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Abstract

In the past few years, advances in machine learning have fueled an explosive growth of descriptive 

and generative behavior models of animal behavior. These new approaches offer higher levels of 

detail and granularity than has previously been possible, allowing for fine-grained segmentation 

of animals’ actions and precise quantitative mappings between an animal’s sensory environment 

and its behavior. How can these new methods help us understand the governing principles shaping 

complex and naturalistic behavior? In this review, we will recap ways in which our ability to detect 

and model behavior have improved in recent years, and consider how these techniques might be 

used to revisit classical normative theories of behavioral control.

Introduction

Animal behavior is shaped by an interaction of past experience, internal motivational 

state, and external environmental cues. Behaviors critical for survival, such as feeding 

and social interaction, are furthermore influenced by the genetically encoded wiring of 

species-specific neural circuitry. Given this diverse set of influences, the analysis of behavior 

informs scientific progress in fields spanning genetics, ecology, neuroscience, economics, 

and robotics. The theories and models of behavior generated by these fields vary in their 

objective, language, and level of mechanistic detail. They can be broadly divided into 

categories of descriptive models that identify what an agent did, generative models that 

tell us how an agent can be expected to behave given a set of conditions, and normative 
models that identify why a behavior occurred by defining the underlying principles that 

inform its structure.

Machine learning tools for animal posture and behavior analysis are becoming increasingly 

accessible to the research community, fueling new approaches to the quantification and 

study of animal behavior. Many of these newly developed methods are descriptive models 

that improve the throughput and granularity with which we can quantify behavior, bringing 
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its analysis to the realm of big data. An open question is how these methods can give 

us insight into the organization and control of behavior itself, in the form of generative 

and normative models. In this review, we will briefly recount scientific applications of 

descriptive behavioral analysis, before turning to how detailed pose and behavior data might 

also be used to build generative models and test classical theories about the principles that 

shape behavioral organization.

Descriptive models: turning video files into data

In many applications, the use of computational methods for behavior analysis can be likened 

to automation of manufacturing: the things produced are not fundamentally different from 

what was around before, but now they can be produced with greater precision and at scale. 

Several recent reviews1–8 have described the use of modern computer vision or machine 

learning methods to characterize the pose, kinematics, or actions of behaving agents. At the 

heart of many approaches is markerless pose estimation, which characterizes animal posture 

in terms of a set of experimenter-defined 2D or 3D “keypoints” 9–12. Pose estimates or 

other features extracted from behavior video can be used to quantify postural dynamics of 

animals13–15, or paired with supervised (experimenter-defined) behavior detection16–18 or 

unsupervised (data-defined) behavior discovery19–23 methods to segment continuous posture 

data into actions (Figure 1A).

The practical advantage of these methods is twofold. First, they accelerate data processing 

when applied at scale. By training algorithms to detect behaviors of interest, researchers can 

distill hundreds of hours of video into precise and detailed records of animals’ actions that 

are ready for downstream analysis. In addition to saving human effort, this approach can 

improve annotation quality: whereas human annotators show substantial within-individual 

and between-individual variability in labeling behavior start and stop times17, automated 

algorithms are self-consistent. And second, computational behavior analyses can produce 

high temporal resolution, highly granular descriptions of animals’ actions, surpassing what 

is feasible for a human annotator19–21.

The combined impact of automation and increased granularity is beginning to change 

the way behavioral experiments are designed and analyzed, with a growing number 

of labs opting to collect long-term, high-throughput recordings of animals in complex 

environments. Automating the frame-by-frame annotation of animal behavior has enabled 

high-throughput screening of hundreds of animals across strains, mutant lines, or 

experimental perturbations15,23–30. Differences between animal cohorts in these assays 

can most simply be detected by identifying a change in the proportion of time animals 

express one or more behaviors, or by a change in the transition probability between pairs 

of behaviors24,25. Difference in behavior can also be correlated with other within-cohort 

experimental measures, like gene expression29.

Beyond the level of individual behaviors, differences between cohorts may be identified 

by training a classifier to distinguish animal groups given either postural features or a 

histogram of expressed behaviors24,25,27. The magnitude of differences between cohorts can 

also be quantified and visualized to infer relationships between them25,27. Interestingly, 
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some studies have used dimensionality reduction methods (like Principal Component 

Analysis or Fisher’s Linear Discriminant Analysis) to identify different behavioral modes 

across individuals, mutant lines, or drug treatments25,26,29. These analyses suggest a low-

dimensional “behavior manifold” might be learned that can capture the variability in 

behavior expressions across individuals.

Generative model and forecasting: the Laplacian demon in the details

If we knew an animal’s entire sensory environment and history, could we predict what it 

would do next? How far into the future would our predictions hold? Generative models 

can help us better understand how animals integrate sensory cues and their own recent 

history to determine their ongoing behavior. A generative model captures the relationship 

between two probability distributions, specifically the probability distribution of one signal 

conditioned on the value of another. In terms of behavior, this might translate to learning a 

distribution over possible behavioral responses given an animal’s past actions or its sensory 

environment.

Generative models can be used as a means of categorizing behavior: for example, 

autoregressive Hidden Markov models capture the statistics of time series evolution, but 

their inferred hidden states can also be used for unsupervised behavioral segmentation20. 

But generative models have also been used to uncover how animals’ sensory environment, 

state, and history shape expression of behavior31–34. For example, fly courtship song type, 

previously thought to vary at random, can be predicted by postural cues from the courted 

female31, and furthermore this sensory-evoked behavior is better predicted when taking into 

account an estimate of the singing male’s internal state33.

Animals often show preparatory movements or gradual escalation of interactions from which 

we can predict of future movements—for example, mice dart and tail-rattle before initiating 

an attack. As their name implies, generative models can also be used to generate “realistic-

looking” behavioral data, predicting an animal’s actions given initial conditions32,34; in 

machine learning, this area of research is called imitation learning. Model-synthesized 

trajectories predict how an animal would respond given an environment, provided that 

environment is close to the conditions the model was trained on: for example, simulated 

flies follow walls and perform wing extensions when they encounter other simulated flies34. 

Trained models that can forecast behavior are often hierarchical, allowing them to capture 

structure in behavior on multiple timescales. One exciting promise of these models is that 

they provide continuous, behavior-related signals of different degrees of granularity, that can 

be contrasted with recorded neural dynamics to identify neural correlates of behavior or 

internal states35.

Normative models: what’s my motivation?

Why does behavior have the structure it does? A normative model is one that uses some 

measure of value or utility to derive predictions of how a system “ought to” behave if driven 

by that utility. At its highest level, we expect animal behavior to either directly or indirectly 

further the survival of that animal’s genetic material. While this maxim is quite broad, 
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principles of survival have informed many more specific theories of naturalistic behavior 

control. We will review examples from single-agent and dyadic behaviors, and discuss 

how computational behavior analysis might enrich our experimental investigation of these 

models. There is also a rich literature on principles of collective behavior36,37, which will 

not be covered here.

Behavior of an agent in an environment.

Exploration of new environments is a fundamental behavioral drive, be it to establish 

territory, identify threats, or discover resources. Normative theories predict that exploring 

animals balance the reward of information gained with the cost of time passage38 or risk 

of injury or predation. Foraging behavior, an extension of exploration, also encompasses an 

assortment of value-based decision-making tasks39–41. During foraging, an animal makes 

dietary choices as to what resources to pursue42, and also must efficiently use time and 

energy when collecting resources. In a model environment of food patches, the marginal 

value theorem determines the precise time to migrate to new food sources, given full 

knowledge of the underlying average reward rate of the environment43,44 (Figure 2A). At 

the opposite extreme, if nothing is known about the structure of the environment, random 

Lévy flight motion is optimal45. Factors such as food source distribution, prey movement, 

and competition with conspecifics also impact strategy. Foraging under risk of predation 

introduces the further wrinkle of balancing the energetic cost of monitoring the environment 

with the survival cost of being caught by a predator46,47.

Behavior in pairs of interacting agents.

Dyadic behavior can include both symmetric interactions between members of a species 

and asymmetric interactions such as predator-prey behavior. Predatory imminence theory 

suggests a topology of defensive behavior, in which the type of behavior a prey species 

expresses is shaped by the immediacy and magnitude of predator threat48 (Figure 3A). This 

escalating organization of defensive behaviors is built around a key conflict: that predators 

can be evaded either by reducing detectability (through freezing) or by overt escape 

actions that transiently increase detectability. Because escape behavior draws attention and 

interrupts ongoing foraging by the prey, an optimal strategy finds a balance between these 

two defensive behaviors.

Outside of predator-prey conflict, violence in nature occurs predominantly between 

members of the same species, and rarely results in serious injury. The survival value 

of intra-species aggression has been questioned since Darwin, who hypothesized that 

aggression ensures that the fittest members of a species obtain greater territories and 

resources. Subsequent theories further posed that aggression could help balance distribution 

of animals across available environment49. In social species, establishment of dominance 

hierarchies is thought to stabilize groups and create networks that shape the flow of 

information among group members50,51. An extensive literature in game theory has explored 

the structure of aggression, and gave rise to the concept of “evolutionarily stable strategies”: 

behavioral strategies in a species that are stable to small perturbations in the form of mutant 

strategies52.
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Normative models of aggression often focus on the observation that, like defensive behavior, 

aggressive behaviors vary in their intensity (Figure 3B). Escalation of aggression could 

serve several functions. In the “resource holding potential” hypothesis, escalation allows 

animals to exchange information about relative fitness while minimizing risk of injury, by 

only escalating if the relative fitness of the pair remains unclear (Figure 2B) 53,54. This 

hypothesis predicts that animals more closely matched in size escalate aggression further 

than more asymmetric pairs, a prediction that holds to varying extents across species55,56. 

Alternatively, the “war of attrition” model57 poses that escalation signals the cost an animal 

is willing to pay for a resource, explaining how manipulations such as food deprivation 

might motivate an animal to escalate further or faster58. Escalation may also simply reflect 

the animal’s relative levels of aggression and fear59. Models of aggressive escalation were 

extensively investigated in the 1970’s, 80’s, and 90’s, in species ranging from dung beetles 

to hermit crabs to red deer; this work is excellently reviewed in 60.

Going forward.

Computational behavior analysis is experiencing a period of explosive growth, fueling 

and fueled by a push among neuroscientists to study more complex and naturalistic 

animal behaviors. Yet existing normative models of behavior largely precede the computer 

vision revolution in animal tracking. New behavior quantification methods will allow more 

rigorous testing of predictions made by classical normative models, whereas generative 

modeling provides methods for capturing behavioral control policies based on precise 

quantification of animals’ sensory environment and behavior. An open challenge for modern 

behavior analysis is to re-evaluate our normative theories of behavior in the light of more 

plentiful data, to determine how useful they are as descriptors of animals’ actions.

Towards this goal, the theoretical framework that has been established around exploration 

and foraging strategies provides rich ground for experimental exploration. Exploratory 

behavior and learning in neuroscience are often studied in conceptual tasks that do 

not require physical exploration, permitting neural correlates to be measured61,62. An 

exciting promise of computational behavior analysis is that it allows exploration to be 

studied in complex physical environments such as mazes63,64, where—in striking contrast 

to conceptual exploration—mice rapidly learn long sequences of actions, and can show 

one-shot learning of their home path out of the maze64. By tracking exploring animals’ 

posture, researchers can detect deliberative actions such as “vicarious trial and error”, when 

animals pause to investigate options at a choice point65,66. Quantification of deliberative 

actions may help study another normative theory of exploration, the principle of effort 

minimization, which predicts that as an environment or scenario becomes familiar animals 

may swap between decision strategies, balancing low-effort habit and high-effort planning 

and simulation67.

Analysis and generative modeling of animal actions and sensory environments during 

naturalistic foraging could also help determine how animals construct and update their 

internal model of food availability in their environment. For example, recent work has 

demonstrated that imitation learning can capture learned foraging behavior in a head-fixed 

task62. Elimination of the behavior annotation bottleneck could also allow for higher volume 
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experiments testing the sensitivity of foraging behavior to combinations of environmental 

parameters such as degree of patch structure, presence of threat or conspecific cues, choices 

between food types, or changes in food availability.

Normative theories of dyadic interactions have often focused on the rules governing 

transitions between behaviors: either the switch from freezing to escape in predator 

imminence theory, or the gradual escalation of aggression in intra-species encounters. These 

progressions are challenging to study in the lab, as animals show rapid habituation and 

priming after a few presentations of a threating stimulus or conspecific. With automated 

analyses, classical assays like the resident-intruder paradigm could be expanded to longer 

timescales in enriched environments, so that animals have time and space for more 

naturalistic encounters to unfold68.

Finally, one exciting area for exploration is to develop theories and models for how 

competing motivational signals should interact to shape behavior. Animal behavior in the 

wild strikes a balance between competing drives: hunger and thirst, predator defense, and 

social (reproductive, parenting, and territorial) motivations. These drives can be thought of 

as low-dimensional intervening variables between sensation and action69: any single drive 

can be affected by multiple sensory cues- for example, both mating experience70 and social 

isolation71 make mice more aggressive, and both dry food and salt make mice thirsty. And 

drives can be linked to any learned behavior: both aggression and thirst can be used to 

motivate nose-poking or lever-pressing in operant tasks72,73.

We cannot measure an animal’s aggressive motivation directly, but we can apply 

experimental manipulations that we know will alter aggression—and also hunger, thirst, 

stress, reproductive state, or time of day—and measure resulting changes in behavior. How 

might these different state manipulations interact? Before we can generate hypotheses of 

how the brain is controlling behavior, it is good to stop and ask: how complex is behavior 

in the first place? If the annotation bottleneck can be resolved, we might begin to use high-

throughput behavioral studies to ask whether intervening variables of hunger, thirst, fear, 

or aggression are indeed the one-dimensional signals we call them, or whether behavioral 

control policies and their underlying neural drives are more complex.
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Box 1:

Future challenges for descriptive models of behavior

Performance.

A particular challenge facing unsupervised behavior discovery is deciding what 

constitutes a “good” representation of behavior74. Common metrics for evaluating the 

quality of an unsupervised behavior discovery method include agreement with human 

annotations, ability to account for variance in neural data, and utility in distinguishing 

between strains or conditions (Figure 1B), however many paper apply these only to in-

house datasets, making it difficult to compare methods. Establishing benchmark datasets 

for evaluating behavior algorithms may help overcome this issue75.

Generalization.

Behavior classifiers and pose estimators trained in one lab rarely perform well out-of-the-

box when used by another lab, unless the two groups standardize their data acquisition 

setup. Creating algorithms that can be tuned to new environments, or that are trained on 

larger datasets, would help ensure replicability of the results of computational analyses.

Interpretability.

A common complaint about machine learning methods is that they are a black box. 

However, automated methods could actually become more transparent in their choices 

than human annotators, who can struggle to communicate their decision process during 

annotation. Efforts to make human-interpretable behavior classification tools may help 

scientists have greater confidence in their results76.

Long timescales.

Behavior has structure over multiple scales: from the coordination of actions into 

sequences77, to effects of priming78, habituation79, satiety80,81, and time of day82,83. 

Long timescales of behavior can be captured intrinsically by sequence learning84 or 

hierarchical models34, or may be recovered post-hoc by coarse-graining of action 

sequences85. But there is still ample space for exploration in this area.

Level of granularity.

Neural recording datasets introduce another challenge for behavior analysis: not just 

finding the representation of behavior that best captures observed postural variance, 

but finding the right level of granularity to account for observed neural activity. The 

optimal behavior representation in this sense will likely be different for different brain 

regions, with some regions better explained by fine-grained, sub-second action motifs, 

and other regions more correlated with an animal’s overall behavioral objective (such 

as aggression or reproduction.) How best to integrate quantitative behavior analysis with 

neural imaging datasets is an exciting area of ongoing research.

Interacting agents.

Multi-agent behavior poses unique challenges for analysis, as these datasets include 

times when animals are interacting and times when each individual is behaving 
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independently. This affects unsupervised methods in particular, as the relative positioning 

of agents is sometimes critical for interpreting behavior and sometimes doesn’t matter 

at all. We hypothesize that one way to overcome this challenge is to base behavior 

discovery methods on forecasting models, which could be trained to incorporate postural 

information from an agent’s partner only when that information is relevant to predicting 

what the agent does next.
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Figure 1. 
Unsupervised behavior analysis and its evaluation. A) A typical unsupervised behavior 

analysis pipeline takes in continuous data (eg pose estimates) and segments it into motifs. 

Usually data is first pre-processed to remove sources of variance that are not meaningful for 

behavior (such as the absolute positions of the animals) and extract some representation of 

animal movement. These processed features are then segmented into motifs using some form 

of clustering algorithm. B) Different design choices in an unsupervised analysis produce 

different motifs: there is therefore a pressing need for ways to evaluate the “usefulness” 

of unsupervised analysis methods. Three commonly used approaches are comparison of 

motifs to manual annotations, eg in terms of Precision and Recall (left), ability of motifs to 

predict neural activity (center), and ability to distinguish between animal species, strains, or 

treatment groups based on the occurrence or patterning of motifs (right).
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Figure 2. 
Normative models make predictions about the temporal organization of behavior. A) The 

Marginal Value Theorem predicts that animals foraging in a patchy environment should 

migrate to a new patch when their net rate of energy accumulation within a patch (blue 

line) matches the mean rate of energy accumulation across the environment (parallel red 

lines). Figure adapted from Charnov, 1976. B) In the resource holding potential model 

of aggressive escalation, animals integrate evidence to estimate the difference in fitness 

between fighters, and flee the encounter once their estimate passes a threshold. One possible 

formulation of this strategy is shown here, adapted from Enquist et al., 1990. The war of 

attrition model further hypothesizes that animals’ motivation to obtain resources can change 

their wilingness to flee, indicated here by the shift of the red line.
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Figure 3. 
Behavioral escalation in predator-prey and within-species aggression contexts. A) Predator 

imminence theory describes an organization of defensive strategies in which level of 

predatory threat shifts the behavior animals express. Figure adapted from Fanselow & 

Lester, 1988. B) Escalation of aggressive encounters between conspecifics shows a similar 

scaling of behavior, a strategy thought to minimize risk of injury. Escalation could serve 

to establish animals’ relative resource holding potentials, or could be a “war of attrition” 

process of animals communicating their level of commitment to a contested resource.
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