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Prostate cancer (PCa) is the most common cancer affecting men, with increasing global mortality and morbidity rates. Despite the
progress in the diagnosis and treatment of PCa, patient outcomes remain poor, and novel therapeutic targets for PCa are urgently
needed. Recently, circular RNAs (circRNAs) have been studied in-depth as potential biomarkers for many diseases. In this study,
circRNA microarrays using four pairs of PCa tissues were utilized to show that circGFRA1 was upregulated in PCa tumor tissues.
CircGFRA1 is suggested to play an oncogene role in PCa progression as the silencing of circGFRA1 inhibited the proliferation,
migration, and immune escape activity of PCa cells. Furthermore, by utilizing bioinformatics analysis, RIP, RNA pull-down,
and luciferase reporter assays, our results showed that LMX1B could bind to the GFRA1 promoter and regulate circGFRA1
expression in PCa cells and circGFRA1 upregulated HECTD1 expression through sponging miR-3064-5p. This novel LMX1B/
circGFRA1/miR-3064-5p/HECTD1 axis identified in PCa provides new insights for developing novel therapeutic strategies for
PCa.

1. Introduction

Prostate cancer (PCa) is ranked the second major cause of
global human malignancy [1], with increasing mortality
and morbidity rates in multiple countries in the past two
decades [2]. In 2020, PCa contributed to 10% of cancer-
related deaths in men [3] and is considerable economic bur-
den for health-care systems. Multiple molecular mechanisms
in the initiation or progression of PCa have been explored,
including aberrant RNA splicing, irregular ubiquitination
and methylation, functional gene dysregulation, and DNA
mutations [4, 5], but the specific mechanism underlying
PCa initiation and progression remains unclear.

Circular RNAs (circRNAs) are a subtype of noncoding
RNAs that are back-spliced and alternative (back-)spliced
by a covalently closed loop and have no free terminal ends
[6]. Technological innovation of high-through putting
sequencing has facilitated the in-depth investigation of cir-
cRNAs functions. They can act as decoys for downstream
microRNAs (miRNAs) to regulate gene expression and

interact with proteins and as scaffolds for circRNA–protein
complexes [7]. The functions of circRNAs have been
explored in many diseases, such as hepatocellular carcinoma,
gastric cancer, renal cell carcinoma, lung cancer, and bladder
cancer ([8–13]). Furthermore, accumulating evidence sug-
gests the essential role of circRNA in PCa progression. It
has been shown that circ_0057558 modulates the prolifera-
tion of PCa cells via the miR-206/USP33/c-Myc pathway
[14]. NF-κB upregulated circNOLC1 regulates PCa progres-
sion through the miR-647/PAQR4 axis [15], circSMARCA5
facilitates PCa cellular behaviors through the miR-181b-5p/
miR-17-3p-TIMP3 axis [16], and circGNG4 promoted PCa
progression through modulating the miR-223/EYA3/c-myc
pathway [17].

This study aimed to identify a novel circRNA utilizing
circRNA microarray analysis using four pairs of PCa tumor
tissues and normal adjacent tissues. The analysis revealed
that circGFRA1 was markedly upregulated in PCa tumor tis-
sues and is induced by LMX1B, playing a promotive effect in
PCa progression via the miR-3064-5p/HECTD1 axis.
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2. Materials and Methods

2.1. Human Samples. Four pairs of PCa tumor tissues and
adjacent normal tissues were obtained from the Affiliated
Huaian No.1 People’s Hospital of Nanjing Medical Univer-
sity from 2019 to 2021. All patients had not undergone che-
motherapy or radiotherapy before surgical resection and
provided informed content. All tissues were verified by two
pathologists, and the study protocol was approved by the
Ethics Committee of the Affiliated Huaian No.1 People’s
Hospital of Nanjing Medical University.

2.2. Cell Culture and Treatment. Prostate cancer cell lines
(DU145, PC-3, LNCap, and 22Rv1) and normal prostatic
epithelial cells (RWPE-1) were purchased from the Ameri-
can Type Culture Collection and cultured in DMEM
medium (Invitrogen, Thermo Fisher, USA) supplemented
with 10% fetal bovine serum (Gibco) and 100 units/ml pen-
icillin and 100 g/ml streptomycin in a 37°C environment
with 5% CO2. The siRNA targets circGFRA1, LMX1B, and
HECTD1, pcDNA3.1-LMX1B vector, and miR-3064-5p
mimic were synthesized and obtained from Genepharm
(Shanghai, China). All transfections were performed using
a Lipofectamine® 3000 kit (Invitrogen; Thermo Fisher,
USA) following the manufacturer’s instructions.

2.3. RNA Real-Time qPCR (RT-qPCR). Total RNA extraction
was conducted using TRIzol® (Invitrogen; Thermo Fisher,
USA), and cDNA was synthesized using a miScript II RT
kit (Qiagen, Haidian, Beijing, China). RT-qPCR experiment
was performed using a miScript SYBR Green PCR kit (Qia-
gen, Haidian, Beijing, China) on an ABI 7600 cycler

(Applied Biosystems), with GAPDH and U6 used as internal
controls. The relative expression was quantified by the 2-ΔΔCt

method. The primers used are as follows:
circGFRA1; F: CCTCCGGGTTAAGAACAAGC, R:

CTGGCTGGCAGTTGGTAAAA. GFRA1; F: TGTCAG
CAGCTGTCTAAAGG, R: CTTCTGTGCCTGTAAATTT
GCA. miR-3064-5p; F: ATCGTCTGGCTGTTGTGGT, R:
GTGCAGGGTCCGAGGT. HECTD1; F: AATGAACCGGG
TCAACTGC, R: TGTGTTTGTCCACTGGCATT. GAPDH;
F: ATGGGGAAGGTGAAGGTCG, R: GGGGTCATTGA
TGGCAACAATA. U6; F: CTCGCTTCGGCACA, R: AACG
CTTCACGAATTTGCGT.

2.4. Western Blotting. RIPA lysis buffer (Beyotime, Shanghai,
China) was used to extract proteins from cells and tissues. The
protein samples were separated on a 10% SDS-PAGE gel and
transferred to PVDF membranes (Millipore). The membranes
were blocked with 5% nonfat milk before incubation with pri-
mary antibodies (LMX1B: CST, 1 : 1000, 13457S; HECTD1:
Abcam, 1 : 5000, ab101992, GAPDH: Abcam, 1μg/ml,
ab37168) overnight at 4°C and then incubated with secondary
antibodies for 2h at room temperature. An enhanced chemi-
luminescent (ECL) system (Beyotime) was used to visualize
the protein bands with GAPDH used as the internal control.

2.5. Cell Proliferation Detection. The Cell Counting Kit-8
(CCK-8) and 5-ethynyl-2′-deoxyuridine (EdU) assay were
used to detect cell proliferation levels. For the CCK-8 assay,
cells were seeded in a 96-well plate and cultured at 37°C with
5% CO2 for three days before the addition of 10μl of CCK-8
solution at each time point and cultured for 4 h. The optical
density was measured at 450nm. For the EdU assay, the cells

1.5 LNCap

Cytoplasm
Nuclear

1.0

0.5

0.0
GAPDH U6

Re
lat

iv
e R

N
A

 le
ve

ls
circGFRA1

⁎⁎⁎⁎⁎⁎⁎⁎⁎

(k)

Figure 1: Expression patterns of circGFRA1 in PCa. (a) Microarray analysis of four pairs of prostate cancer tissues. (b) Relative expression
of circGFRA1 in PCa cell lines showing circGFRA1 expression was significantly upregulated in PCa cell lines compared to RWPE-1 cells
(∗∗P < 0:01). (c) Schematic illustration of circGFRA1. (d and e) The effect of ActD treatment on the stability of circGFRA1 and linear
form GFRA1 in PC-3 and LNCap cells. (f and g) The effect of RNase R on the expression of circGFRA1 and linear form GFRA1 in PC-3
and LNCap. (h and i) Expression of circGFRA1 in PC-3 and LNCap cells analyzed by qRT-PCR after normalization with random
primers and oligo (dT) 18 primers. (j and k) The distribution of circGFRA1 in PC-3 and LNCap cells was detected by cellular fragment
assay. Data are presented as mean ± standard error. ∗∗P < 0:01, ∗∗∗ P < 0:001.
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Figure 2: Silencing circGFRA1 attenuates the tumorigenic properties and immune escape of PCa. (a and b) Loss-of-function cell models
were constructed via transfecting si-NC, si-circGRFA1#1, and si- circGRFA1#2 into PC-3 and LNCap cells. CircGRFA1 and GFRA1
expression were measured by qRT-PCR. (c and d) Cell proliferation was detected by CCK-8. (e and f) EdU assay was performed to
evaluate cell proliferation. (g and h) Cell migration was assessed by the transwell assay. (i) VEGF content of PCa cell supernatants. (j)
IL-10 content of PCa cell supernatants. (k) TGF-β1 content of PCa cell supernatants. (l and m) The cytotoxicity of CIK cells to PC-3
and LNCap cells was determined via CCK-8 assay. Results from the si-NC group were used as a control. Data are presented as mean ±
standard error. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗ P < 0:001.
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Figure 3: Continued.

8 Journal of Immunology Research



were incubated in DMEM with 10mM EdU for one day.
Subsequently, cells were fixed with 4% paraformaldehyde
for 30 min and neutralized with 2mg/ml glycine for
10min before washing with PBST. The cells were then
stained with Apollo and Hoechst33342.

2.6. Cell Migration. After transfection, the cells were washed
in PBS, resuspended in serum-free medium (200μl), and
placed in the upper chamber for migration detection. The
chamber was supplemented with 600μl of complete medium
containing 10% serum. After 24 h, the cells were fixed form-
aldehyde and stained with crystal violet (Sigma-Aldrich;
Merck KGaA) before visualization using an Olympus light
microscope.

2.7. Bioinformatics Analysis. The National Center for Bio-
technology Information (NCBI; https://www.ncbi.nlm.nih
.gov/), the University of California Santa Cruz (UCSC;
http://genome.ucsc.edu/), and the JASPAR database
(https://jaspar.genereg.net/) were used to investigate the
upstream factor of circGFRA1. The miRNA target of cir-
cGFRA1 was predicted by the ENCORI database (https://
starbase.sysu.edu.cn/index.php) under CLIP data, high strin-
gency (≥3), and class (8mer) condition. The mRNA target of
miR-3064-5p was analyzed by utilizing microT (http://diana
.imis.athena-innovation.gr/), miRmap (https://mirmap.ezlab
.org/), and PicTar (https://pictar.mdc-berlin.de/) databases
under CLIP data, strict stringency (≥5), degradome data,
and medium stringency (≥2).
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Figure 3: LMX1B binds to circGFRA1 and upregulates circGFRA1 expression in PCa cells. (a) Relative circGFRA1 expression in PC-3 and
LNCap cells upon 0/20/50/100 ng LMX1B transfection and circGFRA1 expression upon 0 ng LMX1B transfection were used as control. (b)
Relative circGFRA1 expression in PCa cells upon si-NC, si-LMX1B#1, and si-LMX1B#2 transfection results from si-NC group was used as
control. (c) The predicted binding motif of LMX1B obtained from JASPAR. (d) The predicted binding motif of GFRA1 promoter regions
obtained from JASPAR. (e and f) ChIP analysis of enrichment of LMX1B on the GFRA1 promoter in PC-3 and LNCap cells. IgG was used
as a negative control. (g and h) Quantification of the luciferase activity of the wild-type or mutant GFRA1 promoter reporter in PC-3 and
LNCap cells. Data are presented as mean ± standard error. ∗P < 0:05, ∗∗∗ P < 0:001.
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Figure 4: Continued.
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2.8. Enzyme-Linked Immunosorbent Assay (ELISA). The
supernatants were collected from treated cells to quantify
the production of immunosuppressive factors vascular
endothelial growth factor (VEGF), IL-10, and transforming
growth factor-β1 (TGF-β1) using commercially available
ELISAs (Beckman Coulter Life Sciences, Brea, CA, USA).

2.9. Cytotoxicity Activity Analysis. To validate the cytokine-
induced killer (CIK) cell-induced cytotoxicity towards PCa
cells, the cells were co-cultured at 10: 1, 20 : 1, and 40 : 1
ratios, respectively, in a 37°C environment with 5% CO2
for one day. Subsequently, 20μl of CCK-8 solution was
added to 100μl of cell medium for 4 h before the optical
density was measured at 450nm. The survival rate was
calculated as follows: survival ð%Þ = ðfunctional&target cell
mixture − functional cellÞ/target cell ∗ 100%.

2.10. RNA-Binding Protein Immunoprecipitation (RIP). Cell
lysates were incubated with sepharose beads (Bio-Rad,
USA) prefixed with argonaute-2 (Ago2) or immunoglobulin
G (IgG). The beads were washed and analyzed by qRT-PCR.

2.11. RNA Pull-down. CircGFRA1 or miR-3064-5p was bio-
tinylated to construct bio-circGFRA1 or bio-miR-3064-5p
probes. Subsequently, 2μg cell lysate was incubated with
100 pmol biotinylated probes before the addition of strepta-
vidin agarose beads for 1 h at room temperature. The beads
were boiled in SDS and analyzed by RT-qPCR.

2.12. Dual-Luciferase Reporter Gene Assay. Wild-type (WT)
or mutant (Mut) sequences of the target gene were inserted

into psiCHECK2 plasmids. (Thermo Fisher, USA). PCa cells
were cultured in a 24-well plate for 24h (2× 104 cells per
well) and then co-transfected with WT or Mut reporter
plasmids (containing circGFRA1 or HECTD1 3′-UTR
sequence) or miR-3064-5p mimics to verify the relationship
among circGFRA1/miR-3064-5p/HECTD1 axis, and cells
were co-transfected with WT or Mut reporter plasmids
(containing circGFRA1 or HECTD1 3′-UTR sequence)
and miR-3064-5p mimics. The association between LMX1B
and GFRA1 promoter was examined through co-
transfecting WT or Mut reporter plasmids (region 2 or 4
sequences of GFRA1 promoter) and LMX1B vectors into
cells. Transfections were performed using Lipofectamine®
3000 (Invitrogen, USA), and luminescence was detected
48 h later using the dual-luciferase detection kit (Promega,
USA).

2.13. Statistical Analysis. The statistical analyses were per-
formed using SPSS 19.0 software (IBM Corporation, USA).
The data were presented as mean ± SD and subjected to
one-way ANOVA and Student t-tests. All experiments were
performed in triplicate, and a P value <0.05 was considered
statistically different.

3. Results

3.1. Expression of circGFRA1 in PCa. The expression profile
of circRNAs in four pairs of PCa tissues was examined by
microarray analysis (Figure 1(a)), showing that circGFRA1
(hsa_circ_005239, chr10:116,059,925–116,274,705), which
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is derived from gene GFRA1 (GDNF family receptor alpha
1), was abundantly expressed in all four PCa tumor tissues
compared to normal tissues. CircGFRA1 was also upregu-
lated in PCa cell lines, especially in PC-3 and LNCap cells
(Figure 1(b)). The schematic diagram of circGFRA1 is
shown in Figure 1(c), and to confirm that circGFRA1 was
indeed circular in PCa cells, cells are treated with the tran-
scription inhibitor actinomycin D (ActD) showing that the
half-life of circGFRA1 was significantly longer than GFRA1
mRNA (Figures 1(d) and 1(e)). Moreover, circGFRA1 was
more resistant to RNase R digestion than its linear form
(Figures 1(f) and 1(g)). Next, the use of random and oli-
go(dT)18 primers in reverse transcription to deplete cir-
cRNAs in the 3′ pA tail, as expected, reduced circGFRA1
level in PC-3 and LNCap cells compared to the linear form
(Figures 1(h) and 1(i)). In addition, the subcellular location
assay showed that circGFRA1 was mainly distributed in
the cell cytoplasm (Figures 1(j) and 1(k)), indicating that cir-
cGFRA1 might participate in the cellular behaviors of PCa.

3.2. Silencing circGFRA1 Attenuates the Tumorigenic
Properties and Immune Escape of PCa. To study the function
of circGFRA1, circGFRA1 but not GFRA1 was silenced in
PC-3 and LNCap cells (Figures 2(a) and 2(b)), resulting in
reduced cell proliferation (Figures 2(c)–2(f)) and cell migra-
tion (Figures 2(g) and 2(h)). It has been demonstrated that
immune escape is essential for the development of PCa
[18], and we determined the expression of immunosuppres-
sive factors VEGF, IL-10, and TGF-β1 in the supernatant of
circGFRA1 silenced PC-3 and LNCap cells. As shown in
Figures 2(i)–2(k), VEGF, IL-10, and TGF-β1 are markedly
decreased, and CIK cell-induced cytotoxic activity against
circGFRA1 silenced cells was higher compared to normal

control cells in the same conditions (Figures 2(l) and
2(m)), suggesting that silencing circGFRA1 inhibits the
immune escape of PCa.

3.3. LMX1B Binds to GFRA1 and Upregulates circGFRA1
Expression in PCa Cells. Interestingly, putative LMX1B bind-
ing sites were identified in promoter regions of GFRA1, so
the effects of LMX1B on circGFRA1 expression in PC-3
and LNCap cells were quantified by qRT-PCR, showing that
circGFRA1 expression was upregulated by LMX1B overex-
pression in a dose-dependent manner (Figure 3(a)) and
downregulated by LMX1B knockdown (Figure 3(b)). The
schematic diagram of the putative binding sites of LMX1B
(Figure 3(c)) or GFRA1 promoter regions is shown in
Figure 3(d). The ChIP assay revealed that the P2 and P4
regions on the GFRA1 promoter were markedly enriched
by anti-LMX1B compared to anti-IgG in PC-3 and LNCap
cells (Figures 3(e) and 3(f)). Furthermore, the luciferase
activity increased when the P2 or P4 regions on the GFRA1
promoter were mutated (Figure 3(g)) and was unchanged
when both P2 and P4 regions on the GFRA1 promoter were
mutated (Figure 3(h)). Taken together, these results suggest
that LMX1B regulates circGFRA1 expression in PCa cells.

3.4. LMX1B Modulates the Tumorigenic Properties and
Immune Escape of PCa. To demonstrate the role of LMX1B
in PCa, LMX1B expression was analyzed in thirty pairs of
PCa tissues by qRT-PCR and then validated in five pairs of
PCa tissues by western blotting. As shown in Figures 4(a)
and 4(b), the expression of LMX1B in PCa tumors is mark-
edly higher than in normal tissues. Furthermore, LMX1B
was upregulated in PCa cell lines (Figure 4(c)). Loss-of-
function studies by stably knocking down LMX1B expression
in PC-3 and LNCap cells were conducted (Figures 4(d) and
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Figure 5: CircGFRA1 sponges miR-3064-5p. (a) The enrichment of circGFRA1 in the RISC of PC-3 and LNCap cells using anti-Ago2 or
IgG antibody with the IgG group results used as a negative control. (b) Bio-RNA pull-down assay to evaluate the relative enrichment of
putative miRNA targets of circGFRA1 in probes in PC-3 and LNCap cells, and bio-NC group was used as control. (c) Relative miR-
3064-3p expression in circGFRA1 knockdown cells was determined by qRT-PCR using the si-NC group as control. (d) Schematic of
circGFRA1 illustrating the position of the miR-3064-5p binding site. (e) Relative luciferase activity in PC-3 and LNCap cells co-
transfected with circGFRA1-WT or circGFRA1-MUT and miR-NC mimic and miR-3064-5p mimic using the NC mimic group results as
control. Data are presented as mean ± standard error. ∗P < 0:05, ∗∗∗ P < 0:001.
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4(e)) showing that LMX1B knockdown significantly inhib-
ited cell proliferation (Figures 4(f) and 4(i)) and markedly
suppressed cell migration level (Figures 4(j) and 4(k)). More-
over, LMX1B knockdown significantly decreased VEGF, IL-
10, and TGF-β1 in the supernatant of PCa cells
(Figures 4(l)–4(n)) and markedly increased the CIK cell-
induced cytotoxic activity towards PCa cells (Figures 4(l)
and 4(m)).

3.5. CircGFRA1 Functions as a Molecular Sponge for miR-
3064-5p. Since circRNA can function as a molecular sponge
for microRNAs (miRNA), we analyzed whether circGFRA1
binds to miRNA through a competitive endogenous RNA
(ceRNA) mechanism. It is well known that AGO2 is essen-
tial for the biogenesis and mature of miRNAs, and our

results showed that circGFRA1 can bind to AGO2 suggest-
ing that circGFRA1 may bind to miRNA in PCa cells
(Figure 5(a)). Subsequent bioinformatics analysis identified
four miRNAs with relatively high scores, and the qRT-PCR
assay results showed that only miR-3064-5p was abundantly
pulled down by the circGFRA1 probe in PC-3 and LNCap
cells (Figure 5(b)), and miR-3064-5p expression was upreg-
ulated by circGFRA1 knockdown in PC-3 and LNCap cells
(Figure 5(c)). The predicted binding sites between cir-
cGFRA1 and miR-3064-5p are shown in Figure 5(d), and
the dual-luciferase reporter assay results suggested that cir-
cGFRA1 can directly bind to miR-3064-5p in PCa cells.

3.6. MiR-3064-5p Targets HECTD1. Of the eight potential
mRNA targets of miR-3064-5p (Figure 6(a)), the
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Figure 7: HECTD1 is crucial for the functional role of LMX1B in PCa. (a) HECTD1 expression in vector and circGFRA1 transfected cells
measured by qRT-PCR and western blotting using the vector group as control. (b) HECTD1 expression in circGFRA1-si-NC, circGFRA1-si-
HECTD1#1, and circGFRA1-si-HECTD1#2 transfected cells measured by qRT-PCR and western blotting. (c) Cell proliferation was detected
by CCK-8. (d and e) EdU assay was performed to evaluate cell proliferation. (f and g) Cell migration assessed by the transwell assay. (h)
VEGF content of PCa cell supernatants. (i) IL-10 content of PCa cell supernatants. (j) TGF-β1 content of PCa cell supernatants. (k and
l) The cytotoxicity of CIK cells to PC-3 and LNCap cells was determined via CCK-8 assay using the circGFRA1-si-NC group as control.
Data are presented as mean ± standard error. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗ P < 0:001.
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biotinylated RNA pull-down assay results suggested that
HECT domain E3 ubiquitin protein ligase 1 (HECTD1)
was the target gene of miR-3064-5p in PCa cells
(Figures 6(b) and 6(c)). Also, miR-3064-5p overexpression
inhibited HECTD1 expression (Figure 6(d)). The predicted
binding sites between miR-3064-5p and HECTD1 are shown
in Figure 6(e). The luciferase reporter assay results showed
that miR-3064-5p can directly target HECTD1 in PCa cells
(Figures 6(f) and 6(g)), and HECTD1 expression was down-
regulated by circGFRA1 knockdown and upregulated when
miR-3064-5p mimic was co-transfected into PCa cells
(Figures 6(h) and 6(i)). Taken together, these results suggest
that circGFRA1 can regulate HECTD1 expression in PCa
cells through sponging miR-3064-5p.

3.7. HECTD1 Is Crucial for the Functional Role of circGFRA1
in PCa. To determine whether circGFRA1 played a func-
tional role through HECTD1, HECTD1 expression was
quantified in circGFRA1 up- or downregulated PCa cells.
The mRNA and protein levels of HECTD1 were consistent
with the change in circGFRA1 expression (Figures 7(a) and
7(b)) and compared to transfection of circGFRA1 siRNAs
alone, and co-transfection with HECTD1 reversed the sup-
pression effect of circGFRA1 knockdown on cell prolifera-
tion (Figures 7(c)–7(e)) and migration (Figures 7(f) and
7(g)). Also, HECTD1 overexpression significantly reversed
the circGFRA1 overexpression-induced upregulation of
VEGF, IL-10, and TGF-β1 in the supernatant of PCa cells
(Figures 7(h)–7(j)) and rescued the circGFRA1
overexpression-regulated CIK cell-induced cytotoxic activity
towards PCa cells (Figures 7(k) and 7(l)), suggesting that
HECTD1 is essential for the functional role of circGFRA1
in PCa progression.

4. Discussion

PCa is the most common cancer in men and a great threat to
the genitourinary health of men [3]. In recent years, great
progress has been made in the diagnosis or treatment of
PCa with the identification of multiple diagnostic targets
such as the main biomarker prostate-specific antigen
(PSA), PCa antigen 3 (PCA3), the gene fusion test of
TMPRSS2-ERG, circulating tumor cells, lncRNA biomark-
ers, and microRNA biomarkers [19–22]. PCa therapy
involves radical prostatectomy or radical radiotherapy,
endocrine therapy [23], and enzalutamide treatment when
the PCa progresses to castration-resistant PCa [24]. How-
ever, despite the wide application of these new diagnostic
biomarkers or treatment strategies, patients remain poor,
so novel therapeutic targets for PCa are urgently needed.

There is emerging evidence of the role of circRNA in
multiple cancers, including PCa [25, 26]. The present study
showed that circGFRA1 was upregulated in PCa tumor tis-
sues compared to normal tissues. CircGFRA1 has been
investigated in several cancers, such as nonsmall cell lung
cancer, ovarian cancer, breast cancer, and hepatocellular
cancer [27–30], but its role in PCa has not been fully eluci-
dated. Our results suggest that circGFRA1 plays an onco-

gene role in PCa progression, which renewed the profile of
circGFRA1 in tumorigenesis progression.

Recently, the interaction between circRNA and tran-
scription factors has been demonstrated to be important
for circRNA maintenance and function [31, 32]. For
instance, circRNA ARF1 expression in glioma stem cells is
regulated by U2AF2 [33]. circRNA circHipk2 expression in
C2C12 myoblasts is mediated by Sp1 [34], and circ-FOXP1
in hepatocellular carcinoma cells is regulated by SOX9
[9–11]. Therefore, we investigated the upstream regulator
of circGFRA1 in PCa cells showing that circGFRA1 is regu-
lated by LMX1B, which has previously been shown to be
involved in many cancers, including ovarian, esophageal,
and glioma [35–37].

Furthermore, circGFRA1 upregulated HECTD1 expres-
sion to promote PCa progression by sponging miR-3064-
5p. Interestingly, despite the investigations of miR-3064-5p
or HECTD1 in various cancers [38–42], no study has been
conducted in PCa. The present study is the first to explore
the biological or mechanical role of miR-3064-5p or
HECTD1 in PCa, which might be useful for the basic
research conducted in PCa.

Although this study has partially demonstrated the func-
tional role of circGFRA1 in PCa, further investigation of
more PCa tissues and the underlying molecular pathway of
HECTD1 in PCa cellular behaviors are required to confirm
the clinical significance of circGFRA1. In conclusion, the
present study has partially revealed the involvement of the
LMX1B/circGFRA1/miR-3064-5p/HECTD1 axis in PCa
progression, providing new insights for developing novel
diagnostic or therapeutic targets for PCa.
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