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abstract

PURPOSE The NCI-COG Pediatric MATCH trial assigns patients age 1-21 years with relapsed or refractory solid
tumors, lymphomas, and histiocytic disorders to phase II studies of molecularly targeted therapies on the basis of
detection of predefined genetic alterations. Patients with tumors harboring mutations or fusions driving acti-
vation of the mitogen-activated protein kinase (MAPK) pathway were treated with the MEK inhibitor selumetinib.

METHODS Patients received selumetinib twice daily for 28-day cycles until disease progression or intolerable
toxicity. The primary end point was objective response rate; secondary end points included progression-free
survival and tolerability of selumetinib.

RESULTS Twenty patients (median age: 14 years) were treated. All were evaluable for response and toxicities.
The most frequent diagnoses were high-grade glioma (HGG; n 5 7) and rhabdomyosarcoma (n 5 7). Twenty-
one actionable mutations were detected: hotspot mutations in KRAS (n5 8), NRAS (n5 3), and HRAS (n5 1),
inactivating mutations in NF1 (n5 7), and BRAF V600E (n5 2). No objective responses were observed. Three
patients had a best response of stable disease including two patients with HGG (NF1mutation, six cycles; KRAS
mutation, 12 cycles). Six-month progression-free survival was 15% (95% CI, 4 to 34). Five patients (25%)
experienced a grade 3 or higher adverse event that was possibly or probably attributable to study drug.

CONCLUSION A national histology-agnostic molecular screening strategy was effective at identifying children and
young adults eligible for treatment with selumetinib in the first Pediatric MATCH treatment arm to be completed.
MEK inhibitors have demonstrated promising responses in some pediatric tumors (eg, low-grade glioma and
plexiform neurofibroma). However, selumetinib in this cohort with treatment-refractory tumors harboring MAPK
alterations demonstrated limited efficacy, indicating that pathway mutation status alone is insufficient to predict
response to selumetinib monotherapy for pediatric cancers.

J Clin Oncol 40:2235-2245. © 2022 by American Society of Clinical Oncology

INTRODUCTION

Alterations in RAS/RAF/MEK/ERK genes result in the
dysregulation of the classical mitogen-activated protein
kinase (MAPK) pathway. This pathway has been iden-
tified as one of themost frequently dysregulated signaling
cascades in the pathogenesis of many human
cancers.1,2 Aberrant activation of MAPK signaling is most
often because of gain-of-function mutations in RAS or
BRAF genes or loss or inactivating mutation of NF1.3

Genetic alterations in the MAPK pathway have been
identified in a diverse group of pediatric and adult
cancers and serve to inhibit proapoptotic signaling and

result in unchecked cell proliferation.4-8 Accordingly,
there has been great interest in the potential thera-
peutic use of targeted drugs at multiple points in this
pathway, irrespective of histology.9,10 Although only
rare mutations have been identified in the genes
encoding MEK proteins, MEK1 and MEK2 have been
identified as therapeutic targets because of their
central role in the MAPK signaling pathway and lack of
cross-pathway signaling distal to RAF.11,12

Pediatric and young adult malignancies with recurrent
activating MAPK pathway alterations include low-grade
glioma (LGG; . 90% of tumors, most frequently BRAF
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fusions or V600E mutations),13 malignant peripheral nerve
sheath tumors (MPNST; NF1 inactivation in . 80%),14

melanoma (. 80%, most frequently with activating BRAF
mutations),15 Langerhans cell histiocytosis (. 80%, most
frequently BRAF V600E),16,17 rhabdomyosarcoma (RMS; .
40%, most frequently activating NRAS/KRAS/HRAS muta-
tions),18 and high-grade glioma (HGG; 10-20%, most fre-
quently inactivation of NF1).19

Selumetinib is a potent orally bioavailable selective inhibitor
of MEK1/MEK2. Evidence of selumetinib activity has been
observed in several pediatric cancer types with MAPK
pathway alterations. Several recent reports have described
selumetinib to be well tolerated and result in prolonged
disease stability in children with progressive LGGs har-
boring alterations in BRAF or NF1.20,21 In April 2020 (after
completion of enrollment on the current study), the US
Food and Drug Administration (FDA) approved selumetinib
for the treatment of inoperable plexiform neurofibromas
(PNs) in children age$ 2 years on the basis of the results of
a phase II trial, which demonstrated a 3-year progression-
free survival (PFS) of 84% in patients receiving selumetinib
when compared with 15% of patients in a natural history
study.22

The National Cancer Institute-Children’s Oncology Group
Pediatric Molecular Analysis for Therapy Choice (NCI-COG
Pediatric MATCH) trial was activated in July 2017 to provide
a national framework for histology-agnostic trials of inves-
tigational molecularly targeted therapies in biomarker-
selected populations.23,24 Centralized tumor sequencing
is performed through the Pediatric MATCH screening
protocol, which allows enrollment of patients from COG
institutions across the United States. Patients with tumors
that harbor an actionable genetic alteration for a MATCH
treatment arm are eligible for treatment in a phase II trial.
Here, we report the results of the first completed NCI-COG

Pediatric MATCH treatment subprotocol (arm E): the MEK
inhibitor selumetinib for treatment of patients with tumors
harboring alterations in the MAPK signaling pathway
(ClinicalTrials.gov identifier: NCT03213691).

METHODS

Study Design and Eligibility

Both the NCI-COG Pediatric MATCH screening protocol
and all treatment subprotocols were reviewed by the
NCI central institutional review board. The study was
conducted in accordance with the Declaration of Hel-
sinki. Written informed consent was obtained from
parents/guardians, and assent was also obtained from
the patient where appropriate. Patients age 1-21 years
with treatment-refractory or recurrent solid tumors
(including CNS tumors), lymphomas, and histiocytic
disorders are eligible for screening on Pediatric MATCH
(ClinicalTrials.gov identifier: NCT03155620).

Formalin-fixed paraffin-embedded tumor specimens ob-
tained at a time of refractory/recurrent disease (median of
115 days before arm E enrollment, range: 34-1,343 days)
are subjected to DNA- and RNA-based molecular profiling
using an investigational targeted Ampliseq panel (Thermo
Fisher Scientific, Waltham, MA). Single-nucleotide variants
(variant allele fraction . 0.05), insertions and deletions
(variant allele fraction . 0.1), amplifications ($ 7 copies),
and selected fusions are analyzed in 143 cancer genes
(Data Supplement, online only).25 Blood samples are also
sequenced using the same DNA panel to identify germline
variants but not used to determine treatment assignments.

If an actionable tumor genetic alteration is detected, on the
basis of predetermined levels of preclinical and clinical
evidence (Data Supplement), patients are assigned
(matched) to a Pediatric MATCH treatment subprotocol.

CONTEXT

Key Objective
Outcomes for children and young adults with recurrent or refractory cancers following dose-intensive chemotherapy are

poor. The NCI-COG Pediatric MATCH Trial was designed to provide a national framework for histology-agnostic trials of
investigational molecularly targeted therapies in biomarker-selected populations. Treatment arm E evaluated the safety
and efficacy of the MEK inhibitor selumetinib in patients harboring activating alterations in the mitogen-activated protein
kinase (MAPK) signaling pathway genes (ClinicalTrials.gov identifier: NCT03213691).

Knowledge Generated
Twenty patients with diverse tumor types and MAPK pathway gene alterations were treated on this trial. No objective

responses were observed, although three patients achieved best response of stable disease.
Relevance
The study design was effective at identifying patients eligible for treatment with selumetinib. In contrast to prior experience

with less aggressive pediatric tumor types with few somatic mutations, such as low-grade glioma, selumetinib dem-
onstrated limited efficacy in our cohort, indicating that MAPK pathway genemutation status alone is insufficient to predict
response for pediatric cancers.
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Specific actionable alterations for arm E (selumetinib;
ClinicalTrials.gov identifier: NCT03213691) of Pediatric
MATCH were defined in ARAF, BRAF, NRAS, KRAS,
HRAS, MAP2K1, GNA11, GNAQ, NF1, and BRAF (Data
Supplement). Patients with tumors harboring an actionable
BRAF V600 mutation were preferentially assigned to a
separate subprotocol (arm G) evaluating the BRAF-V600E
inhibitor vemurafenib; if such patients had previously been
treated with vemurafenib or another BRAF inhibitor, they
were excluded from that protocol but eligible for arm E.

Any tumor histology was eligible for enrollment in arm E with
the exception of LGG (WHO grade I or II), given that previous
clinical trials of selumetinib for children with that tumor
type had already demonstrated activity.20,21,26 In addition to
the requirement for detection of an actionable mutation
by MATCH screening, criteria for treatment included age
$ 12 months and # 21 years, Karnofsky or Lansky per-
formance score $ 50%, radiographically measurable dis-
ease, body surface area . 0.5 m2, ability to swallow intact

oral capsules, and adequate organ function. Patients were
excluded from treatment if they had a history of known
significant ophthalmologic conditions, uncontrolled infec-
tion, or concomitant use of CYP3A4/CYP2C19-inducing or
-inhibiting agents.

Selumetinib (AZD6244 hydrogen sulfate) was given orally
at the FDA-approved pediatric dose of 25mg/m2/dose twice
daily every day, with a maximum dose of 75 mg/dose.26-30

Patients received drug continuously with each cycle lasting
28 days. Patients were eligible to receive therapy for up to
2 years, as long as there was no evidence of progressive
disease or toxicity that met protocol-defined criteria for
discontinuation of protocol therapy.

Adverse Events and Dose Modifications

Adverse events (AEs) were reported according to the NCI
Common Terminology Criteria for Adverse Events (CTCAE)
version 5.0. All patients who received at least one dose of
protocol therapy were considered evaluable for toxicity.
Dose-limiting toxicity (DLT) was defined differently for
hematologic and nonhematologic toxicity. Treatment could
be withheld for DLTs for up to 14 days. If the DLT resolved to
baseline or eligibility parameters within 14 days of dis-
continuing therapy, the patient could resume selumetinib
at a reduced dose; if not, the patient was removed from
protocol therapy. If a recurrent or second DLT occurred at a
reduced dose of selumetinib, the patient was removed from
protocol therapy.

Measurement of Response

Any eligible patient who received at least one dose of
protocol therapy was evaluable for response. Tumor dis-
ease evaluations were obtained every other cycle for three
occurrences, and then every three cycles. For documen-
tation of objective response (complete response [CR] or
partial response [PR]), confirmatory scans were required to
be obtained after the next consecutive cycle. The revised
RECIST, version 1.1 was used to determine response and
progression, with specific criteria outlined for CNS tumors,
non-CNS solid tumors, lymphomas, and histiocytoses.31

Central review was required for any patient who was
deemed to have a CR or PR and was used to determine final
assessment of response.

Statistical Considerations

The study’s primary end point was objective response rate.
The primary study cohort used a single-stage design with a
minimum of 20 patients and a projected accrual duration of
48months. The overall response rate was compared against a
null benchmark value of 5%.With this design (alpha5 10%),
the power was 90% to detect an improvement in response
rate from 5%, if the treatment was ineffective, to 25%, if the
agent was sufficiently effective to warrant further study.

The study’s secondary end points included PFS, defined as
time from initiation of protocol therapy until the occurrence
of disease progression, disease recurrence, or death from

Patients assigned to arm E
(N = 58)

Patients enrolled in arm E
(n = 21)

Patients began protocol therapy
(n = 20)

Patients eligible for analysis
(n = 20)

Ineligible diagnosis (LGG; n = 14)

Receiving other treatment
(n = 9)

Poor clinical status
(n = 7)

No measurable disease
(n = 3)

Other ineligibility criteria
(n = 3)

Family/physician choice
(n = 1)

Ineligible diagnosis (LGG; n = 1)

FIG 1. Patient flow diagram of NCI-COG Pediatric MATCH arm E.
Other reasons for ineligibility were inadequate cardiac function (n 5

2) and known ophthalmologic condition (n 5 1). LGG, low-grade
glioma.
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any cause. PFS along with the 95% confidence intervals
was estimated using the Kaplan-Meier method. Chi-square
tests (or Fisher’s exact tests as appropriate) were used to
evaluate the association between patient’s baseline char-
acteristics and treated/untreated cohorts. All statistical
analyses were done in SAS (version 9.4) or R (version 4.0).

RESULTS

Patient Characteristics and Demographics

Fifty-eight patients from 42 study sites had actionable tumor
alterations and were therefore matched to arm E (selume-
tinib; Fig 1). Pediatric MATCH screening protocol treatment
assignments had been confirmed for 577 patients when the
final arm E match was made, resulting in an arm E match
rate of 10% (58/577 patients). Of these 58matched patients,
21 (from 18 sites) enrolled in arm E between December

2017 and August 2019, and 20 initiated protocol therapy;
one patient with LGG was erroneously enrolled but identified
as ineligible before treatment. The most common reasons
provided for subjects who were matched but did not enroll
(Fig 1) were ineligible diagnosis of LGG (n 5 14), patient
receiving other treatment (n 5 9), and worsening clinical
status (n 5 7). All 20 patients treated on arm E were
evaluable for response and toxicities. Data as of December
31, 2020, were used in the manuscript.

Demographics and characteristics of matched (n 5 58)
and treated (n 5 20) patients are shown in Table 1.
Patients receiving therapy ranged in age from 5 to
21 years (median: 14 years), with near-equal numbers of
male and female patients. Most treated patients were
White (15/20, 75%) and reported non-Hispanic/Latino
ethnicity (16/20, 80%). No demographic differences

TABLE 1. NCI-COG Pediatric MATCH Trial Patient Characteristics

Characteristics

Treated Overall

PYes (n 5 20) No (n 5 38) Matched Patients (N 5 58)

Sex .55

Female 9 (45) 14 (37) 23 (40)

Male 11 (55) 24 (63) 35 (60)

Median age, years (range) 14.5 (5-21) 9 (2-19) 12 (2-21)

Age categories, years .12

, 12 6 (30) 22 (58) 28 (48)

$ 12 to , 18 9 (45) 11 (29) 20 (34)

$ 18 5 (25) 5 (13) 10 (17)

Race .75

White 15 (75) 30 (79) 45 (78)

Black or African American 1 (5) 4 (11) 5 (9)

Asian 1 (5) 1 (3) 2 (3)

Native Hawaiian or Other Pacific Islander 1 (5) 0 (0) 1 (2)

Not reported/unknown 2 (10) 3 (8) 5 (9)

Ethnicity .78

Not Hispanic or Latino 16 (80) 27 (71) 43 (74)

Hispanic or Latino 3 (15) 9 (24) 12 (21)

Not reported/unknown 1 (5) 2 (5) 3 (5)

Diagnosis .62a

RMS 7 (35) 12 (32) 19 (33)

LGG 0 (0) 15 (39) 15 (26)

HGG 7 (35) 6 (16) 13 (22)

Neuroblastoma 1 (5) 2 (5) 3 (5)

Otherb 5 (25) 3 (8) 8 (14)

NOTE. The table reflects data collected at screening enrollment. Data are reported as No. (%) unless otherwise indicated.
Abbreviations: HGG, high-grade glioma; LGG, low-grade glioma; MPNST, malignant peripheral nerve sheath tumor; RMS, rhabdomyosarcoma.
aThe LGG category was excluded when comparing the treated and untreated cohorts, as patients with LGGs were ineligible for arm E enrollment and

treatment.
bOther in treated cohort included yolk sac (endodermal sinus) tumor, MPNST, plexiform neurofibroma, cervical clear cell adenocarcinoma and ovarian

mucinous adenocarcinoma; other in untreated cohort included ameloblastic carcinoma, colorectal adenocarcinoma, and Langerhans cell histiocytosis.
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FIG 2. Diagnoses and actionable MAPK pathway mutations of arm E patients. (A) Pie chart of the histologic diagnoses of the 58 matched patients.
(B) Pie chart of the histologic diagnoses of the 20 treated patients. (C) Pie chart of the types of actionable MAPK pathway tumor alterations detected in the
58 matched patients (n5 60 mutations). (D) Pie chart of the types of actionable MAPK pathway tumor alterations detected (continued on following page)
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were noted between the treated and untreated patient
cohorts (Table 1).

The distribution of diagnoses is shown in Table 1 and
Figure 2. Among all matched patients, RMS (19/58, 33%),
LGG (15/58, 26%), and HGG (13/58, 22%) were most
common (Fig 2A). In treated patients, RMS and HGG were
also most frequent (each 7/20, 35%; Fig 2B). One patient
each with neuroblastoma, yolk sac (endodermal sinus)
tumor, MPNST, PN, cervical clear cell adenocarcinoma,
and ovarian mucinous adenocarcinoma were also treated.

Landscape of MAPK Pathway Alterations

Patients matched to arm E. The actionable MAPK pathway
tumor alterations detected in the 58 matched patients are
shown in Figures 2C and 2E and in the Data Supplement.
Activating hotspot mutations in RAS genes were most
common (n 5 25: KRAS 3 11, NRAS 3 10, HRAS 3 4),
followed by NF1-inactivating mutations (n 5 15), BRAF
V600E mutations (n 5 10), and other activating BRAF
mutations (n5 1). Fusions in the BRAF gene (n5 9) were
observed in the matched patient cohort but not in patients
treated on study, consistent with the exclusion of LGGs from
arm E. Additional nonactionable alterations detected in
cancer genes are shown in Figure 2E.

Patients treated in arm E. The spectrum of actionable al-
terations identified in the cohort of 20 treated patients (Figs
2D and 2E, and the Data Supplement) was similar to that in
the matched cohort, with activating RAS gene mutations
(KRAS 3 8, NRAS 3 3, HRAS 3 1) and inactivating
mutations in NF1 (n 5 7) most common. BRAF V600E
mutations were identified in two patients. One HGG had
concurrent actionable mutations in KRAS and NF1.
Nonactionable tumor alterations (median of one per tumor,
range: 0-3), were also identified by the panel (Fig 2E and
the Data Supplement) includingmultiple mutations in TP53
(n 5 4) and FBXW7 (n 5 3). Two nonactionable KRAS
alterations (a KRAS amplification in an HGG with NF1
mutation and a KRAS p.Ala146Pro mutation in an RMS

with KRAS p.Gly12Val mutation) were detected. Four of the
tumor mutations identified were also detected in patient-
matched blood (germline) samples: NF1 3 2 (patient di-
agnoses: MPNST and PN), MSH6 (HGG), and TP53
(HGG).

AEs

Of the 20 evaluable patients, 5 (25%) experienced a
grade 3 or higher AE with possible or probable attribution
to selumetinib (Table 2 and the Data Supplement). Three
patients had grade 3 events (uveitis, decreased lym-
phocyte count, and thromboembolic event), one patient
had a grade 4 elevated creatinine phosphokinase, and
one patient had a grade 5 toxicity with death occurring
because of thromboembolic event (pulmonary embolus).
Three patients required dose modifications for AEs and
two of these patients ultimately discontinued selumetinib
because of DLT (uveitis and elevated creatinine phos-
phokinase). Of the 10 patients who had radiographs
showing open tibial growth plates before the start of
therapy, eight remained on therapy long enough to
undergo repeat tibial growth plate monitoring, and none
of these patients had evidence of growth plate
thickening.

Evaluation of Activity and Efficacy

No objective responses (PR or CR) were observed in the
20 treated patients. Median number of cycles completed
was 2 (range: 1-13). Three patients had a best overall
response of stable disease (SD; Table 3). One patient
with HGG (KRAS mutation) had SD for 12 cycles before
progressing on therapy. A second patient with HGG (NF1
and PTEN mutations) had SD for six cycles before
progressing on therapy. One patient with PN (NF1 and
BRCA2 mutations) had SD for 13 cycles until removal
from protocol therapy because of dose-limiting toxicity
(uveitis). Six-month PFS was 15% (95% CI, 4 to 34;
Fig 3).

FIG 2. (Continued). in the 20 treated patients (n5 21mutations). (E) Tumor variants detected by gene and patient. The genes with variants are indicated for
each patient (each column represents a patient). The 20 patients treated in arm E are on the left side of the figure; the remainder of thematched patients are
on the right. The histogram on the left gives the number of variants detected for each alteration type. Actionable MAPK pathway alterations are in the top
rows of the figure (KRAS mutation to BRAF other); other cancer gene alterations identified by the tumor panel testing are listed in the rows below. HGG,
high-grade glioma; LGG, low-grade glioma; MAPK, mitogen-activated protein kinase; Mut, mutation; RMS, rhabdomyosarcoma.

TABLE 2. Grade 3 or Above AE Potentially Associated With the Protocol Treatment (with attribution possible, probable, or definite) in CTCAE v5.0
Type of AE Grade 3 Grade 4 Grade 5 Any of Grade 3, 4, or 5

CPK increased 1 (5) 1 (5)

Lymphocyte count decreased 1 (5) 1 (5)

Thromboembolic event 1 (5) 1 (5) 2 (10)

Uveitis 1 (5) 1 (5)

NOTE. Data are reported as No. of patients (% in the treated patients).
Abbreviations: AE, adverse event; CPK, creatine phosphokinase.
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DISCUSSION

In this study, we report the results of the first completed
NCI-COG Pediatric MATCH phase II treatment trial: the
MEK inhibitor selumetinib (arm E) for the treatment of
patients with tumors harboring alterations in the MAPK
signaling pathway. The nationwide histology-agnostic
molecular screening strategy used in Pediatric MATCH
was effective at identifying children and young adults
eligible for treatment with selumetinib, with 58 patients
from 42 different study sites matched to arm E in less
than two years (Table 1). The 20-patient treatment co-
hort enrolled in 21 months, well ahead of the projected
accrual duration of 48 months (Appendix Figure A1,
online only). Adolescent and young adult patients (age
15-21 years) were well represented in the trial, com-
prising half of the cohort (Data Supplement). As ob-
served in other pediatric and adult trials of selumetinib,
the agent is relatively well tolerated. Few dose-limiting
toxicities were seen in this trial using the FDA-approved
dose of 25 mg/m2/dose twice daily (Table 2 and the Data
Supplement). The toxicities seen were consistent with
previous trials, including uveitis, elevated creatinine
phosphokinase, and thromboembolic events.

A wide variety of diagnoses were represented in the matched
and treated arm E patient cohorts, with 12 and eight histologies
represented, respectively (Table 1, Figs 2A and 2B, and the
Data Supplement). Diverse MAPK pathway tumor alterations
typical of pediatric cancers were detected, with mutations and
fusions targeting five genes (KRAS, NRAS, HRAS, NF1, and
BRAF) in both the matched and treated patient cohorts (Figs
2C-2E). Most patientsmatched to arm E (47/58, 81%) had one
of three tumor types: RMS, HGG, or LGG. RMS and HGG are
prototypes of aggressive, genomically complex MAPK-driven
tumors of childhood with multiple molecular mechanisms
underlying tumor development and progression.18,19 Aberrant
MAPK signaling in RMS in study patients most commonly
resulted fromactivatingmutations inRAS genes (detected in 17
of 19 [89%] matched and all seven treated RMS patients on
study), whereas inHGG, amore varied set of pathway-activating
alterationswas observed (Fig 2E, and theData Supplement). By

contrast, LGG in children (most commonly WHO grade I
pilocytic astrocytoma) generally follows a more indolent course
and serves as a model of a single-pathway MAPK-driven
malignancy. Since previous trials of selumetinib for children
with LGG demonstrated activity,20,21 these patients were ex-
cluded from treatment on Pediatric MATCH arm E, and our
study cohort was therefore primarily composed of patients with
RMS and HGG (14/20 patients, 70%).

The overall clinical activity of selumetinib was disappointing in
this cohort of children and young adults with treatment-
refractory tumors harboring activating MAPK pathway alter-
ations: no objective responses and a 6-month PFS of 15%
were observed (Fig 3). This lack of activity stands in marked
contrast to previous reports of selumetinib activity for treat-
ment of other pediatric tumor types: both sporadic and
neurofibromatosis type I–associated LGG and PN, for which
the agent has received FDA approval. Durable responses have
also been reported in close to 90% of adult patients with
histiocytic disorders (similarly characterized by single MAPK
pathway alterations) treated with the MEK inhibitor cobime-
tinib32; a phase II trial for pediatric patients is ongoing (Clin-
icalTrials.gov identifier: NCT04079179). The response rate to
selumetinib observed in this study is comparable with the
trametinib (MEK inhibitor) arm of the adult NCI-MATCH
(EAY131) trial where overall response rate in tumors with
BRAF fusions or non-V600 mutations was 3%.33 Importantly,
the current study did not rigorously evaluate selumetinib
activity in tumors harboring MAPK pathway alterations that
were not well represented in treated patients, such as BRAF
mutations and fusions (n5 2 and 0, respectively), and these
results should not be interpreted to suggest lack of activity of
MEK inhibitors in pediatric cancers with these variants.

In combination with prior reported experience with
single-agent MEK inhibition in both pediatric and adult
malignancies, our data suggest two potential explana-
tions for the lack of activity observed for selumetinib in
Pediatric MATCH.20,21,33-39 First, the tumor types for
which single-agent activity of MEK inhibitors has been
demonstrated in children (sporadic and NF1-associated
LGG; PN) are less clinically aggressive and molecularly

TABLE 3. Clinical and Genetic Details of Patients With Prolonged Stable Disease
Age
(years) Histology MAPK Gene Mutated Other Mutations

Best
Response

Cycles
Treated

PFS
(months)

Reason Off
Study

18 HGG NF1 p.Arg2637Ter
(0.73)

PTEN p.Arg335Ter (0.70); TP53 p.Arg273His
(0.76); MSH6 p.Ala1320fs (0.72)a

SD 6 4.9 PD

21 HGG KRAS p.Gln61His
(0.42)

None SD 12 11.5 PD

7 PN NF1 p.Lys1725fs
(0.48)a

BRCA2 p.Ser2186fs (0.13) SD 13 14.5 DLT

NOTE. Tumor variant allele frequencies are shown in parentheses.
Abbreviations: DLT, dose-limiting toxicity; HGG, high-grade glioma; MAPK, mitogen-activated protein kinase; PD, progressive disease; PFS, progression-

free survival; PN, plexiform neurofibroma; SD, stable disease.
aMutation was also detected in germline.
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defined almost exclusively by single gene driver muta-
tions in the MAPK pathway. There is limited evidence of
MEK inhibitor monotherapy efficacy in more genetically
complex tumors such as RMS or HGG, which comprised
70% of our treated patient cohort. Evidence of this dif-
ferential genomic complexity was seen in the molecular
profiling for our cohort of patients matched to arm E;
consistent with larger genomic studies of these tumor
types,13,18 only 1/15 (6.7%) LGG tested had a second

cancer gene alteration detected, whereas 13/19 (68%)
RMS had at least one other cancer gene mutation
identified (Fig 2E).13 Second, the Pediatric MATCH data
add to the accumulating evidence that targeting RAS-
mutated tumors with single MAPK pathway–directed
agents is not an effective approach. In our cohort, hot-
spot mutations in KRAS, NRAS, or HRAS were detected
in 12 of 20 (60%) selumetinib-treated patients (Figs 2B
and 2E, and the Data Supplement).
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FIG 3. (A) Swimmer plot and (B) Kaplan-Meier curve of the 20 treated arm E patients. HGG, high-grade
glioma; LGG, low-grade glioma; PFS, progression-free survival; RMS, rhabdomyosarcoma.
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Taken together, these data support the potential for MEK
inhibition monotherapy to contribute to disease control in
selected histologies that are primarily defined by single al-
terations in the MAPK pathway and an otherwise limited
mutation burden, but not in more genomically complex and
clinically aggressive tumor types. Activating MAPK pathway
mutations are necessary, but not sufficient, for efficacy of
MEK inhibitors for pediatric tumors. It is likely that selu-
metinib and other MEK inhibitors will require combination
with additional molecularly targeted, immunotherapeutic, or
cytotoxic agents to achieve optimal efficacy in patients with
genomically complex tumors. Combination BRAF-V600E/
MEK inhibition has been used to overcome toxicity of par-
adoxical BRAF activation by first-generation BRAF-V600E

inhibitors and also to address resistance from acquisition
of new mutations in melanoma and other BRAF V600E-
mutated tumors.40-43 Addition of immune checkpoint in-
hibitors to MAPK-pathway targeted inhibitors may contribute
to enhanced efficacy, although thismay also broaden toxicity
profile.44,45 In the example of Philadelphia chromosome–
positive acute lymphoblastic leukemia, addition of chemo-
therapy to tyrosine kinase inhibition was associated with
increased durability of responses.46,47 The rapid accrual to
this arm of the Pediatric MATCH trial demonstrates the high
burden of MAPK alterations in pediatric cancers and the
utility of a nationwide molecular screening approach to fa-
cilitate further study of molecularly targeted agents targeting
this pathway across tumor histologies.
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APPENDIX
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FIG A1. Projected and observed accrual to arm E. Arm E was
activated in July 2017 with the first patient enrolling in December
2017. The trial was temporarily closed after the 20th patient was
enrolled in August 2019 and permanently closed in September
2020.
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