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The roles of oxytocin (OT) and arginine-vasopressin (AVP) as crucial modu-
lators of social cognition and related behaviours have been extensively
addressed in the literature. The involvement of these neuropeptides in social
cognition in ageing, however, and a potential mediating effect of basic cogni-
tive capacities on this link, are not well understood. To fill these research gaps,
this study assessed associations of plasma OT and AVP levels with dynamic
emotion identification accuracy in generally healthy older men (aged 55–95
years) and probed the underlying roles of crystallized and fluid cognition in
these associations. Higher plasma OT levels were associated with lower accu-
racy in dynamic emotion identification, with this negative relationship fully
mediated by cognition. For plasmaAVP levels, in contrast, therewas no associ-
ationwith dynamic emotion identification accuracy. Integratedwithin existing
theoretical accounts, results from this study advance understanding of the
neuropeptide–social cognition link in ageing and support basic cognitive
capacities as mediators in this association.

This article is part of the theme issue ‘Interplays between oxytocin and
other neuromodulators in shaping complex social behaviours’.
1. Introduction
Oxytocin (OT) and arginine-vasopressin (AVP) are important modulators of
social cognition and related behaviours [1–3]. Previous work, however, has
almost exclusively focused on young subjects, and the role of these neuropeptides
in social cognition in ageing is not well understood [4–7]. Also, processes under-
lying a neuropeptide–social cognition link in ageing are unknown, while basic
cognition constitutes a promising candidate given its susceptibility to age-related
changes. To fill these knowledge gaps, we determined associations of plasma OT
and AVP levels with performance in dynamic emotion identification—a crucial
social-cognitive skill—in a sample of generally healthy older men. We also, for
the first time to our knowledge, tested crystallized and fluid cognitive capacities
as mediators of the relationship between these neuropeptides and emotion
identification skills in ageing.

OT and AVP are nonapeptide hormones in the neurohypophysial family,
which are among the oldest neurohormones, evolved across various species
over time [8,9], and have demonstrated critical importance for many physiologi-
cal processes and behaviours [10–12]. Primarily produced by magnocellular
neurons in the hypothalamus, they are secreted both peripherally into the
blood and centrally throughout the brain [13,14]. Peripherally, they act on
smooth muscles and are associated with the regulation of hydration [10,11].
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Centrally, they target brain regions such as the amygdala, the
striatum and the hippocampus, which are involved in social
cognition [15].

OT and AVP have actions on both the peripheral nervous
system (PNS) and the central nervous system (CNS). Their
direct measurement in the CNS is invasive and difficult in
humans, however, which has led researchers to use periph-
eral measurements of endogenous levels as a proxy for
central processes. In particular, levels of endogenous OT
and AVP can be quantified in blood plasma and then related
to social processes and behaviour [16–19]. In addition, studies
have administered exogenous OT and AVP intranasally to
test their central mechanisms. Exogenous OT and AVP have
been shown to temporarily increase neuropeptide levels in
the CNS (i.e. measured in cerebrospinal fluid) and in the
PNS (i.e. measured in blood plasma), supporting a central
route of transport and neuromodulatory capacity of these
neuropeptides ([20,21]; but see [22]).

Through research involving endogenous measurement and
exogenous administration, OT and AVP have been associated
with a wide array of complex social functions (see [23–27] for
overviews). Some theories have focused on the social effects of
OT (e.g. Social Salience Theory [28], approach/avoidance [29]).
For example, it is possible that OT can increase the salience
of social (as compared with non-social) cues through its effects
on early attentional mechanisms [28]. Additionally, OT has
been associated with increased affiliative prosocial behaviour
[30,31], but AVP has been associated with aggressive and
agonistic behaviour [32–34], and balance between the two
neuropeptides is important for facilitating social cognition and
related behaviour [11,35].

A critical component of social cognition is the ability to
identify emotions conveyed through facial and/or vocal
expressions in others (i.e. emotion identification) ([36]; see [37]
and [38] for meta-analyses). In particular, some studies suggest
that intranasal OT administration improves emotion identifi-
cation [37–40], whereas intranasal AVP reduces performance
[34,41,42]. Two meta-analyses found enhancement of emotion
identification after intranasal OT (compared with placebo)
administration, with some variation by emotion type (e.g.
increased identification for happy and fearful emotions) and
task paradigm (e.g. increased identification for happy
emotions during short stimulus exposure and for fearful
emotions during longer stimulus exposure; [37,38]). For AVP,
in contrast, both Uzefovsky et al. [41] and Vadas et al. [42]
found reduced ability to identify negative emotions. Of note,
these previous studies exclusively examined young adults
and yielded small effect sizes. Also, they used exogenous
OT/AVP administration, and much less is known about the
associations of endogenous OT/AVP with social cognition,
and emotion identification specifically, and close to nothing
about these associations in older adults.

Previous research has, however, examined the relation-
ship between endogenous OT levels and social-cognitive
abilities among clinical populations, such as in schizophrenia
[43,44] and bipolar disorder [45]. For example, lower plasma
OT levels were associated with lower metacognition (in
schizophrenia [46]) and higher plasma OT was associated
with increased perception of happy expressions (in women
but not men, with and without schizophrenia [43]). By con-
trast, Spilka et al. [44] found that lower plasma OT was
associated with decreased emotion identification accuracy
in schizophrenia. In healthy populations, higher salivary
plasma OT levels were associated with increased positive
evaluation for happy expressions [47]. None of these previous
studies, however, specifically addressed older adults.

A current entirely parallel robust line of research demon-
strates age-related change in basic cognitive abilities [48,49].
Cognitive decline in ageing impacts the ability to process
social-cognitive information. This literature differentiates crys-
tallized (i.e. semantic knowledge acquired through past
experiences) and fluid (i.e. processing and manipulation of
new information) cognition [50–52],which bothwere associated
with emotion identification performance ([53]; see [54] for a
meta-analysis). In particular, greater crystallized cognition was
found to correlate with better emotion identification [55,56].
Also, greater working memory capacity was related with more
accurate emotion identification [57], but increased working
memory load reduced emotion identification accuracy [58,59].

A mediating role of crystallized and fluid cognition in the
link between OT/AVP and emotion identification, however,
has yet to be determined. In fact, from the little that is
known, higher plasma OT levels may be associated with
faster processing speed ([60]; see also [61] and [62] for better
performance on verbal memory in schizophrenia). By contrast,
other studies in healthy adults using intranasal OT have found
either no effect on cognition (Digit Span Task; [63]) or amnesic
effects [64–66]. Further, consistent with a possible pattern of
antagonistic effects of OT and AVP, in Plasencia et al. [60]
lower plasma AVP levels were associated with higher proces-
sing speed. But there is other evidence that intranasal AVP
increased short-term memory [64,67], consistent with pre-
clinical work that exogenous AVP improved working
memory and long-term spatial memory in a mouse model of
Alzheimer’s disease [68]. Thus, in brief, while there is some
support for associations between OT/AVP and crystallized/
fluid cognition, a connection to emotion identification in
ageing has not been drawn yet—a research gap that the present
study aimed to fill.

Taken together, here we determined the associations of
plasma OT and AVP levels with dynamic emotion identifi-
cation accuracy in a sample of older men (age range: 55–95
years). Further, for the first time, we probed the mediating
role of crystallized and fluid cognition in this neuropeptide–
social cognition link among older adults, to enhance
understanding of basic cognitive processes in the effect of
neuropeptides on social cognition.
2. Methods
(a) Participants
The study sample included 104 generally healthy oldermen (92.3%
White; 1.92% Hispanic/Latino) who were part of a larger clinical
trial on the effects of OT on physical, cognitive and socioemotional
ageing (OTAging Study; NCT02069431) conducted in the Depart-
ment of Psychology, the Institute on Aging, and the McKnight
Brain Institute at the University of Florida. The larger project
was unbalanced across the sexes, with fewer women than men,
and previous research documents sex-dimorphic effects of OT
[69–71], including in ageing [72,73]. Therefore, the current analysis
comprised only older men. Also, only participants (N = 77) with
complete data for all central variables for our respective analyses
(plasma OT, plasma AVP, dynamic emotion identification accu-
racy, crystallized and fluid cognition, and age) were included
here (results from the analysis on the full dataset using multiple
imputations (N = 104) were comparable and are also reported



Table 1. Sample-descriptive information. Age: in years. Education: self-reported number of years of formal education. Health: mental (Please rate your general
physical health) and physical (Please rate your general mental health/mood) on a scale from 1 = poor to 10 = excellent. Mood: assessed via the Positive and
Negative Affect Schedule (PANAS 20-item short version [74] plus six additional adjectives as suggested in [75], in general or how they felt on average, on a
scale from 1 = very slightly or not at all to 5 = extremely. Neuropeptide plasma levels: oxytocin (OT) and arginine-vasopressin (AVP), in µg ml−1 quantified in
blood plasma via enzyme immunoassay (EIA; Enzo Life Sciences). Cognition: assessed via the NIH Cognition Toolbox [50], crystallized and fluid (uncorrected
composite scores; normative mean = 100, standard deviation = 15). Dynamic emotion identification accuracy: percentage correct across all emotions and
modalities [76].

measure mean (s.d.) median range

demographics

age (years) 71.61 (7.56) 70.10 55.87–94.81

education (years) 16.75 (3.05) 16 12–27

health

mental health 8.56 (1.16) 9 5–10

physical health 8.09 (1.34) 8 4–10

mood

PANAS positive affect 3.43 (0.61) 3.46 1.54–4.69

PANAS negative affect 1.39 (0.40) 1.23 1.00–2.77

neuropeptide plasma levels

OT (µg ml−1) 1.68 (0.70) 1.56 0.53–5.12

AVP (µg ml−1) 1.84 (0.73) 1.73 0.66–3.87

cognition

NIH Toolbox crystallized cognition 120.71 (12.06) 120 95.00–167.00

NIH Toolbox fluid cognition 90.06 (9.56) 90.89 63.00–116.03

dynamic emotion identification 0.63 (0.09) 0.63 0.41–0.86
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below). Table 1 summarizes sample-descriptive information for
demographics, health, mood, OT/AVP neuropeptide plasma
levels, cognition, and dynamic emotion identification accuracy.

Participants were recruited between February 2016 and
February 2020 via fliers and handouts around Alachua County,
advertisements on websites for clinical trials (e.g. University of
Florida Health Clinical Trials, clinicaltrials.gov), mailouts via
laboratory- and university-internal participant registries, as well
as via geolocator address purchases, newspaper advertisements
andword-of-mouth. Participants underwent a phone pre-screening
to determine general study eligibility. Inclusion criteria included
the ability to provide consent, English-speaking, 55 years and
older, and generally healthy (derived from a laboratory-internal
health review that assessed any issues with vision and hearing,
shortness of breath or chest tightness, feelings of fatigue, and
psychiatric conditions such as anxiety, depression, inability to con-
centrate, or difficulty sleeping). General cognition was assessed via
the Telephone Interview of Cognitive Status (TICS; [77]; cut-off, less
than 30). Exclusion criteria included heavy drug or alcohol use,
blood pressure greater than 180/100 mmHg, as well as urine
osmolality greater than 1200 l with blood sodium levels less than
134 mEq l−1, history of inappropriate antidiuretic hormone
secretion, and/or use of antidiuretic medication as OT and AVP
are involved in water retention ([78]; see [79] for details regarding
inclusion/exclusion).
(b) Procedures
(i) Study design
The study protocol was approved by the Institutional Review
Board of the University of Florida. After written informed consent,
participants took part in the larger clinical trial, which included one
screening visit, followed by three pre-intervention visits, a four-
week intranasal spray (OT or placebo) administration, and three
post-intervention visits (intervention data not considered here;
see [79] for details and procedural diagram, and [80] for an
additional publication from the larger project). Participants were
reimbursed for study participation. Only measures relevant to the
current analysis at the pre-intervention phase are described below.

The present study used data from the screening visit and the
second pre-intervention visit, which both lasted approximately
2 h. In the screening visit, participants provided demographic
and health information as well as urine and blood samples
(i.e. for screening purposes and for determination of neuropeptide
plasma levels as described below), completed the NIH Toolbox
Cognition Battery, and underwent a brief physical health examin-
ation with a licensed clinician. A few days later, during the second
pre-intervention visit, participants performed first a face evalu-
ation task, followed by the Dynamic Emotion Identification Task
(described below), with identical task order for all participants.
(c) Measures
(i) Plasma oxytocin and arginine-vasopressin levels
A trained phlebotomist obtained blood samples. The large
majority (76.3%) of the samples were collected between 8.45 am
and 11.00 am. However, owing to scheduling logistics, 17.5% of
the samples were completed between 11.00 am and 1.00 pm and
6.2% of the samples between 1.00 pm and 3.00 pm. The 10 ml
EDTA vials were centrifuged at 2300 r.p.m. at a temperature of
4°C and a force of 1600g to aliquot the plasma, which was then
stored in a freezer at −80°C until assayed. Highly sensitive
enzyme immunoassay (EIA; Enzo Life Sciences) was used to
measure OT and AVP concentrations in the blood plasma, as it
has a minimal detection rate of 15.6 µg ml−1 for OT and 4.10 µg
ml−1 for AVP. In addition, the EIA has minimal cross-reactivity

http://clinicaltrials.gov


audio + video run
1–4 s (jittered)

video only run
1–4 s (jittered)

audio only run

time

1–4 s (jittered)

1–4 s (jittered)

joy anger

pride fear

relief worry
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Figure 1. Overview and sample trials for each of the three experimental runs of the Dynamic Emotion Identification Task. Each trial presented a stimulus (audio,
video or audio + video, depending on the run). Participants were instructed to identify the emotion displayed in each trial and select the corresponding button ( joy,
pride and relief on the left; anger, fear and worry on the right) when prompted via the response option screen. Each trial started with a jittered fixation cross, with a
second jittered fixation between the stimulus presentation and the response option slide. (Online version in colour.)
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for other neuropeptides. As directed by the immunoassay instruc-
tions, plasmawas first diluted at a ratio of 1 : 8 for the OT and 1 : 2
for the AVP with the assay buffer to ensure reliability of the
standard curve linear portion. To increase reliability within the
assays, all samples were run at the same time. Coefficients
of variance were less than 10 for OT and 8 for AVP in both inter-
and intra-assays. Samples were not extracted as previous research
indicates accuratemeasurement in human blood plasmawith non-
extracted samples [16,18], and two recent studies reported stronger
relationships between behavioural outcomes and plasma levels of
OT in unextracted samples (see [81,82]; see also [60] for more
discussion). Table 1 summarizes plasma OT and AVP levels in
the sample.
(ii) Crystallized and fluid cognition
Participants completed the NIH Toolbox Cognition Battery
[50,83], which comprises seven measures categorized into two
cognitive domains: crystallized cognition (Picture Vocabulary
Test, Oral Reading Recognition Test) and fluid cognition (Dimen-
sional Change Card Sort Test, Flanker Inhibitory Control and
Attention Test, Picture Sequence Memory Test, List Sorting
Working Memory Test, Pattern Comparison Processing Speed
Test). See electronic supplementary, table S1 for internal validity
of the cognitive scores.

Table 1 summarizes the unadjusted scores for crystallized and
fluid cognition in the sample. Given the racial/ethnic homogeneity
of our sample and an age range from 55–95 years, which surpassed
theupper limit of 85years forage-standardized correctionsprovided
by theNIHToolboxCognition Battery,we used theunadjusted crys-
tallized and fluid cognition composite scores (i.e. not corrected for
age, sex, education, or race/ethnicity). This approach and the
range of uncorrected crystallized and fluid cognition scores in our
sample are in line with previous literature using the NIH Toolbox
Cognition Battery in older adults [84–86]. In our study, crystallized
cognition scores might have been higher than the normative mean
owing to the positive selectivity of the sample (i.e. given strict
exclusion/inclusion criteria and high study demands).
(iii) Dynamic emotion identification task
This task used stimuli from theGenevaMultimodal Emotional Por-
trayals (GEMEP) core stimuli set [76], from 10 different professional
actors, all White (50% female), who displayed the emotions of joy,
pride, relief, anger, fear and worry. Each of these emotions was
visually and auditorily expressed via three modalities (audio,
video, audio + video; figure 1). See electronic supplementary
material, table S1 for internal validity of the emotion identification
measures. The stimuli used in the present task were well-validated
and used in other emotion-related research [87–89], including
research with older adults to assess age-related differences in
dynamic perceptual processing and emotion identification
[90,91]. Stimuli were counterbalanced by age and sex of the
actors, emotion type, and modality. All stimuli were presented
using E-Prime 2.0 software (Psychology Software Tools, Pittsburgh,
PA) on a computer monitor.

Participants were asked to identify the emotion expressed via
button presses on a Logitech game controller. Fixed for all
participants, the right thumb was used to select one of the
three negative emotions (anger, fear or worry) by pressing the
right-side buttons, and the left thumb was used to select one of
the three positive emotions ( joy, pride or relief ) by pressing the
left-side buttons. Participants received task instructions and
completed practice trials for familiarization.

Three experimental runs were administered. Each run con-
tained one stimulus modality and had 36 trials, presenting one
emotion at a time, for a total of 108 trials across the three runs.
Each of the six emotions was presented six times during each
run, for a total of 18 trials per emotion across the three runs.
Both orders of run modality and order of emotion type within
each run were counterbalanced across participants.

As shown in figure 1, each trial started with a jittered (1–4 s)
fixation cross, followed by presentation of the stimulus (audio



Table 2. Bivariate correlations between the central study variables. Pearson’s r values in bold indicate significance at p < 0.050.

AVP
crystallized
cognition

fluid
cognition

dynamic emotion
identification age (years)

OT −0.016 (n = 95) −0.260 (n = 95) −0.167 (n = 95) −0.203 (n = 83) −0.121 (n = 99)

p = 0.879 p = 0.011 p = 0.106 p = 0.065 p = 0.234

AVP −0.292 (n = 91) −0.172 (n = 91) −0.029 (n = 79) −0.075 (n = 95)

p = 0.005 p = 0.103 p = 0.800 p = 0.470

crystallized cognition 0.359 (n = 100) 0.388 (n = 83) −0.053 (n = 100)

p = 0.001 p = 0.001 p = 0.601

fluid cognition 0.471 (n = 83) −0.295 (n = 100)

p = 0.001 p = 0.003

dynamic emotion identification −0.287 (n = 85)

p = 0.008
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and/or video clip) that lasted for 1–5 s, followed by another jit-
tered (1–4 s) fixation cross before the response options
appeared. Responses were recorded while the response options
were on the screen as well as during the subsequent fixation
cross phase. Accuracy (‘correct’ versus ‘incorrect’ per trial) was
recorded via E-Prime 2.0. Mean accuracy across all trials was
computed for each participant to indicate a participant’s ability
to identify dynamic emotions. Table 1 summarizes dynamic
emotion identification accuracy in the sample.
(d) Analyses
First, we calculated bivariate correlations between our variables
of interest (plasma OT, plasma AVP, crystallized cognition,
fluid cognition, dynamic emotion identification accuracy, and
age) using SPSS Statistics v. 26. Then we conducted mediation
analyses using PROCESS v. 3.2 [92] in SPSS. In the main
mediation model, plasma OT and AVP levels were the two
predictors, crystallized and fluid cognition scores were the two
mediators, and dynamic emotion identification accuracy was
the outcome variable. Statistical significance of the indirect
effects was determined by 95% confidence intervals (95% CI)
using bootstrap with 10 000 samples.

Given thewide age range in our sample, we added chronologi-
cal age as a covariate in all mediationmodels.We also performed a
moderatedmediation analysis considering two age groups among
the older adults: a group of young-old individuals aged 55–74
years (n = 38) and a group of old-old individuals aged 75–95
years (n = 69; see [93–95] for a similar age categorization) to test
for potential age-moderated effects on the relationship between
plasma OT/AVP and dynamic emotion identification.

We furthermore conducted a control analysis with time of
blood draw as a covariate (results from this control mediation
analysis were consistent with those reported in the main text;
see electronic supplementary material, table S2 for details). In
addition, in an exploratory fashion, we conducted separate
post hoc exploratory mediation analyses with plasma OT and
AVP as predictors, crystallized and fluid cognition as mediators,
and dynamic emotion identification accuracy for positive or
negative emotions as the two outcome variables. Positive
emotions included joy, pride and relief; negative emotions
included anger, fear and worry.

Finally, as 26% of our original sample did not have complete
data owing to technical issues, data quality, and attrition rates,
we performed multiple imputations by chained equations
(MICE [96]) in Stata [97] to permit examination of our effects in
the full sample. After determining our data was missing comple-
tely at random (Little’s MCAR test [98]; x2115 ¼ 129:97, p = 0.16),
we used the variables plasma OT, plasma AVP, emotion identifi-
cation accuracy, crystallized and fluid cognition, and age in 20
iterations. Results of the imputed dataset were consistent with
results from the complete cases only dataset (see electronic sup-
plementary material, table S3 for details).

All data and analysis code can be found in the Open Science
Framework repository: https://osf.io/xv38y/?view_only=3ca2f
ada765f42c3a5a0e30900108fc3.
3. Results
Asshown in table 2, plasmaOTandplasmaAVPwerebothnega-
tively correlated with crystallized cognition. Crystallized and
fluid cognition were positively correlated, and both were posi-
tively correlated with dynamic emotion identification accuracy.

In themainmediationmodel, the total effect of plasmaOT on
dynamic emotion identification was significant (B=−0.034,
s.e. = 0.015, t73 =−2.326, p = 0.023, partial R2 (R2

p) = 0.069). How-
ever, the mediation analysis showed that the direct effect
of plasmaOTondynamic emotion identificationwas not signifi-
cant (B =−0.014, s.e. = 0.013, t71 =−1.091, p= 0.279, R2

p = 0.016),
while the indirect effects via both crystallized (B =−0.011,
s.e. = 0.005, 95% CI [−0.022, −0.003]) and fluid (B =−0.008,
s.e. = 0.006, 95% CI [−0.022, −0.001]) cognition were significant;
these results indicated that the effect of plasma OT on dynamic
emotion identification was fully mediated by crystallized
and fluid cognition (B =−0.019, s.e. = 0.008, 95% CI [−0.039,
−0.008]).

By contrast, the total effect of plasma AVP on dynamic
emotion identification was not significant (B = 0.003, s.e. =
0.015, t73 = 0.188, p = 0.851, R2

p = 0.001), nor was the direct
effect (B = 0.022, s.e. = 0.014, t71 = 1.576, p = 0.120, R2

p =
0.034). However, the indirect effect of plasma AVP on
dynamic emotion identification via crystallized cognition
was significant (B =−0.111, s.e. = 0.006, 95% CI [−0.023,
−0.002]); but the indirect effect of plasma AVP on dynamic
emotion identification was not significant for fluid cognition
(B =−0.008, s.e. = 0.007, 95% CI [−0.023, 0.003]).

The effects of chronological age on fluid cognition
(B =−0.428, s.e.= 0.142, t73 =−3.024, p= 0.003, R2

p = 0.106) and
on dynamic emotion identification (B =−0.003, s.e.= 0.001,

https://osf.io/xv38y/?view_only=3ca2fada765f42c3a5a0e30900108fc3
https://osf.io/xv38y/?view_only=3ca2fada765f42c3a5a0e30900108fc3
https://osf.io/xv38y/?view_only=3ca2fada765f42c3a5a0e30900108fc3
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–0.022 (0.014)
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0.002 (0.001)

0.003 (0.001)
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Figure 2. Effects (B (s.e.)) of plasma OT and plasma AVP levels on dynamic emotion identification accuracy with crystallized and fluid cognition scores as mediators
(N = 77). Chronological age served as a covariate. Solid lines indicate p < 0.050; dash–dot lines indicate 0.050 < p < 0.100; fully dotted lines indicate p > 0.100.
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t71 =−2.051, p= 0.044, R2
p = 0.044) were significant, but

the effect of chronological age on crystallized cognition was
not significant (B =−0.048, s.e. = 0.187, t73 = 0.225, p = 0.799,
R2
p = 0.001). See figure 2 for coefficients of the paths in the

mediation model. Further, the age moderation was not signifi-
cant for the conditional indirect effects of OT (B = 0.009, s.e. =
0.011, 95% CI [−0.010,0.034]) or AVP (B = 0.011, s.e. = 0.012,
95% CI [−0.009, 0.041]), suggesting that the results were
not age-dependent.

Results from the exploratory mediation analyses with posi-
tive and negative emotions as outcome variables, finally, were
largely consistent with results from the model with dynamic
emotion identification accuracy averaged across all emotions;
the only exceptions were a significant effect of fluid cognition
on dynamic emotion identification for negative emotions
(B = 0.004, s.e. = 0.001, t73 = 3.547, p = 0.001) and a non-signifi-
cant mediation of the indirect effect of OT on dynamic
emotion identification of positive emotions by fluid cognition
(B =−0.005, s.e. = 0.005, 95% CI [−0.019, 0.002]; see electronic
supplementary material, table S4 for details).
4. Discussion
The present study, for the first time to our knowledge, examined
associations of plasma OT and AVP with dynamic emotion
identification accuracy in generally healthy older men, and
tested mediation of this neuropeptide–social cognition link
via basic cognition. There are several key findings from this
work: first, confirming previous results, greater age was associ-
ated with both lower fluid cognition [49] and less accurate
dynamic emotion identification [55,57], and both crystallized
and fluid cognition were positively associated with dynamic
emotion identification accuracy [53,99,100]. This pattern of find-
ings supports that both basic cognitive as well as social-
cognitive skills are impacted by age-related processes and that
basic cognitive abilities support more complex social-cognitive
processes, such as dynamic emotion identification.
Second, and intriguingly, we observed a negative associ-
ation between plasma OT and dynamic emotion identification
in our sample of older men, with this OT–social cognition
link fully mediated by both crystallized and fluid cognition.
For plasma AVP, in contrast, there was no association with
dynamic emotion identification, but there was a significant
indirect effect via crystallized cognition. These novel findings
will be discussed in more detail next.

Previous studies in healthy young adults support intrana-
sal OT-enhanced emotion identification performance for
static emotion expressions (see [37,38] for meta-analyses),
with a comparable effect observed in older men ([101]; but
see [102,103]). Going beyond these earlier studies by investi-
gating associations between endogenous OT/AVP levels
and dynamic emotion identification in older men, the present
study, however, found a negative relationship between
plasma OT levels and dynamic emotion identification
accuracy, but no effect for plasma AVP levels.

These results suggest that the associations endogenous
plasma OT has with emotion identification are not necessarily
aligned with the performance enhancement effects observed
after intranasal OT administration [37]. Divergence in these
relationships could be due to several reasons, including vari-
ations in the brain mechanisms subserving endogenous
versus exogenous OT function [104]. Acute OT administration
has been shown to elevate OT levels [22,105] beyond natural
levels [106], which has altered, and can enhance, performance
on social-cognitive tasks (but see [107]). These enhancement
effects, however, have been found in accordance with individ-
ual and contextual factors, such as among individuals low in
social-cognitive proficiency ([108]; e.g. low dynamic emotion
identification abilities among older adults [91]). There is
also emerging evidence regarding the involvement of genetic
variation in neuropeptide systems (e.g. OT receptor gene
expression) in social-cognitive and behavioural outcomes
[109–111]. Therefore, individual endogenous differences
within the OT and AVP systems may further impact the
link to social cognition. While the correlational approach
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taken in the present study does not allow confirmation of this
speculation, future experimental research will be able to system-
atically address mechanistic questions regarding the specific
neuromodulatory processes underlying the relationship between
neuropeptides and social cognition in ageing (e.g. by sampl-
ing endogenous neuropeptide levels before as well as after
exogenous neuropeptide administration, and over time; [5]).

Regarding the negative relationship between OT and
dynamic emotion identification detected in this study, it is poss-
ible that endogenous OT serves a lesser role than anticipated in
the distinguishing of dynamic, complex social stimuli. Multiple
theories have been put forth over the years to help conceptualize
andexplainOTfunction in theprocessingof social stimuli and the
execution of related behaviour (e.g. social salience, prosociality,
approach/withdrawal; see [112] for a recent summary). Regard-
ing emotion identification, much of the current literature relies
on findings gathered from experimental tasks that use unimodal,
static presentations of emotional faces [38,103]. The few studies
that incorporated dynamic stimuli reported in these overviews
all used dynamic morphed emotions and found no support for
an overall OT-related improvement in emotion identification
[40,69,113–115]. Few exceptions showed that OT improved
dynamic emotion identification for happy [115], fearful [40,114]
and sad [113] faces or for specific individuals (i.e. with certain
genetic variations relating to OT sensitivity [69]).

The present study, in contrast, assessed endogenous neuro-
peptide involvement in the accuracy of identifying a
combination of unimodal and multimodal dynamic emotions.
Previous theories have suggested that exogenously elevated
OT levels can promote the salience of socially relevant features
and/or facilitate early-stage processing (in line with the Social
Salience Hypothesis [28]). Based on the available literature
[37,38], this effect may be particularly prominent for the pro-
cessing of emotions in static faces. The use of dynamic
stimuli, perhaps owing to the incorporation of contextually
richer and naturalistic sensory cues, may lead to performance
ceiling effects. Further support for this interpretation comes
fromOT studieswith older adults that suggestedOT-improved
social cognition in contexts where minimal social information
was available. In particular, Campbell et al. [101] found that
OT enhanced emotion identification during a static emotion
identification paradigm. By contrast, Horta et al. [103] found
no behavioural OT effect in a dynamic emotion identification
paradigm using morphed dynamic stimuli. Grainger et al.
[116] also found no OT effect on emotion identification using
static emotions but found that performance on a related
social-cognitive construct (i.e. theory of mind) was increased
for video vignettes with minimal contextual information. OT
did not, however, alter theory of mind for video vignettes
enhanced with additional contextual information through
incorporation of paralinguistic cues. This possible interpret-
ation of our effects should be systematically explored in
future work, such as by comparing behaviour in response to
both static and dynamic stimuli in one experimental paradigm.

More recently, several theoretical frameworks have been
introduced that account for contextual and temporal variations
in OT function. For example, the allostatic theory of OT argues
that in addition to the widespread physiological functions this
neuropeptide has in the body, the OT system is also involved
in the adaptive process of sensing and responding to changes
in the surrounding environment, which includes the processing
of non-social and social cues [12]. Similarly, largely based on
electrophysiological research on the modulatory impacts of OT
on attention, the Tri-Phasic Model of OT (TRIO [112]) conceptu-
alizes the temporal dynamics and social gating mechanisms of
OT upon three levels of stimulus processing: (1) perception, (2)
selection and (3) evaluation. According to this model, whereas
OT facilitates early attention for processing indiscriminate
characteristics in the perception phase, OT-related selective
attention to social stimulimay occur in the later phases of stimu-
lus processing. Another multi-stage framework attempts to
integrate previous theories about OT and considers variations
in the roles of OT across different components of social
decision-making: from sensory input/perception to valuation
and behavioural outputs. This framework, developed by Piva
& Chang [117], and based on a collection of preclinical and
human work, illustrates the involvement of OT in fine-tuning
information that is gathered, processed, and assigned value
to carry out socially based decisions. This theoretical account
can be applied to the computational steps involved in emotion
identification as a social decision-making process, which
involves the perception and integration of various sensory
cues, valuation, and behavioural selection from a pre-estab-
lished set of emotions. Thus, OT may assume different
modulatory roles in response to emotional stimuli (e.g. increas-
ing salience, promoting approach/withdrawal), which may
occur simultaneously (and/or concurrently) along a conti-
nuum of perception and behaviour [117]. Conceptualizing
the social function of OT in this way may help account for
mixed evidence regarding the impact of OT on the brain and
behaviour during emotion identification ([37,38]; for examples
in human ageing see [102,103,116]), including in the present
study and for other social-cognitive tasks [107].

These aforementioned models of OT function can each
account for the seemingly non-beneficial effects observed
for OT in response to dynamic emotions as an example of
contextual and/or temporal variation, but more systematic
work is needed, especially with attention to the role of OT
in social cognition across the adult lifespan [5]. Future
research could specifically test this speculation by incorporat-
ing varied social contextual information (e.g. dynamic versus
static stimuli, congruent versus incongruent cues, varying
degrees of cue complexity) in experimental tasks to delineate
the processes by which neuropeptides subserve the proces-
sing of cues encountered in real-world social interactions.

In this study, we also provide, for the first time to our
knowledge, evidence that basic cognitive skills fully mediate
the association between plasma OT and dynamic emotion
identification. In particular, higher plasma OT levels were
associated with lower levels of both crystallized and fluid cog-
nition, while higher scores in these cognitive capacities were
associatedwith more accurate dynamic emotion identification,
in older men. The role of cognitive capacities underlying com-
plex social-cognitive abilities has been well-documented, with
both crystallized [55,56] and fluid [57] cognition identified as
crucial components subserving emotion identification (see
[54] for a meta-analysis). For example, fluid cognitive abilities
may be key to processing multiple nonverbal cues conveyed
by emotion expressions [118] and are involved in the dynamic
adaptation of emotion perception during social interactions
[57]. Similarly, crystallized cognitive abilities may be critical
for the comprehension and ascribing meaning to percei-
ved emotion expressions, based on previous knowledge
[54,118,119]. Therefore, a deficit in these basic cognitive skills
may be directly linked to challenges in more complex
social-cognitive processes (but see [120,121]).
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Ageing is characterized by declines in both basic cognitive
(specifically fluid cognition [48,49]) and social-cognitive [122]
skills, including emotion identification [99]. There are currently
no effective pharmacological treatments to address age-related
social-cognitive decline. Intranasal OT constitutes a promis-
ing candidate based on its effects on enhancing emotion
identification in young adults [37,38] and has recently been
discussed as a potential therapeutic agent for social-
cognitive deficits in older adults [23,79,123]. In particular,
exogenous OT has been found specifically beneficial for indi-
viduals low in social-cognitive abilities [124,125]. Leknes et al.
[126], for example, reported greater OT-enhancement in sensi-
tivity to emotional faces in participants with low baseline
emotional sensitivity. Thus, exogenous OT may be useful
for modulating processes impacted by age-related decline,
including fluid cognition and emotion identification [54,118].

Our finding that both endogenous OT and AVP levels
were negatively correlated with crystallized cognition (in
addition to a negative correlation between plasma OT and
fluid cognition) qualifies our current understanding of the
relationship between neuropeptide plasma levels and social
cognition in the context of ageing. This observed mediation
of basic cognition on the neuropeptide–social cognition link
has potential to spur future research questions on neuropep-
tide administration in ageing (e.g. Does increasing peripheral
levels of OT via intranasal administration result in improved
social-cognitive skills? Do pre-administration endogenous
levels affect the impact of exogenously administered OT?).

Going beyond Plasencia et al. [60], which reported a positive
association between plasma OT levels and processing speed
(but not short-term memory) in both young and older adults,
we assessed basic cognition more comprehensively in the pre-
sent study via the NIH Toolbox Cognition Battery. This
assessment battery comprises measures of attention, memory,
and executive functioning, which have been found to nega-
tively correlate with plasma OT levels in healthy adults [127]
and patient populations (e.g. schizophrenia [46,62]). Building
on results from the present study, a thorough examination is
warranted for associations of both peripheral and central neuro-
peptide levels with a variety of cognitive processes (e.g.
attention, executive function, decision-making) to specify
respective interplays with social-cognitive capacities in ageing.

Of note, different from the observed effects pertaining to
plasma OT, we found no associations between plasma AVP
and dynamic emotion identification, though AVP plasma
levels were negatively associated with crystallized cognition,
similar to our findings with plasma OT. Largely in line with
this null effect for the AVP–social cognition link, using intra-
nasal administration, Thompson et al. [34] reported no effect
of AVP on attention to neutral versus emotional faces. Other
previous work using intranasal AVP, however, found differ-
ential effects on social-cognitive capacities by stimulus
valence/emotion type as well as participant sex. For example,
Uzefovsky et al. [41] reported that intranasal AVP, compared
with placebo, reduced emotion identification for negative
male faces, but they observed no effect for positive male or
female faces, in a sample of young men. Vadas et al. [42]
observed similar effects for angry faces in men with schizo-
phrenia, while emotion identification decreased for sad faces
but was enhanced for fearful faces after AVP administration
in women with schizophrenia. Building on these previous
findings, a systematic examination of the role of stimulus
characteristics, such as valence and emotion type, as well as
interindividual difference variables, such as sex, on the associ-
ation between OT/AVP and social-cognitive function in
ageing is warranted, by leveraging a larger sample that is
well-powered to address these important qualifying questions.

It is also possible that the differences in the neuropeptide–
social cognition link for OT versus AVP that we found in
these data reflect age-related differences in these neuropep-
tide systems. For example, Campbell et al. [101] found
intranasal OT administration improved emotion identifi-
cation for older (but not young) men, while Uzefovsky
et al. [41] showed that intranasal AVP decreased emotion
identification in young men. These findings contrast with
the present study, which observed a negative relationship
between endogenous OT and emotion identification and no
relationship between endogenous AVP and emotion identifi-
cation in older men. Determination of specific differences in
the neuromodulatory mechanisms behind both endogenous
and exogenous OT and AVP and their respective impact on
social cognition, especially in ageing, will continue to be an
important topic for future research [128].
(a) Limitations
Owing to logistics of the larger clinical trial (see [79]), blood
samples and cognitive data were collected in a separate exper-
imental session from the emotion identification data. There is
evidence that endogenous OT and AVP do not show diurnal
patterns [129,130], that peripheral plasma OT levels correlate
with central endogenous levels [131], and that plasma OT
levels remain stable and correlate over time [132,133],
suggesting that one-time sampling of OT/AVP constitutes a
representative measure of these neuropeptides. By contrast,
recent work suggests that OT plasma levels vary across days
[134] owing to fluctuations in sleep, physical activity, food
intake, and hydration levels [105]. Thus, moving forward it
will be necessary to specifically address temporal dynamics
of neuropeptide action, including among older adults, and to
determine differences between one-time versus repeated
sampling in their representativeness of acute versus chronic
neuropeptide levels and associated function in ageing.

Growing evidence suggests sex-dimorphism in OT and
AVP systems and function [135–137]. In addition, there are
sex differences in the effects of OT and AVP, specifically on
social cognition [138], including emotion identification
[43,139], and associated neurobiological processes ([3]; see
also [140]). For example, Luo et al. [139] found that for
women, but not men, intranasal OT decreased coupling of
the amygdala, anterior cingulate, and inferior frontal gyrus
when processing negative emotional faces. Rubin et al. [43]
showed that for women with schizophrenia higher endogen-
ous OT levels were associated with perceiving faces as
happier, while no such association was observed in men with
schizophrenia. Similarly supporting sex-dimorphic effects,
Vadas et al. [42] reported less accurate identification of angry
faces bymen, whilewomen became less accurate in identifying
sad faces but more accurate in the identification of fearful faces
after intranasal AVP administration. Furthermore, sex (in inter-
action with age) was found to modulate the relationship of OT
and AVP with affiliative processes and cognition [60]. This
emerging evidence combined supports the need for future
research to systematically consider sex effects on the associ-
ations between plasma OT/AVP and dynamic emotion
identification. The larger clinical trial that the present data
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came from included a sample of older women. This female
sample (n = 48) was, however, much smaller than the male
sample (n = 104),providing limited power for a comparison
between the sexes. Futureworkwould benefit from a thorough
analysis of interactions of the OT/AVP systems with gonadal
hormones, such as testosterone and oestrogen [141,142], impli-
cated in the binding and receptor expression of neuropeptides
[143–145], as underlying the neuropeptide sex-dimorphism in
social cognition, including in ageing.

As noted above, measurement of central OT/AVP levels is
highly invasive, requiring lumbar puncture to acquire cere-
brospinal fluid. Therefore, in the present study, we used
peripheral measures as a proxy for central neuropeptide
levels. This approach is in line with other human research
[22,128] and was based on evidence of strong correlations (r =
0.80) between peripheral and central OT in humans and non-
human primates (using enzyme-linked immunoassays; [131];
see also [22,146] for meta-analyses). Measurement of central
neuropeptide levels after OT administration in their relation to
endogenous levels and associated effects on social cognition
constitutes a promising future research avenue [5,79]. This
work will also benefit from investigating neuropeptide recep-
tors or gene expression of OT/AVP, associated with social
behaviour and cognitive states [41,110,147,148]. For example,
OT receptor gene expression has been linked to amygdala size
[149] and neural activation during face processing [111] and
has been associated with reduced functional brain connectivity
in those with impaired social-cognitive abilities [147,150].
Additionally, OT receptor gene expression has been shown to
have a unique role in social processes that are independent of
the effects of plasma OT [151]. Further, factors such as early
life experiences may alter the OT/AVP system long-term, ren-
dering their assessment in future research warranted. For
example, adults who had high levels of childhood adversity
were found to have lower plasma OT, increased OT receptor
gene methylation, and decreased response after OT adminis-
tration [152], as well as altered brain activation after AVP
administration [153]. Analyses of these separate but highly
integrated components of the endogenous neuropeptide sys-
tems will be crucial in advancing knowledge of the role of
neuropeptides in basic and social-cognitive skills.
5. Conclusion
Taken together, findings from this study inform the neuropep-
tide–social cognition link by demonstrating that basic
crystallized and fluid cognitive capacities underlie the associ-
ations between endogenous plasma OT and dynamic emotion
identification in healthyoldermen. These novel findings indicate
that endogenous neuropeptidesmayhavedifferent neuromodu-
latory effects on social cognition fromwhat has been previously
observedwith exogenousOTandAVPadministration.Our find-
ings support that the relationship between plasma OT and
dynamic emotion identification neuropeptide–social cognitive
association is mediated by basic cognitive skills in older men.
Future work investigating moderations reflective of sex-
dimorphisms, genetic variations, and differences in task stimu-
lus characteristics will further advance understanding of the
important link between neuropeptides and social-cognitive
capacities across the adult lifespan and in ageing.
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