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Abstract

In this Letter, we adapt a recently reported Pd-catalyzed transannular C(sp3)–H arylation of 

alicyclic amines for applications in fragment-based drug discovery (FBDD). We apply this 

method to the synthesis of a series of 6-arylated 3-azabicyclo[3.1.0]hexanes that are rule-of-three 

compliant fragments. Several modifications were made to the Pd-catalyzed C–H arylation method 

to enhance its utility in fragment synthesis. These include the use of microwave heating to shorten 

reaction times to under 1 h and the development of new approaches for directing group cleavage. 

Finally, we demonstrate that this fragment library falls within desirable physicochemical space for 

FBDD applications.
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We recently reported a Pd-catalyzed method for the remote C(sp3)–H arylation of alicyclic 

amines.1,2 This method was applied to the selective functionalization of a variety of 
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bioactive molecules, and could thus find application in medicinal chemistry for the late-

stage modification of drug candidates. Another potential application in the earlier stages 

of drug discovery would involve the rapid assembly of small molecules for fragment-

based drug discovery (FBDD). Over the past decade, FBDD has become an increasingly 

important approach for the identification of pharmaceutical lead compounds.3 However, a 

key limitation of current fragment libraries is that they are dominated by sp2-rich, planar 

compounds. As such, there is significant demand for fragments containing three-dimensional 

character, and alicyclic amine-based fragments would be particularly desirable in this 

context.4,5

We sought to apply our Pd-catalyzed C(sp3)–H arylation of alicyclic amines to the assembly 

of 3D fragments for FBDD.1 However, in order to rapidly access the desired fragments, we 

needed to address several challenges associated with the existing method. First, the current 

method requires relatively long reaction times (18 h), which impedes the rapid synthesis 

of analogues. Second, reaction conditions must be identified that are compatible with 

diverse coupling partners, particularly those containing heteroaromatics and halogenated 

functional groups. Finally, conditions must be established to rapidly remove the directing 

group tethered to nitrogen in order to release the desired amines.

Herein, we focus on addressing these challenges in the context of the transannular 

C(sp3)–H functionalization of 3-azabicyclo[3.1.0]hexane to generate derivatives bearing 

aryl groups at the C-6 position. Notably, 3-azabicyclo[3.1.0]hexane serves as the core 

of a variety of bioactive molecules.6 C-6-arylated derivatives are attractive fragments for 

FBDD, as they are rule-of-three compliant (MW < 300; ClogP < 3; hydrogen bond 

donors/acceptors < 3; rotatable bonds < 3, and TPSA < 60 A2)7 (Scheme 1), and they 

have a high degree of saturation and 3-D topology. Traditionally, the assembly of 3-

azabicyclo[3.1.0]hexane derivatives bearing functional groups at C-6 required long synthetic 

sequences.6b,d In contrast, the Pd-catalyzed transannular C–H arylation method enables 

selective functionalization at C-6 in just three steps: (1) directing group installation, (2) 

transannular C(sp3)–H arylation, and (3) directing group removal.

This work aims to streamline the assembly of 3-azabicyclo[3.1.0]hexane fragments by: 

(1) decreasing reaction times in order to increase reaction throughput and (2) increasing 

the efficiency and practicality of directing group removal. These advances have enabled 

the preparation of a variety of derivatives, whose physicochemical properties have been 

calculated.

The original conditions for the C–H arylation of the 3-azabicyclo[3.1.0]hexane substrate S1 
required 18 h at 130 °C and also involved reaction set-up in a N2-atmosphere glovebox. 

Thus, we first sought to develop conditions to accelerate these transformations and to 

eliminate the need for a glovebox.1a,8 As shown in Figure 1, we found that the Pd-catalyzed 

C–H arylation of S1 proceeds in less than 1 h at 180 °C with microwave heating to afford 

1 in 68% yield. Importantly, this reaction could be set up on the bench-top and then flushed 

with N2 for 1 min prior to heating. The yield under these conditions compares favorably to 

that obtained in the original report (74%).1a Furthermore, an improved yield of 83% was 

obtained when the scale was doubled from 0.52 to 1.04 mmol of S1.9
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The scope of aryl and heteroaryl iodide coupling partners was next explored under these 

modified reaction conditions. A variety of aryl iodides proved compatible, providing 6-

aryl-3-azabicyclo[3.1.0]hexanes 2-9 in moderate to good yields (Figure 1). Aryl iodides 

containing halogen, ether, and unprotected phenol groups could be employed under the 

microwave conditions. A variety of substituted pyridyl and quinolinyl iodides also reacted to 

afford modest to good yields of 10-16 (Figure 1).

Products 1–16 would be highly attractive scaffolds for FBDD following cleavage of the 

fluoroamide directing group. As such, we next focused on developing practical methods 

for directing group removal. The original procedure involved reductive cleavage with 

SmI2, subsequent in situ protection of the 2° amine with pivaloyl chloride, and then 

isolation of the resultant amide.1a A first issue with these conditions is the requirement 

for superstoichiometric quantities of toxic HMPA as an activator for SmI2.10 An second 

limitation is that this process yields amide products rather than the target amines. As such, 

we first targeted a modified procedure that replaces HMPA with a less toxic additive and 

also enables the direct isolation of amine products.

We explored alternative activators for SmI2 and identified tripyrrolidinophosphoric acid 

triamide (TPPA) as a viable replacement for HMPA.11 With this new activator, the directing 

group cleavage proceeds within 3 h at room temperature, compared to 24 h under the 

previous conditions. Further experimentation revealed that the 2° amine product can be 

isolated by changing the work-up procedure. Instead of adding pivaloyl chloride at the end 

of the SmI2 reaction, the crude mixture was subjected to an aqueous work-up, and the 

product was then purified via reverse-phase HPLC. This procedure enabled isolation of 

a variety of 2° amine products in yields ranging from 34–51% (Table 1).12,13 Notably, a 

slightly modified work-up involving a Boc-protection step was required for the highly polar 

product 9A.

A limitation of the SmI2-mediated directing group cleavage process is that it is incompatible 

with substrates containing aryl halide functional groups.14 Additionally, pyridine derivatives 

such as 11 undergo heteroarene reduction in the presence of SmI2.15 As such, we developed 

a complementary procedure to remove the directing group from these substrates. We 

hypothesized that acylation of the basic nitrogen could facilitate subsequent dealkylation 

of the fluoroamide directing group.16 A major challenge for this process is that the nitrogen 

center is very sterically hindered; as such, acylation requires relatively forcing reaction 

conditions. However, after some optimization, we found that the treatment of 1 with neat 

acetyl chloride under microwave heating at 150 °C for 3 h affords the amide product 1B in 

35% yield as determined by 1H NMR spectroscopic analysis of the crude reaction mixture. 

1B was isolated in 25% yield from this reaction.17

These conditions proved effective for cleaving the directing group from 1 and 4 as well 

as many of the pyridine-containing derivatives in modest yields (12–25%, Table 2). In 

the case of 10, complete consumption of starting material was observed, but the desired 

product 10B was not detected. This appears to be due to decomposition of 10 under these 

conditions, as the solution turned dark upon the addition of the acylating reagent. Notably, 

the aryl-Cl bonds of 4B, 14B, and 15B were compatible with these conditions (Table 2). 
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However, product 13B was not isolable due to competing nucleophilic aromatic substitution 

to generate the 2-chloro product 14B.

We next assessed the physicochemical properties of the molecules in Tables 1 and 2 to 

assess their suitability for applications in FBDD.18 The calculations confirm that these 14 

molecules fall within the ideal range for fragments, as defined by the restrictions set by the 

Rule of 3 and guidelines by Astex Pharmaceuticals (Table 3).7 The fragments have a low 

mean molecular weight (204), while maintaining high levels of Fsp3 (Fraction aromatic = 

0.48). In Figure 2 the molecular weights of the fragments are plotted against their ClogP 

values, demonstrating that most fall within the desirable range of 0 to 2.

We also assessed two orthogonal topological descriptors for this set of fragments: 

the Principal Moments of Inertia (PMI)19 and the Plane of Best Fit score (PBF)20. 

These descriptors were calculated using AbbVie’s internal design platform from Pipeline 

Pilot protocols employing published calculation methods.18–20 Based on the plot of the 

normalized principle moments of inertia (NPR1 and NPR2), the shapes of the molecules 

can be characterized as being rods, disks, or spheres (Figure 3). The combined PMI plot 

demonstrates that three of the compounds possess disc-like characteristics while the other 

11 possess a rod- or sphere-like shape. The calculated mean NPR1+NPR2 (normalized 

principle moments of inertia) for this set of compounds is 1.24.

An arguably more granular topological descriptor for determining shape and, in particular, 

the “three dimensionality” of molecules is the Plane of Best Fit (PBF) score introduced 

by Firth et al.20 The PBF score calculates the distance from the theoretical plane of best 

fit to the furthest atom of a molecule. The larger the distance (score), the more shape 

or three dimensionality a molecule possesses. The average PBF score for the synthesized 

fragments is 0.69, indicating a high degree of three dimensionality. The PBF score of 15B 
is the highest at 0.87, due to the substitution pattern on the pendant pyridyl ring. Molecules 

with combined PMI (NPR1 +NPR2) > 1.07 and a PBF > 0.6 are considered to possess a 

high degree of 3D character.20 By this definition, all 14 fragments have a high degree of 

3D-character. Given that the majority of commercially available fragments are outside this 

area of 3D topological space (around 10% of AbbVie’s fragments are in this 3D compound 

space), these fragments represent a unique set of compounds with optimal physicochemical 

properties and atypical topology.

In conclusion, we demonstrate that the Pd-catalyzed C–H arylation of the 

azabicyclo[3.1.0]hexane core provides rapid access to three-dimensional fragments with 

attractive physicochemical properties for FBDD. Several key modifications were made to 

the catalysis conditions, including microwave heating to reduce reaction times and nitrogen 

purging to eliminate the need for a glove box. These changes increase the practicality of 

this method for library synthesis. In addition, new procedures were developed that increase 

the safety and practicality of removing the directing group while maintaining the integrity 

of the newly installed aryl/heteroaryl substituents. Computational analysis of the 14 amines/

amides synthesized demonstrate that these compounds possess optimal physicochemical 

properties, including a high degree of saturation and 3D character. As such, they should 
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serve as valuable additions to FBDD libraries and as potential scaffolds for early stage drug 

discovery efforts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Substrate scope with modified reaction conditions. aReaction conducted with S-1 (0.52 

mmol). b Reaction conducted with S-1 (1.04 mmol). c Yields from the original conditions 

reported in reference 1a. d Reaction conducted for 100 min.
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Figure 2. 
Plot of molecular weight versus ClogP
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Figure 3. 
PMI plot for the C-6 arylated amines and amides synthesized. The average distance from 

the plane of best fit (PBF score) is denoted by the color of the markers (blue ≤ 0.50, 0.50 < 

green ≤ 0.75, 0.75 < red ≤ 1.00)
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Scheme 1. 
Proposed synthesis of fragments through C–H functionalization
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Table 1

Removal of directing group via reductive cleavage with SmI2

Entry Product Yield

1 4-Ph (1A) 34%

2 4-F-Ph (2A) 48%

3 4-CF3-Ph (3A) 44%

4 4-Me-Ph (5A) 49%

5 4-Et-Ph (6A) 39%

6 4-MeO-Ph (7A) 51%

7 3-OH-Ph (9A) 38%
a

8 3-Pyr (11A) 0%

a
Deprotection followed by protection Boc2O and deprotection.
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Table 2

Removal of directing group through acylative dealkylation

Entry Product Yield

1 4-Ph (1B) 25%

2 4-Cl-Ph (4B) 25%

3 4-Pyr (10B) 0%

4 3-Pyr (11B) 19%

5 2-Pyr (12B) 19%

6 2-F-5-Pyr (13B) 0%

7 2-Cl-5-Pyr (14B) 19%

8 2-Cl-3-Pyr (15B) 12%

9 6-quinoline (16B) 23%
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Table 3

Physicochemical Properties of Fragment Set

Property Ideal6 Fragment Set

ClogP 
a 0–2 0.92

Molecular Weight 140–230 204

Polar Surface Area 
b ≤60 22.8

Hydrogen Bond Acceptor ≤3 1.5

Hydrogen Bond Donor ≤3 0.57

Rotatable Bond Count -- 1.2

Fraction Aromatic -- 0.48

a
cLogP =calculated octanol/ water partition coefficient

b
(A2)
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