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Background: Clear cell renal cell carcinoma (ccRCC) is characterized by high metastasis potential. It is 
of great importance to explore the mechanisms underlying ccRCC metastasis and to enable development of 
potent therapeutics. The mitochondrial complex I (CI) had been considered to play an important role in the 
development of cancers, but less known in ccRCC.
Methods: We utilized available public databases of ccRCC, including single-cell RNA sequencing (scRNA-
seq) data GSE73121 and The Cancer Genome Atlas-kidney renal clear cell carcinoma (TCGA-KIRC). 
Principal component analysis (PCA) and t-Distributed Stochastic Neighbor Embedding (tSNE) analysis were 
evaluated the heterogeneity of metastatic renal cell carcinoma (mRCC) and primary renal cell carcinoma 
(pRCC). Protein-protein interaction (PPI) network identified critical gene. Gene set enrichment analysis 
(GSEA) and gene set variation analysis (GSVA) performed to explore the potential biologic pathways.
Results: Our study revealed a significant gene expression heterogeneity between pRCC and mRCC. A 
PPI network based on differentially expressed genes (DEGs) identified electron transport chain (ETC), 
especially mitochondrial CI, as the key network hub. Further analysis revealed that the role of mitochondrial 
CI is associated with tumor metastasis and immune responds of ccRCC. Although CI had low frequency 
mutations in ccRCC, CI expression is associated with the high frequency mutated genes. A prognosis model 
included 7 CI genes, and these had a significant effect on overall survival (OS). The area under the curve at 1, 
3, and 5 years was 0.717, 0.685, and 0.728, respectively. Transcription factor analysis predicted that PPARG 
possibly is a potential transcription activator of CI genes in ccRCC.
Conclusions: Overall, we found that CI expression is associated with ccRCC progress. CI and PPARG may 
be potential biomarkers for metastatic ccRCC.
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Introduction

Renal cell carcinoma (RCC) is a common malignancy of the 
genitourinary system. The estimated numbers of new cases 
and deaths of RCC were 431,288 and 179,368, respectively, 
in 2020 (1). The histological types including clear cell RCC 
(ccRCC), papillary RCC, chromophobe RCC and collecting 
duct RCC (2,3). ccRCC is the most common subtype of 
RCC, represents 70% of total cases and is characterized 
by high metastasis potential, resulting in about one-third 
of ccRCC patients having metastatic diseases at the time 
of diagnosis (3,4). Therefore, it is of great importance to 
explore the mechanisms underlying ccRCC metastasis and 
to enable development of potent therapeutics.

Oxidative phosphorylation (OXPHOS) is a process 
involving a flow of electrons through the electron transport 
chain (ETC), through which the mitochondrial ETC 
utilizes a series of electron transfer reactions to generate 
cellular ATP through OXPHOS (5). The mitochondrial 
ETC consists of protein complexes I–V, of which most of 
the subunits are encoded by nuclear genes (6). It has been 
shown that ETC activity impacts a variety of processes 
beyond energy balance such as reactive oxygen species 
(ROS) production, the redox state mitochondrial membrane 
potential, mitochondrial protein import, and apoptosis (7). 
Accumulating evidence shows that ETC plays an important 
role in the development of cancer, as functional electron 
transport provides the bioenergetic fuelling necessary to 
sustain tumor initiation, growth, and dissemination (8-10). 
For example, mitochondrial complex III is required for 
tumor growth (9). Specific enhancement of mitochondrial 
complex I (CI) activity inhibited breast cancer growth and 
metastasis via tumor cell NAD+/NADH redox balance, 
mTORC1 activity, and autophagy (10). However, whether 
mitochondrial complex is directly correlated with tumor 
metastasis, especially in RCC, remains largely unclear. 
Therefore, investigating the role of mitochondrial complex 
and RCC is meaningful.

In this study, we investigated the role of ETC in the 
ccRCC metastasis. These findings also suggested that 
low mitochondrial CI is associated with tumor metastasis 
and immune responds of ccRCC. Moreover, PPARG 
may be a potential CI transcription activator. We present 
the following article in accordance with the REMARK 
reporting checklist (available at https://tcr.amegroups.com/

article/view/10.21037/tcr-22-242/rc).

Methods

Data preprocessing

The single-cell RNA sequencing (scRNA-seq) data were 
downloaded from the Gene Expression Omnibus (GEO; 
https://www.ncbi.nlm.nih.gov/geo/) database, accession 
code GEO:GSE73121 (11). The public available The 
Cancer Genome Atlas (TCGA) datasets were directly 
downloaded from the TCGA Data Portalt (https://
tcga-data.nci.nih.gov/tcga/). The scRNA-seq data were 
normalized and differential expression analysis by Seurat, 
an R package for single-cell analysis (https://satijalab.
org/seurat/). We discard two cell samples because of a 
worse RNA feature and choose the top 1,500 maximum 
standardized variance of genes for next analysis. TCGA 
transcriptome data were normalized by edgeR from R 
package. All analyses were run in R version R 4.0.2 and R 
Studio version 1.3.1056.

Principal component analysis (PCA) and t-Distributed 
Stochastic Neighbor Embedding (tSNE) analysis

PCA was  performed on the  top 1 ,500 maximum 
standardized variance screened before. Then, cluster 
analysis was performed in the top 20 principal components 
(PCs). Five PCs with the most significant difference P value 
were selected for the following analysis. tSNE analysis was 
performed after PCA based on 5 PCs. Cells were classified 
into two different clusters. All analyses were run in R 
version R 4.0.2 and R Studio version 1.3.1056.

Enrichment analysis

Matascape, a gene annotation and analysis resource, was 
used for pathway and process enrichment analysis (12). 
Rich factor was the proportion of enriched genes in 
corresponding gene sets. The gene set enrichment analysis 
(GSEA) was performed using GSEA v4.0.2 for Windows 
(http://www.gsea-msigdb.org/gsea). The gene set variation 
analysis (GSVA) was performed using R package GSVA. 
The gene sets using in GSEA and GSVA analysis were 
downloaded from GSEA molecular signatures database 

https://tcr.amegroups.com/article/view/10.21037/tcr-22-242/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-22-242/rc
https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
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hallmark gene sets.

Protein-protein interaction (PPI) network analysis

PPI network based on differentially expressed genes (DEGs) 
was constructed by STRING (13) (Search Tool for the 
Retrieval of Interacting Genes) database (https://string-
db.org/). The minimum required interaction score 0.9 was 
applied.

Heatmap analysis and hierarchical clustering

Gene expression data was transform into log2(normalized 
counts) for heatmap analysis. Heatmap plot was generated 
by ComplexHeatmap from R. Unsupervised hierarchical 
clustering was implemented using the Ward’s minimum 
variance method. Two distinct subgroups were identified 
through the hierarchical cluster analysis. All analyses were 
run in R version R 4.0.2 and R Studio version 1.3.1056.

Analysis of the tumor immunological microenvironment

The ESTIMATE algorithm (https://bioinformatics.
mdanderson.org/estimate/) was applied to calculate the 
tumor immune infiltration level. This algorithm can detect 
the stromal and immune score of each sample to predict the 
tumor stromal and immune infiltration and thus construct 
the ESTIMATE score, a microenvironment comprehensive 
score, to reflect tumor purity in cancer samples. Here, each 
sample’s stromal score, immune score, and estimate score 
of TCGA-kidney renal clear cell carcinoma (KIRC) were 
calculated by the ESTIMATE algorithm from R package in 
R version R 4.0.2 and R Studio version 1.3.1056.

Construction of risk model

Forty-six CI genes expression were obtained. Univariate 
Cox regression analysis was used to screen the genes that 
were significantly related to ccRCC prognosis. Multivariate 
Cox regression was performed to further reduce the number 
of genes and obtained the risk scoring model related to 
ccRCC prognosis. Then, risk model was constructed 
based on 7 CI genes. Survival analysis, receiver operating 
characteristic (ROC) curves, univariate and multivariate 
Cox regression was also evaluated in the next. All analyses 
were run in R version R 4.0.2 and R Studio version 1.3.1056 
with the following packages: survival, glmnet, survivalROC, 
gplot, and forestplot.

Prediction of CI genes transcription factor

DAVID bioinformatics resources (https://david.ncifcrf.gov/
home.jsp) was used to identify potential transcription factor 
binding site in 5'-untranslated region (5'-UTR) of CI genes. 
In the next, correlation analysis was performed between 
transcription factors and CI genes. Then, we combined 
the results of DAVID bioinformatics resources prediction 
and correlation analysis to build a regulatory network using 
cytoscape (https://cytoscape.org/). Among that, positive 
correlation coefficient transcription factor was considered 
to be transcription activator, and negative was transcription 
repressor. UALCAN database (http://ualcan.path.uab.
edu/) was used to identify the expression of transcription 
activator.

Statistical analyses

Statistical analyses in this study were performed using 
GraphPad Prism 8 or R. Survival curves were calculated 
with the Kaplan-Meier method and compared using the 
log-rank test. In general, P<0.05 was considered significant 
in this study.

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Results

Tumor cell heterogeneity between metastatic renal cell 
carcinoma (mRCC) and primary renal cell carcinoma 
(pRCC)

Prior to data analysis, rigorous quality control of the 
scRNA-seq was conducted. The numbers of RNA feature 
and RNA count of each cell were shown in Figure 1A. All 
samples have a similar RNA counts, while two samples 
were discarded because of inadequate RNA quality. 
Following normalization, we chose the top 1,500 maximum 
variance of genes for further identification of significant 
regulatory genes (Figure 1B). In order to determine tumor 
cell heterogeneity between mRCC and pRCC, the 1,500 
variant genes screened before were analyzed using PCA. As 
showed in the cell distribution in the top 2 PCs (Figure 1C),  
discreteness was obviously observed, indicating that PCA 
analysis could achieve the purpose of dimensionality 
reduction and heterogeneity exists between pRCC and 
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Figure 1 Tumor cell heterogeneity between mRCC and pRCC. (A) The feature and count of each cell sample from scRNA-seq. (B) The 
standardized variance of each gene. Red dots represent genes with top 1,500 maximum variance. (C) PCA plot based on scRNA-seq. (D) 
Theoretical, empirical score and P value of each PCA component. (E) tSNE analysis plot based on 5 PCs. (F) The results of cell types. 
mRCC, metastatic renal cell carcinoma; pRCC, primary renal cell carcinoma; scRNA-seq, single-cell RNA sequencing; tSNE, t-Distributed 
Stochastic Neighbor Embedding; PCA, principal component analysis.

mRCC. Twenty PCs also were obtained and p value of each 
PC was calculated (Figure 1D). Then, cluster analysis was 
performed in these 20 PCs, and eventually five PCs with the 
most significant difference were identified, including PC1, 
PC4, PC5, PC8, and PC14. Subsequently, cells in these  

5 PCs were classified into 2 clusters via tSNE analysis 
(Figure 1E). Cell origins were traced, showing that cluster 
1 exactly belongs to pRCC and cluster 0 exactly belongs 
to mRCC (Figure 1F). The gene expression heterogeneity 
between pRCC and mRCC was shown in the Figure 1F.
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ETC genes have differential expression between mRCC 
and pRCC

Differential expression analysis was performed between 
mRCC and pRCC. The results showed that 254 genes 
were expressed significantly. To investigate the biological 
function of DEGs, we performed a pathway and process 
enrichment analysis (Figure 2A). Pathway and process 
enrichment analysis of DEGs revealed significantly 
enriched in OXPHOS, mitochondrial electron transport, 
and response to hypoxia. In the meanwhile, mitochondrial 
membrane organization and release of cytochrome c from 
mitochondria also enriched. It means that mitochondrion 
and mitochondrial function, such as OXPHOS and ETC, 
probably played an important role in mRCC. Of cause, we 
also observed further enrichment in other cancer associated 
pathway and process, such as cell activation involved in 

immune response, apoptotic signaling pathway, senescence 
and autophagy in Cancer, regulation of immune effector 
process, and extracellular matrix organization.

We utilized STRING database to construct PPI network 
for identifying the function and correlation of DEG’s 
proteins (Figure 2B). We found significant PPIs among 
these proteins, which revealed that those proteins might 
affect cell biological behavior via mutual adjustment. 
Several interactive groups were obvious and ETC proteins 
were the most significant interaction groups. In addition, 
quantifying the number of nodes showed that ETC genes, 
especially ubiquinone oxidoreductase core genes, also 
named mitochondrial CI, possessed more node numbers  
(Figure 2C). Thus, ETC genes had the potential to function 
on the metastasis of ccRCC cell. Besides that, many 
immunity-related genes with close association were also 
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found in the PPI network.

Underexpressed ETC genes were associated with tumor 
metastasis process and higher immune responds

We compared the expression of ETC genes between 
pRCC and mRCC [log2fold change (FC) mRCC/pRCC;  
Figure  3A ] .  Four  mitochondr ia l  encoding genes 
overexpressed in mRCC. By contrast, all nuclear encoded 
genes are underexpressed. Then, gene expression of each 
sample was displayed by the heatmap of hierarchical 
clustering (Figure 3B). An obviously expressed differential 
between pRCC and mRCC was shown.

The GSVA based on scRNA-seq was  used for 
determining the variation of pathway in mRCC compared to 
pRCC (14). The hallmark gene sets which have significant 
difference in GSVA enrichment scores (|log2FCs| >0.25; P 
value <0.05) are sorted in decreasing order of log2FCs, with 
the most up-regulated pathway appearing at the top and 
the most down-regulated pathway appearing at the bottom 
(Figure 3C). Meanwhile, the heatmap showing each scRNA-
seq sample’s GSVA enrichment score of hallmark gene sets 
that were significantly up- and down-regulated (Figure 3D).  
The GSVA results revealed that the MYC TARGETS 
V1, MYC TARGETS V2, and TNFA SIGNALING VIA 
NFKB pathways have a higher GSVA enrichment score 
in mRCC cell sample. These pathways control several 
genes involved in cell growth, migration, and proliferation 
in ccRCC as previously reported. INTERFERON_
GAMMA_RESPONSE and INTERFERON ALPHA 
RESPONSE also enriched in mRCC cell sample, it’s 
similar to what has been previously reported (15). On the 
contrast, pRCC cell had higher GSVA enrichment score in 
GLYCOLYSIS, OXIDATIVE PHOSPHORYLATION, 
HYPOXIA, FATTY ACID METABOLISM, and HEME 
METABOLISM process. These highly enriched process 
means that mitochondrial function disorder and high 
immune responds is involved in mRCC.

In order to verify the relationship between ETC genes 
and tumor metastasis, we further validated using data 
from TCGA-KIRC patients. Most of ETC genes were 
downregulated in tumor compared with normal tissues 
(Figure S1A). The heatmap showing ETC genes expression 
in each tumor samples based on TCGA-KIRC data  
(Figure S1B). Hierarchical cluster was used, according to 
the expression levels of the 21 genes, to classify patients into 
two subgroups. Group A has a higher genes expression and 
group B has a lower genes expression. But the top 5 mutated 

genes and clinical features in ccRCC do not show clear 
differences in two groups. GSEA enrichment results showed 
that cell proliferation, angiogenesis, and metastasis pathway 
was closely correlated with lower ETC genes expression 
(Figure 3E). Such as ANGIOGENESIS, MITOTIC 
SPINDLE, HEDGEHOG SIGNALING, TGF BETA 
SIGNALING, and WNT BETA CATENIN SIGNALING 
pathway were enriched in group B. On the contrast, 
GLYCOLYSIS, OXIDATIVE PHOSPHORYLATION, 
R E A C T I V E  O X Y G E N  S P E C I E S  PAT H WAY, 
ADIPOGENESIS, and FATTY ACID METABOLISM 
were enriched in group A (Figure 3F). This result based on 
TCGA data were similar with GSVA results of scRNA-seq.

Underexpressed CI genes were associated with tumor 
metastasis process and higher immune responds

CI is the gatekeeper of the ETC, crucial for respiration 
in many aerobic organisms and catalyzes the first step 
of NADH oxidation (16). Also because ubiquinone 
oxidoreductase core genes possessed more node numbers 
and closely related to each other, we next focus on CI genes 
for further analysis.

So, we utilized hierarchical cluster classifying patients 
into two subgroups to verify CI genes expression difference 
in TCGA-KIRC tumor samples (Figure 4A). Group A has 
a higher CI genes expression and group B has a lower CI 
genes expression. Top 5 mutated genes and clinical features 
in ccRCC do not show clear differences in two groups. 
A GSEA analysis based on the two groups showed that 
cell proliferation, angiogenesis, and metastasis pathway 
enriched in lower CI genes expression (Figure 4B). Such 
as ANGIOGENESIS, HEDGEHOG_SIGNALING, 
KRAS_SIGNALING_UP, MITOTIC_SPINDLE, 
NOTCH_SIGNALING, TGF_BETA_SIGNALING, and 
WNT_BETA_CATENIN_SIGNALING. By contrast, 
ADIPOGENESIS, FATTY_ACID_METABOLISM, 
GLYCOLYSIS, OXIDATIVE_PHOSPHORYLATION, 
PEROXISOME, and REACTIVE_OXYGEN_SPECIES_
PATHWAY enriched in higher CI genes expression  
(Figure 4C).

We also find immune regulatory pathway, such as IL6_
JAK_STAT3_SIGNALING and INFLAMMATORY_
RESPONSE, also be found enriched with lower CI genes 
expression. In order to explore the affection of CI genes 
on immune microenvironment, we used ESTIMATE of 
R to estimate stromal and immune cells in KIRC tumor 
sample, then compared the StromalScore, ImmuneScore 

https://cdn.amegroups.cn/static/public/TCR-22-242-supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-22-242-supplementary.pdf
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Figure 4 Underexpressed mitochondrial CI genes were associated with tumor metastasis process and higher immune responds. (A) A 
heatmap showing CI gene expression based on TCGA sample. All sample are divided into two subgroups by hierarchical clustering analysis. 
The corresponding gene mutations and clinical features for each sample are shown below. (B,C) The GSEA results of TCGA sample based 
on CI gene expression. (D) The StromalScore, ImmuneScore and ESTIMATEScore of two groups clustered by hierarchical clustering 
analysis. CI, complex I; TCGA, The Cancer Genome Atlas; GSEA, gene set enrichment analysis.
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and ESTIMATEScore of groups A and B (Figure 4D). The 
higher StromalScore, ImmuneScore and ESTIMATEScore 
in group A which had a lower CI genes expression sample. 
A lower CI gene expression could be associates with a 
strong immune responds and immune microenvironment.

Multiple mutated genes in ccRCC were associated with CI 
gene expression

Renal oncocytomas as benign tumors are characterized by 
CI mutated (17). But CI mutated and what effects of high-
frequency mutated genes for CI expressions are not clear in 
ccRCC. Next, we identified the five most frequently mutated 
genes and CI gene mutations in ccRCC based on TCGA-
KIRC data (Figure 5A). VHL, PBRM1, TTN, SETD2, 
and BAP1 were the most frequent gene mutations, which 
are same as previous researches (2,3,18), but few CI gene 
mutations could find in ccRCC. It means that the CI gene 
mutations didn’t play an important role in the development 
of ccRCC, so differences of CI genes expression may 
be a principal mechanism to affect cell migration. Next, 
we calculated log2FC (wild/mutation) of each gene to 
verify whether VHL, PBRM1, TTN, SETD2, and BAP1 
mutations can affect CI genes expression (Figure 5B).  
Besides NDUFA4L2 had an obvious overexpression in 
VHL and PBRM1 mutated samples compared to wild 
samples, most of CI genes had a higher expression in wild 
samples compared to VHL and PBRM1 mutated samples. 
By contrast, most of CI genes had a higher expression 
in SETD2 and BAP1 mutated samples compared to wild 
sample. In addition, there was no significant CI genes 
expression difference between TTN wild samples and 
mutated sample.

A risk model based on CI expression can predict patient’s 
prognosis

To explore whether the patient’s survival prognosis can 
be predicted by CI genes, univariate Cox regression 
analysis was conducted at first (Figure 6A). Univariate Cox 
regression analysis revealed 10 CI genes had significant P 
value (P<0.05) in overall survival (OS). NDUFS1, NDUFS4, 
NDUFB6, NDUFA5, and NDUFA10 were designated as 
low-risk genes, while NDUFAF3, NDUFAS8, NDUFAF6, 
NDUFS6, and NDUFA3 were identified as high-risk genes. 
Then multivariate Cox proportional hazard regression 
analysis was conducted on the 10 CI genes to further screen, 
7 CI genes were selected for a model construction.

According to the 7 CI genes expression, the risk model 
was constructed as following formula: risk score = (−0.39 
× NDUFS1) + (−0.81 × NDUFB6) + (0.43 × NDUFAF3) + 
(0.71 × NDUFS8) + (0.30 × NDUFAF6) + (0.41 × NDUFS6) 
+ (−0.80 × NDUFA3). After that, patient’s survival status and 
7 CI genes expression were arranged according to the risk 
score (Figure 6B), revealing that the proportion of patients 
with poor prognosis was increased with risk score increased. 
NDUFAF6, NDUFS6, NDUFAF3, and NDUFS8 increased 
as the risk score increased, while NDUFS1, NDUFB6, 
and NDUFA3 decreased as the risk score increased. Then, 
patients were subdivided into high- and low-risk groups 
based on the cut-off of the median risk score. The Kaplan-
Meier OS plot showed significant differences between 
high- and low-risk groups (Figure 6C). The ROC curves 
for OS showed that the 1, 3, and 5 years AUC of the risk 
score model were 0.717, 0.685, and 0.728, respectively  
(Figure 6D). Univariate Cox regression analyses revealed 
the 7 CI genes risk model could be a prediction maker for 
prognosis (Figure 6E). Multivariate Cox regression analyses 
revealed the 7 CI genes risk model could be independent 
prognostic factors (Figure 6F).

PPARG could be a powerful CI genes transcription 
activator

To verify the potential transcription factor of CI genes, 
we utilized DAVID bioinformatics resources to identify 
potential transcription factor binding site in CI genes’ 5'-
UTR. 11 transcription factors were predicted that more 
than half of CI genes had corresponding binding sites  
(Figure 7A). A complex regulatory network was shown in 
Figure 7B based on the prediction of DAVID bioinformatics 
resources. For simplifying this network and identifying 
transcription factor accurately, a correlation analysis between 
transcription factors and each CI genes was conducted 
(Figure 7C). We screened the correlation coefficient results 
by |cor|>0.3, positive correlation coefficient transcription 
factor was considered to be transcription activator, and 
negative was transcription repressor. Then, we combined 
the results of regulatory network and correlation analysis, 
rebuilding the regulatory network (Figure 7D). PPARG 
and MECOM were transcription factors, while FOXJ2, 
MEF2A, POU2F1, ZEB1, and RUNX1 were transcription 
repressor. Significantly, PPARG showed powerful regulation 
ability and could regulate 22 CI genes expression. Next, 
we assessed PPARG expression in different stage and grade 
using UALCAN database (Figure 7E,7F) (19). PPARG 
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Figure 5 Multiple mutated genes in ccRCC was associated with CI gene expression. (A) A waterfall plot showing the high-frequency 
mutated genes and CI gene mutation. clinical features for each sample are shown below. (B) CI gene expression based on multiple mutated 
genes. Upper represents high expression in wild sample and lower represents high expression in mutated sample. MB, megabase; ccRCC, 
clear cell renal cell carcinoma; CI, complex I.
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Figure 6 A risk model based on CI expression can predict patient’s prognosis. (A) The result of univariate Cox regression analyses. (B) A 
combined plot showing the relationship among risk score, survival time, and expression of 7 genes. (C) Kaplan-Meier OS curves for patients 
with high/low risk score. (D) Time-dependent ROC analysis showing the 1-, 3- and 5-year AUC. (E) Univariate Cox regression analyses. (F) 
Multivariate Cox regression analyses. ROC, receiver operating characteristic; OS, overall survival; AUC, area under the curve; CI, complex I.

had no significant difference between normal and tumor 
sample, but showed a lower expression in high stage and 
grade than low stage and grade. Besides that, PPARG 
expression was lower in patients with node metastasis 
(Figure 7G). The Kaplan-Meier OS plot showed significant 
differences based on PPARG expression (Figure 7H), and 
higher PPARG expression had a better prognosis. GSEA 
analysis showed PPARG high expression is associated 
with ADIPOGENESIS, BILE_ACID_METABOLISM, 
F A T T Y _ A C I D _ M E T A B O L I S M ,  H E M E _
METABOLISM, OXIDATIVE_PHOSPHORYLATION, 
and REACTIVE_OXYGEN_SPECIES_PATHWAY, 

while low expression is associated with E2F_TARGETS, 
EPITHELIAL_MESENCHYMAL_TRANSITION, 
G2M_CHECKPOINT, HEDGEHOG_SIGNALING, 
KRAS_SIGNALING_UP, and MITOTIC_SPINDLE 
(Figure 7I). This GSEA result was similar with that 
based on CI genes expression. We also find negative 
correlations between PPARG expression and StromalScore, 
ImmuneScore and ESTIMATEScore (Figure S1C). 
The correlation coefficients are −0.33, −0.32, and −0.38, 
respectively. It reveals that PPARG could regulate immune 
microenvironment by their ability to transcription activated 
CI gene expressions.

https://cdn.amegroups.cn/static/public/TCR-22-242-supplementary.pdf
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Figure 7 PPARG could be a powerful CI genes transcription activator. (A) The number of CI genes binding with each transcription factor. 
(B) A network showing the connect between CI gene and transcription factor. (C) The result of correlation analysis. (D) A network showing 
the connect between CI gene and transcription factor after screening. Red triangle represents transcription activator and blue represents 
transcription inhibitor. (E) The expression of PPARG in KIRC based on individual cancer stages. (F) The expression of PPARG in KIRC 
based on tumor grade (G) The expression of PPARG in KIRC based on nodal metastasis status. (H) Kaplan-Meier OS curves for patients 
based on PPARG expression. (I) The GSEA result based on PPARG expression. *, P<0.05. KIRC, kidney renal clear cell carcinoma; TCGA, 
The Cancer Genome Atlas; CI, complex I; OS, overall survival; GSEA, gene set enrichment analysis.
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Discussion

Previous studies have shown that low mitochondrial 
respiratory  chain content  correlates  with tumor 
aggressiveness in RCC (15,20). Besides, mitochondrial 
function is tightly associated with the activity of the 
respiratory chain complexes. But the functions of specific 
proteins in mitochondrial respiratory electron transfer 
chain contents have not been clarified. Here, we explored 
the heterogeneity between mRCC and pRCC and found 
that ETC, especially CI, was decreased in mRCC, 
indicating low CI have a significant role in ccRCC 
metastasis, which is accomplished by activation of multiple 
signaling pathways. During the metastatic cascade, cancer 
cells tightly interact with the immune system and they 
influence each other (21). The ccRCC is characterized 
by robust immune cell infiltration and response to  
immunotherapy (22). Additionally, the cancer cell intrinsic 
inflammation was involved in ccRCC metastasis (23). 
In support of these results, we showed that CI gene 
expression was associated with immune responds and 
immune microenvironment, implying that a lower CI genes 
expression indirectly promote cancer cell metastasis through 
the regulation of immune responses.

Emerging evidence has shown that CI encoding genes 
play an important role in the dysfunction of OXPHOS 
system (24). Mutations of CI related genes may not only 
contribute to the carcinogenesis of renal oncocytoma, 
but also could be used as potential diagnostic markers to 
distinguish renal oncocytoma from chromophobe RCC (25). 
However, there are few reports on how VHL and PBRM1 
mutation influence CI in ccRCC (2,3,18). According to 
previous reports, loss of pVHL function causes hypoxia-
inducible factor (HIF)-mediated glycolysis enhancement and 
inhibition of mitochondrial function in RCC cells (26-28).  
Our data showed that CI has low mutation frequency, 
implying that the differences in CI gene expression, 
rather than mutations, may influence ccRCC metastasis. 
Meanwhile, the expression of most CI encoding genes was 
higher in VHL and PBRM1 mutated sample, and lower in 
SETD2 and BAP1 mutated samples. The results suggest that 
VHL, PBRM1, SETD2, and BAP1 mutation may influence 
mitochondrial function.

It has been demonstrated that HIF and hypoxia-
related pathways play critical roles in the development and 
progress of RCC (26,29-31). Small molecule inhibitors 
that target HIF are promising therapeutical agents for 
RCC. It has recently been reported that low oxygen levels 

stabilized HIF-1α and increased CI levels. Meanwhile, 
knockdown of HIF-1α abrogated the effect of hypoxia on 
CI levels (31). Here, we showed that PPARG can function 
as a transcription activator for CI genes. Moreover, lower 
PPARG expression is associated with advanced tumor 
stage, pathological grade, lymph node metastasis, worse 
prognosis, and higher potential of metastasis. Thus, PPARG 
has potential for use as a therapeutic target to enhance the 
immunotherapy treatment’s efficacy in RCC.

In conclusion, our study revealed that CI plays an 
important role in ccRCC progress. CI expression is 
associated with the high frequency mutated genes. We 
constructed a 7 CI genes model to predict the prognosis of 
ccRCC. PPARG could be a potential transcription activator 
for CI. CI and PPARG may be potential biomarkers for 
metastatic ccRCC.
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