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Background: An in-depth understanding of the key molecules and associated mechanisms involved in 
acute myeloid leukemia (AML) carcinogenesis, proliferation, and relapse is critical. This provides a basis for 
disease screening, early diagnosis, and development of effective treatment strategies and prognosis.
Methods: We downloaded AML transcription data sets from The Cancer Genome Atlas (TCGA) and Gene 
Expression Omnibus (GEO) databases. Differentially expressed genes (DEGs) were screened by R software 
and limma packages. Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis were performed on DEGs by public databases. In the 
DEG set, a random forest algorithm was used to identify characteristic genes of AML. The receiver operator 
characteristic (ROC) curve was used to evaluate the diagnostic efficacy of selected characteristic genes, which 
provided clues for the discovery of early diagnostic markers. The Estimate score was calculated using the 
Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) 
algorithm. Spearman’s correlation test was used to explore the correlation between characteristic genes and 
Estimate Score, which provided clues for clarifying the potential pathogenic mechanism of key genes.
Results: A total of 1,494 DEGs were identified from AML samples and normal samples, among which 
1,181 genes were upregulated and 313 genes were downregulated in AML. There were 2 genes with a mean 
decrease Gini >2, namely, CDC20 and ESM1, respectively. The ROC curve showed that the area under the 
curve (AUC) of CDC20 was 0.966, and the 95% confidence interval (CI) was (0.939 to 0.987) (P<0.001). The 
AUC of ESM1 was 0.905, and 95% CI: 0.849 to 0.953 (P<0.001). Correlation analysis showed that CDC20 
expression was negatively correlated with Estimate Score (R=−0.21, P=0.0036) in AML. The expression of 
ESM1 was negatively correlated with Estimate Score (R=−0.57, P<0.001).
Conclusions: The genes CDC20 and ESM1 were identified as AML characteristic genes by random forest 
algorithm. Both CDC20 and ESM1 have good diagnostic efficacy for AML. They may play a carcinogenic 
role by promoting tumor cell proliferation and inhibiting immune cell chemotaxis, which are potential 
biological markers.
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Introduction

Acute myeloid leukemia (AML) is a common acute 
leukemia, occurring in all age groups (1). It is characterized 
by the accumulation of acquired genetic changes in 
hematopoietic progenitor cells, changing the self-renewal, 
proliferation, and differentiation mechanism (2). In the 
diagnosis of AML, there is a lack of markers with both 
sensitivity and specificity (3). To date, most patients have 
been diagnosed in the middle- and late-stages of AML (3). 
The treatment methods for AML are limited and prone to 
drug resistance (4). Even after treatment, the recurrence 
rate of AML patients remains high (5), and the survival rate 
of AML patients is low. The five-year survival rate of AML 
patients is less than 43% (6). It is crucial to understand 
the key molecules and related mechanisms related to the 
carcinogenesis, proliferation, and recurrence of AML 
to provide a basis for disease screening, early diagnosis, 
effective treatment strategies, and prognosis judgment. 
Some previous studies have identified genes associated 
with AML prognosis, such as nucleophosmin-1 (NPM1), 
CCAAT enhancer binding factor alpha (CEBPA), and fms-
like tyrosine kinase3 (FLT3) (7-9). However, AML lacks 
specific diagnostic markers (3).

In the past few decades, transcriptome sequencing 
technology and bioinformatics analysis have been widely 
used to screen the mechanistic pathways of tumor 
genome changes and gene interactions. The advantage of 
bioinformatics analysis of whole transcriptome sequencing 
lies in the detection of gene expression in a large and 
comprehensive manner, and the identification of genes 
that may be affected by diseases in a short period of time 
as biomarkers for early diagnosis. The results help to 
identify the key pathogenic genes of tumors and find new 
therapeutic targets. However, independent microarray 
analysis and simple statistical methods easily affect the 
accuracy of the results.

Multi-database joint analysis and application of false 
discovery rate combined with fold change to screen 
differential genes can solve this problem well. Therefore, 
AML transcription data sets in The Cancer Genome Atlas 
(TCGA) database and Gene Expression Omnibus (GEO) 
were jointly analyzed in this study. Our study may provide 
clues for the discovery of potential diagnostic markers, 
therapeutic targets for AML, and elucidation of oncogenic 
mechanisms. We present the following article in accordance 
with the STARD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-22-1257/rc).

Methods

This study combined TCGA data and GEO database to 
screen for differentially expressed genes in AML from tumor 
samples and normal samples. In the AML differentially 
expressed gene set, the random forest algorithm was used to 
screen the AML signature genes and the receiver operator 
characteristic (ROC) curve was used to evaluate the 
diagnostic performance of the screened signature genes. In 
this study, we explored the relationship between eigengenes 
and immune cell chemotaxis by analyzing the correlation 
between eigengenes and Estimate score.

Data download

The AML RNA sequencing (RNA-seq) data set was 
downloaded from TCGA database containing 151 AML 
samples. The AML whole blood RNA-seq data set 
(GSE24395, GSE30029) was downloaded from the GEO 
database. The GSE24395 data set contains 12 AML samples 
and 5 normal samples; GSE30029 contains 46 AML samples 
and 31 normal samples. All data sets were combined into a 
matrix and batch-corrected and normalized. All data in this 
study are public and thus do not need the approval of the 
local hospital ethics committee. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013).

Screening of differentially expressed genes

Differentially expressed genes (DEGs) were screened 
using R software (v3.5.1) (The R Foundation for Statistical 
Computing, Vienna, Austria) and the limma package. The 
calculation formula of fold change (FC) was as follows: 
FC = gene expression of AML sample/gene expression of 
a normal sample. The screening condition is |log2FC| >2 
and the false discovery rate (FDR) <0.01

Enrichment analysis of DEGs

The Database for Annotation, Visualization, and Integrated 
Discovery (DAVID) was used for Gene Ontology (GO) 
function enrichment analysis of DEGs. An FDR <0.05 was 
used as the screening condition. The Kyoto Encyclopedia 
of Genes and Genomes (KEGG) was used to enrich and 
analyze the DEGs. An FDR <0.05 was used as the screening 
condition. The results of enrichment analysis were 
visualized by the ggplot package in R.

https://tcr.amegroups.com/article/view/10.21037/tcr-22-1257/rc
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Characteristic gene screening and diagnostic efficacy test

In the DEG set, the random forest algorithm was used to 
screen the characteristic genes of AML. An ROC curve 
was used to evaluate the diagnostic efficacy of the selected 
characteristic genes.

Tumor purity calculation

The stromal score and immune score (IS) of AML samples 
were calculated based on gene expression by using the 
Estimation of STromal and Immune cells in MAlignant 
Tumor tissues using Expression data (ESTIMATE) 
algorithm. The results represented stromal and immune 
cells' content in tumor samples, respectively. The sum of the 
two was indicated by the Estimate score, which could reflect 
the purity of the tumor. Spearman’s correlation test was 
used to investigate the relationship between characteristic 
genes and Estimate score.

Statistical analysis

This study used R software (V3.5.1) and related R packages 
for statistical analysis. Two-sided P-value <0.05 indicated 

statistical significance.

Results

DEG screening

In all, 1,494 DEGs were screened between AML and 
normal samples in this study. A total of 1,181 genes were 
upregulated (log2FC >2, FDR <0.01) and 313 genes were 
downregulated (log2FC <−2, FDR <0.01). The heat map of 
DEGs is shown in Figure 1.

GO enrichment analysis

The GO enrichment analysis showed that AML DEGs were 
significantly enriched in functional items, such as sequence-
specific double-stranded DNA binding, receiver binding, 
serine type dependent activity, and so on, of molecular 
function (MF). In terms of cellular component (CC), AML 
DEGs were significantly enriched in functional items such 
as chromatin, extracellular matrix, endoplasmic reticulum 
lumen, and so forth. In terms of biological process (BP), 
AML DEGs were significantly enriched in functional items 
such as positive regulation of cell promotion, protein, and 

Figure 1 AML samples and normal samples DEGs. T represents the tumor sample, and N represents the normal sample. Red indicates 
upregulation in AML samples, and green indicates downregulation in AML samples. The horizontal axis indicates different samples, and the 
vertical axis indicates DEGs. AML, acute myeloid leukemia; DEGs, differentially expressed genes.
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immune response, as shown in Figure 2.

KEGG enrichment analysis

The analysis indicated significant differences in the p53 
signaling pathway, tumor necrosis factor (TNF) signaling 

pathway, and HIF-1 signaling pathway expression, as shown 
in Figure 3.

Characteristic gene screening

When the minimum average error rate of normal samples 

Figure 2 AML DEGs were enriched in GO. The horizontal axis represents the number of enriched genes, and the vertical axis represents 
the GO project. BP, biological process; CC, cellular component; MF, molecular function; AML, acute myeloid leukemia; DEGs, 
differentially expressed genes; GO, Gene Ontology.

Sequence-specific double-stranded DNA binding 
Receptor binding 

Serine-type endopeptidase activity 
Heparin binding 

Extracellular matrix structural constituent 
Hormone activity 

Chemokine activity 
Microtubule motor activity 

Chromatin 
Extracellular matrix 

Endoplasmic reticulum lumen 
Kinetochore 

Collagen trimer 
Chromosome, centromeric region 

Positive regulation of cell proliferation 
Proteolysis 

Immune response 
Extracellular matrix organization 

Cell division 
Response to drug 

Cellular protein metabolic process 
Mitotic spindle organization 

Mitotic cell cycle 
Skeletal system development 

Chemotaxis 
Neutrophil chemotaxis 

Collagen fibril organization 
Chemokine-mediated signaling pathway 

Muscle contraction 
Anterior/posterior pattern specification 

Chromosome segregation 
Response to toxic substance 

Antibacterial humoral response

Te
rm

0          20        40        60
Count

Ontology

BP

CC

MF

Cell cycle 

Transcriptional misregulation in cancer 

Glycolysis/Gluconeogenesis 

Tight junction 

p53 signaling pathway 

Carbon metabolism 

ECM-receptor interaction 

Biosynthesis of amino acids 

PPAR signaling pathway 

TNF signaling pathway 

Protein digestion and absorption 

Central carbon metabolism in cancer 

HIF-1 signaling pathway 

Proteoglycans in cancer 

PI3K-Akt signaling pathway 

Glucagon signaling pathway 

Cell adhesion molecules

Te
rm

0                   10                 20                 30
Gene count

FDR

0.04

0.03

0.02

0.01

Figure 3 Pathway enrichment analysis of KEGG of AML differentially expressed genes. The horizontal axis represents the number of 
enriched genes, and the vertical axis represents the KEGG pathway. KEGG, Kyoto Encyclopedia of Genes and Genomes; AML, acute 
myeloid leukemia; ECM, extracellular matrix; TNF, tumor necrosis factor; FDR, false discovery rate; PPAR, peroxisome proliferator-
activated receptor.
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and AML samples was 0.01, the total number of trees was 
48 (as shown in Figure 4). There were two genes with a 
mean decrease Gini greater than 2, namely, CDC20 and 
ESM1, respectively, as shown in Figure 5.

Efficiency evaluation of characteristic gene diagnosis

The ROC curve showed that the area under the curve 
(AUC) of the CDC20 ROC curve was 0.966, and the 95% 

confidence interval (CI) was 0.939 to 0.987 (P<0.001). The 
AUC of ESM1 was 0.905 and the 95% CI was 0.849 to 0.953 
(P<0.001) (Figure 6).

Correlation between characteristic genes and tumor purity

Correlation analysis showed that the expression of CDC20 
was negatively correlated with Estimate score in AML 
(R =−0.21, P=0.0036); ESM1 expression was negatively 
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Figure 4 Random forest tree. The abscissa represents trees and the 
ordinate represents the error rate. Red represents AML samples, 
green represents normal samples, and black represents the overall 
sample. AML, acute myeloid leukemia.
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Figure 5 Characteristic gene Gini index. The horizontal axis 
represents mean decrease Gini, and the vertical axis represents 
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correlated with Estimate score (R =−0.57, P<0.001) (Figure 7).

Discussion

This study screened DEGs through the transcriptome 
sequencing results of AML samples. The GO enrichment 
analysis illustrated that the DEGs of AML were significantly 
enriched in functional items such as positive regulation of 
cell promotion, protein, and immune response. These items 
are closely related to the occurrence and function of tumors. 
The key process of malignant tumor proliferation is positive 
regulation of cell proliferation, and proteolysis and immune 
response inhibition are involved in tumor proliferation 
and invasion. The KEGG pathway enrichment analysis 
indicated that AML DEGs were significantly enriched in 
p53 signal pathway, TNF signal pathway, HIF-1 signal 
pathway, and other signal pathways. These pathways are 
common pathways for the progression of malignant tumors 
and are involved in regulating gastric cancer, bladder cancer, 
lung cancer, liver cancer, leukemia, and other malignant 
tumors. The results of GO enrichment analysis and KEGG 
pathway enrichment analysis showed that the DEGs of 
AML screened of this study were representative, which may 
be the key pathogenic genes of AML, participating in the 
regulation of tumor cell proliferation and invasion as well as 
in the occurrence and progression of AML.

The random forest algorithm was used to screen the 
characteristic genes in the DEG set. We identified CDC20 
and ESM1 as characteristic genes of AML based on a 
Gini index greater than 2. Both CDC20 and ESM1 were 

shown to have good diagnostic efficacy for AML, and 
AUC was greater than 0.9. We also found that CDC20 and 
ESM1 were positively correlated with the Estimate score. 
The results indicated that the higher the expression of 
CDC20 and ESM1, the more tumor cells, and the lower 
the infiltration content of stromal cells and immune cells. 
In AML, CDC20 and ESM1 play a cancer-promoting 
role, suggesting that CDC20 and ESM1 may promote the 
proliferation of tumor cells and inhibit the infiltration of 
immune cells and gene cells. 

The CDC20 gene is an activator of the mitotic spindle 
assembly checkpoint. Its main biological role is to regulate 
the cell cycle and promote apoptosis (10,11). Anaphase-
promoting complex (APC) is activated by CDC20 to 
form a complex, which destroys the ubiquitination of its 
downstream cell cycle regulators securin and cyclin B. 
The complex plays an important role in the transition 
period from metaphase to anaphase of mitosis (12). The 
process of apoptosis is closely related to anti-apoptotic 
factors and pro-apoptotic factors. We know that CDC20 
regulates apoptosis by targeting Mcl-1 and Bim (13), and it 
is generally considered a cancer-promoting factor. In AML 
cell lines, a previous study (14) found that overexpression 
of CDC20 in myeloid cells could accelerate apoptosis and 
inhibit granulocyte differentiation. The CDC20 protein 
was expressed in the late G1 phase of the cell cycle, and the 
expression was the largest in the G2 stage. The induced 
expression of CDC20 can lead to the early transition of 
cells from the G1 phase to the S phase. In addition to AML, 
CDC20 is highly expressed in other malignant tumors, 
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including gastric cancer, Bladder cancer, liver cancer, lung 
cancer and breast cancer. It promotes cancer cell proliferation, 
invasion, and migration (15-18). Other studies (19)  
have pointed out that CDC20 is related to the stem of 
tumor cells and promotes the invasion and renewal of tumor 
stem cells by regulating the activity of its downstream 
pluripotency related transcription factor Sox2. At present, 
there have been drug applications targeting CDC20. For 
example, Apcin is a specific inhibitor of CDC20 (20), which 
may have broad application prospects in AML.

Fewer studies have investigated the correlation between 
ESM1 and AML. However, ESM1 is highly expressed 
in tumors such as lung cancer, uterine cancer, renal cell 
carcinoma, liver cancer, glioblastoma, and breast cancer. 
Evidence has suggested that ESM1 is directly involved 
in tumor progression, which significantly affects the 
proliferation and migration of head and neck cancer, gastric 
cancer, nasopharyngeal carcinoma, colorectal cancer, and 
liver cancer cells (21-25). Studies have shown that ESM1 
can be used as a prognostic marker in triple-negative breast 
cancer (21,26). It may be that ESM1 promotes tumor 
invasion and migration by regulating tumor angiogenesis (27).

There are some flaws in our study. First, this study lacks 
external data to verify the diagnostic efficacy of trait genes. 
Second, this study pointed out that CDC20 and ESM1 may 
promote the proliferation of tumor cells and inhibit the 
infiltration of immune cells and gene cells. This needs to be 
confirmed by in vitro and in vivo experiments.

In conclusion, 1,494 AML DEGs were identified through 
the public database. The genes CDC20 and ESM1 were 
identified as AML characteristic genes by a random forest 
algorithm. Both CDC20 and ESM1 have good diagnostic 
efficacy for AML and are potential biological markers.
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