Xreg.
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Definition 3.9 (Pure dimension).—For any p* ∈ X, dimp*X, the dimension of X at p∗, is 

defined to be the maximum dimension of the irreducible components that contains p∗. The 

dimension of X is then defined as the maximum dimension of its points, i.e.,

dimX = max dimp*X ∣ p* ∈ X .

If dimX = dimp*X for all p∗ ∈ X, we say X is pure-dimensional.

Now we state the Bertini’s theorem.

Theorem 3.10.—[5, Thm. 1.15] Suppose we have n polynomials f1(z),..., fn(z) defined 

on a nonempty Zariski open subset U of X ⊂ ℂN where X is an irreducible affine complex 
algebraic set. We further assume that for any point x ∈ U, not all fj(x) are zero. Under such 

conditions, there is a nonempty Zariski open subset U of ℂN such that for any λ = (λ1,..., 

λn) in U, fλ(z) = ∑i = 1
n λifi(z) has the following property:

1. Zλ = V (fλ(z)) is either empty or of pure dimension N − 1; and

2. V fλ(z),
∂fλ(z)

∂z1
, …,

∂fλ(z)
∂zN

= ∅.

One variant of Bertini’s theorem is important to us.

Theorem 3.11 (Bertini’s theorem for systems).—[5, Thm. 9.3] Suppose we have 

a system of polynomial equations f :ℂN ℂn, then there is a Zariski open dense subset 

U ⊂ ℂk × n such that for any matrix A ∈ U, the following is satisfied

1. V (A · f)\V (f) is either empty or smooth of pure-dimension N − k; and

2. The number of irreducible components of V (A · f)\V (f) has nothing to do with 
A and the irreducible components of V (A · f)\V (f) are disjoint.

Now suppose we are dealing with a system f with n polynomials and N variables and n > N. 

Such a system is called an overdetermined system. If we take a random matrix A ∈ ℂN × n

and replace the system f with the system A·f. Bertini’s theorem tells us that the set V (A · 

f)\V (f) is either empty or N −N = 0 dimensional, i.e., Bertini’s theorem guarantees us that 

extra solutions introduced by A·f are isolated solutions. We can discard these extra solutions 

by simply verifying if they satisfy f = 0. A more detailed discussion of non-square system 

can be found in [5].

4. Experiments.

In this section, we study the geometry and topology of several small polytopes and 

molecules. For any polytope or molecule, a filtration of alpha complexes is generated 

(for a polytope or molecule lying in a plane we need to perturb its coordinates a bit 

beforehand). We use HERMES to calculate p-persistent 0-combinatorial Laplacians and 

use NumPy [18] to calculate the associated characteristic polynomials. Then we use 

Bertini to solve these polynomials and hence get the spectra of persistent Laplacians. 
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As roots of a polynomial are unchanged under scalar multiplication, the maximal 

coefficient of any characteristic polynomial is scaled to 1. The configuration of Bertini 

is as follows: MPTYPE=2, FINALTOL=1e-8, COEFFBOUND=100, DEGREEBOUND=80, 

AMPSAFETYDIGITS1=1, AMPSAFETYDIGITS2=1, AMPMAXPREC=3328.

First let us look at 2-dimensional regular polygons, such as a pentagon, a heptagon, an 

octagon and a nonagon. In our experiments, the circumradius of any regular polygon is set to 

be 1.

The persistent Betti numbers and the smallest nonzero eigenvalues of persistent Laplacians 

regarding the pentagon are shown in Figure 4. We see abrupt changes near 0.6 and 1. This 

coincides with the geometrical properties of our pentagon, for its edge length is sin(π/5) ≈ 
0.58 and radius is 1. Results for Heptagon, Octagon, and Nonagon are presented in Figures 

10, 11, and 12, respectively in the Appendix.

Next let us look at some 3-dimensional objects, such as a cube, and an octahedron. We first 

study the cube with edge length 1. As the length of its face diagonal is 2 ≈ 1.4 and the 

length of its main diagonal is 3 ≈ 1.7, one would expect some changes in the graphs near α 
= 0.5, α = 0.7 and α = 0.85. This is confirmed in Figure 6.

Another 3-dimensional example is the regular octahedron with edge length 2. The 

circumradius of any face is set to 2/ 3 ≈ 0.8. The circumradius of the octahedron itself 

is set to 1. Such geometrical properties are reflected in Figure 7. Results for a tetrahedron, a 

triangular prism and a regular pyramid are illustrated in Figures 13, 14, and 15, respectively 

in the Appendix.

Next, we examine aromatic molecules, such as benzene, anthracene, naphthalene, and 

pyrene (see Figure 8). Here we only consider the C skeletons of them. First, consider 

the benzene molecule. The half-length of its edge is approximately 0.7Å, and its radius 

is approximately 1.4Å. One can see changes near 0.7 and 1.4 in Figure 9. Results for 

naphthalene, anthracene, and pyrene are presented in Figures 16, 17, and 18, respectively in 

the Appendix.

5. Conclusions.

Combinatorial Laplacian is a powerful tool for studying the shape of data. However, its 

performance is restricted partly because it is defined as a single graph or a simplicial 

complex and does not provide a multiscale analysis. Motivated by the theory of persistent 

homology, Wang et al. [34] introduced the persistent combinatorial Laplacian defined for a 

pair of complexes in a given filtration. Since the nullity of the spectrum of the persistent 

combinatorial Laplacian (aka persistent Laplacian) recovers the persistent Betti number, the 

persistent combinatorial Laplacian can be regarded as a unified tool to extract topological 

persistence and geometrical information out of high dimensional datasets.

Although the computation of the spectrum of the persistent Laplacian can be implemented 

in various ways, it is mathematically interesting to explore alternative ways, which might 

stimulate new mathematics in the long run. In this work, we explore the possibility of 
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applying homotopy continuation methods. We have verified at least for some simple 

polytopes and small molecules in the three-dimensional space, the second smallest 

eigenvalues of persistent Laplacians calculated by homotopy continuation are very close 

to the result from HERMES. In other words, the geometrical properties of them can be 

inferred from the changes of the spectra obtained via homotopy continuation. The present 

work offers a unique example that combines algebraic topology, algebraic geometry, and 

combinatorial graph to solve problems in data science. For larger systems such as protein 

molecules, further research is needed to implement homotopy continuation.
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Appendix A.: Supplementary figures.

Figure 10. 

The illustration of the persistent Betti numbers βq
α, 0 and the smallest nonzero eigenvalues of 

persistent Laplacians λq
α, 0 for the heptagon.

Figure 11. 

The illustration of the persistent Betti numbers βq
α, 0 and the smallest nonzero eigenvalues of 

persistent Laplacians λq
α, 0 for the octagon.
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Figure 12. 

The illustration of the persistent Betti numbers βq
α, 0 and the smallest nonzero eigenvalues of 

persistent Laplacians λq
α, 0 for the nonagon.

Figure 13. 

The illustration of the persistent Betti numbers βq
α, 0 and the smallest nonzero eigenvalues of 

persistent Laplacians λq
α, 0 for the regular tetrahedron with edge length 3. The centroid to 

vertex distance is 3/ 8 ≈ 1.06.
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Figure 14. 

The illustration of the persistent Betti numbers βq
α, 0 and the smallest nonzero eigenvalues 

of persistent Laplacians λq
α, 0 for a triangular prism. Its base is a regular triangle with 

edge length 3. Its side faces are squares. Important distances are 3/2, 1, 6/2 ≈ 1.22 and 

7/2 ≈ 1.32.

Figure 15. 

The illustration of the persistent Betti numbers βq
α, 0 and the smallest nonzero eigenvalues of 

persistent Laplacians λq
α, 0 for a regular pyramid. Its base is a square with edge length 2 and 

its height is 2. Important distances are 2/2, 1, 5/2 ≈ 1.12, 5 2/6 ≈ 1.18 and 5/4.
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Figure 16. 

The illustration of the persistent Betti numbers βq
α, 0 and the smallest nonzero eigenvalues of 

persistent Laplacians λq
α, 0 for the naphthalene.

Figure 17. 

The illustration of the persistent Betti numbers βq
α, 0 and the smallest nonzero eigenvalues of 

persistent Laplacians λq
α, 0 for the anthracene.

Figure 18. 

The illustration of the persistent Betti numbers βq
α, 0 and the smallest nonzero eigenvalues of 

persistent Laplacians λq
α, 0 for the pyrene.
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Appendix B.: Coordinates of aromatic molecules. 1

In this section the xyz coordinates of benzene, naphthalene, anthracene, and pyrene are 

listed. We omit hydrogen atoms since they are irrelevant for the computation.

benzene: naphthalene:

1.400 0.000 0.000 2.404 0.756 0.000

0.700 1.212 0.000 2.433 −0.658 0.000

−0.700 1.212 0.000 1.267 −1.375 0.000

−1.400 0.000 0.000 0.014 −0.705 0.000

−0.700 −1.212 0.000 −0.014 0.705 0.000

0.700 −1.212 0.000 1.211 1.425 0.000

−1.267 1.375 0.000 −2.417 1.490 0.000

−2.433 0.659 0.000 pyrene:

−2.404 −0.756 0.000 0.000 1.214 −2.813

−1.211 −1.425 0.000 0.000 1.224 −1.410

anthracene: 0.000 −0.000 −0.705

3.661 0.585 0.000 0.000 −1.224 −1.410

3.611 −0.840 0.000 0.000 0.000 0.705

2.417 −1.490 0.000 0.000 −1.224 1.410

1.187 −0.753 0.000 0.000 −2.435 0.700

2.515 1.317 0.000 0.000 −2.435 −0.700

1.237 0.668 0.000 0.000 1.224 1.410

−0.049 −1.403 0.000 0.000 −1.214 −2.813

−1.237 −0.668 0.000 0.000 −0.000 −3.507

0.049 1.403 0.000 0.000 −1.214 2.813

−1.187 0.753 0.000 0.000 1.214 2.813

−2.515 −1.317 0.000 0.000 0.000 3.507

−3.661 −0.585 0.000 0.000 2.435 0.700

−3.611 0.840 0.000 0.000 2.435 −0.700
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FIGURE 1. 
0-simplex, 1-simplex, 2-simplex and 3-simplex.
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FIGURE 2. 
Rips complexes corresponding to different r values.
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Figure 3. 
Pentagon, Heptagon, Octagon and Nonagon.
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Figure 4. 

The illustration of the persistent Betti numbers βq
α, 0 and the smallest nonzero eigenvalues 

of persistent Laplacians λq
α, 0 against the radius α for the pentagon. The persistent Betti 

numbers are shown by the blue line. The smallest nonzero eigenvalues calculated by 

HERMES and Bertini are shown by a red line and red circles, respectively and one can 

see that they almost coincide. The half edge length is approximately sin(π/5) ≈ 0.58.
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Figure 5. 
(a) A cube with edge length 1. (b) A regular octahedron with edge length 2. (c) A regular 

tetrahedron with edge length 3. (d) A regular pyramid with square edge length 2 and 

height 2. (e) A triangular prism with edge length 3.
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Figure 6. 

The illustration of the persistent Betti numbers βq
α, 0 and the smallest nonzero eigenvalues of 

persistent Laplacians λq
α, 0 for the cube. The length of its face diagonal is 2 ≈ 1.4 and the 

length of its main diagonal is 3 ≈ 1.7.
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Figure 7. 

The illustration of the persistent Betti numbers βq
α, 0 and the smallest nonzero eigenvalues of 

persistent Laplacians λq
α, 0 for the octahedron. Its edge length is 2. The circumradius of any 

face is equal to 2/ 3 ≈ 0.8. The circumradius of the octahedron itself is equal to 1.
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Figure 8. 
Some aromatic molecules.
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Figure 9. 

The illustration of the persistent Betti numbers βq
α, 0 and the smallest nonzero eigenvalues of 

persistent Laplacians λq
α, 0 for the benzene. The half length of its edge is approximately 0.7Å, 

and its radius is approximately 1.4Å.
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