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Prediction of the trans-stenotic pressure
gradient with arteriography-derived
hemodynamic features in patients with
idiopathic intracranial hypertension
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Abstract

The pathogenesis of idiopathic intracranial hypertension (IIH) is attributed to segmental stenosis of the venous sinus.

The current treatment paradigm requires a trans-stenotic pressure gradient of �8mmHg or �6mmHg threshold. This

study aimed to develop a machine learning screening method to identify patients with IIH using hemodynamic features.

A total of 204 venous manometry instances (n¼ 142, training and validation; n¼ 62, test) from 135 patients were

included. Radiomic features extracted from five arteriography perfusion parameter maps were selected using least

absolute shrinkage and selection operator and then entered into support vector machine (SVM) classifiers. The

Thr8-23-SVM classifier was created with 23 radiomic features to predict if the pressure gradient was �8mmHg. On

an independent test dataset, prediction sensitivity, specificity, accuracy, and AUC were 0.972, 0.846, 0.919, and 0.980,

respectively (95% confidence interval: 0.980–1.000). For the 6mmHg threshold, thr6-28-SVM incorporated 28 features,

and its sensitivity, specificity, accuracy, and AUC were 0.923, 0.956, 0.935, and 0.969, respectively (95% confidence

interval: 0.927–1.000). The trans-stenotic pressure gradient result was associated with perfusion pattern changes, and

SVM classifiers trained with arteriography perfusion map-derived radiomic features could predict the 8mmHg and

6mmHg dichotomized trans-stenotic pressure gradients with favorable accuracy.
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Introduction

Patients with idiopathic intracranial hypertension (IIH)

present an elevation in intracranial pressure (ICP)

without a definite etiology. Common symptoms vary

from headaches and pulsatile tinnitus to the most

feared visual loss due to chronic papilledema. The stan-

dard treatment paradigm usually starts with oral acet-

azolamide and weight management, but many patients

fail to respond. This treatment is followed by more

aggressive procedures such as ventriculoperitoneal

shunting and optic nerve fenestration.1 As the explora-

tion of the underlying pathophysiology advances, more

data suggest that elevated ICP is associated with lateral
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sinus stenosis and its elimination may lead to a signif-
icant reduction in ICP.2,3 Since the first endovascular
attempt to resolve IIH symptoms by Higgins et al.,
numerous studies4–6 as well as our own registry
study7 have proven the efficacy and safety profile of
venous sinus stenting for IIH. According to a recent
review, over 90% of treated patients experienced sig-
nificant papilledema improvement, and the major com-
plication rate was as low as 1.5%.8

However, venous sinus stenting is not a panacea for
all IIH cases; it is only indicated for patients with a
gradient of at least 6–8mmHg obtained using venous
manometry according to the guidelines and established
conventions.9 Experimental data suggested that a cor-
rection of 0.7mmHg gradient pressure in the superior
sagittal sinus lowers the opening pressure (OP) by
1 cmH2O.10 The current Dandy’s diagnostic criteria
for IIH require an OP of greater than or equal to
25 cmH20; thus, an OP of 5–7 cmH20 or a gradient of
3.5–4.9mmHg should be resolved. Since a gradient
residual of 0–2mmHg exists after stenting, setting
6mmHg or 8mmHg as the threshold for stenting is
reasonable.11,12 However, venous manometry proce-
dures require femoral venous puncture, local anesthe-
sia,5 pressure guidewire, and microcatheter, which add
pain, extra radiation exposure, and extra costs to the

patients. In addition, the Dandy criteria are not a good
calibration tool to identify patients with a large pres-
sure gradient. In a recent study including 104 patients
with IIH, only 58% of patients were found to have a
pressure gradient of �8mmHg.13

Therefore, developing less aggressive tools that can
identify patients with IIH with a significant pressure
gradient without venous manometry is clinically
useful. This study aimed to construct machine learning
classifiers trained on arteriography-derived hemody-
namic features that can predict the trans-stenotic pres-
sure gradient at an appropriate level of accuracy.

Materials and methods

Patient enrollment

In the cohort of our trial, we retrospectively selected
135 out of 173 patients from our registry named safety
and efficacy of endovascular stenting for idiopathic
intracranial hypertension with venous sinus stenosis 7

(Figure 1). Eleven patients were excluded due to poor
imaging and angiography quality and 27 due to long
stenosis segment extending from the SSS to the sigmoid
sinus. According to the Helsinki Declaration of 1975,
written informed consent was obtained from all

Figure 1. Flowchart of inclusion and exclusion of manometry instances.
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patients, and the study was approved by the ethical
committee of Beijing Tiantan Hospital, Capital

Medical University (ethical statement number:
KY2016-039-02). 66 patients had only pre-stenting
manometry obtained under local anesthesia and 69 of
them had also post stenting manometries under local
anesthesia. A total of 204 manometry instances were

included. The inclusion and exclusion criteria for these
patients were based on the trial protocol. In brief,
venous stenting is only indicated for patients with
IIH with a definite localized lateral sinus stenosis on

digital subtraction angiography (DSA), and the pres-
sure gradient across the stenotic segment should
be equal to or greater than 8mmHg under local anes-
thesia. The entire dataset was randomly split into a

training dataset and an independent test dataset at a
ratio of 7:3.

Manometry

For each patient, pressure gradients were defined as the

difference in pressure between the distal and proximal
segment of the transverse sinus. All manometries were
performed under local anesthesia via femoral vein
access using a microcatheter Rebar-27 (ev3

Neurovascular, Irvine, CA, USA). The hub of Rebar-
27 was connected to the pressure monitoring kit
DELTRAN II, 3 cc/hr Flow Rate (Utah Medical
Products, Midvale, Utah, USA).

Arteriography image acquisition, preprocessing, and

time density curve (TDC) parameter calculation

DSA images were acquired on the Artis station

(Siemens, Germany), Terra Station (GE, United
States), AW6302 Station (GE, United States), and
722038-153 Station (Philips, Netherlands) at Towne’s
position and anteroposterior view. Each DSA run was

obtained during a 4-mL/s injection of Vispaque (GE
Healthcare Ireland Limited, Carrigtohill, Munster,
Ireland) through a 5F angiographic catheter at the cer-
vical segment of the ICA, with a total volume of 6mL.

Acquisition parameters for the majority of DSA
sequences were as follows: pixel spacing,
0.217� 0.217; median peak tube voltage, 81.2 kV
[interquartile range (IQR): 77.9–83.8]; window center,
2047; window width, 4095; cine rate, 4; median of

frames for each DICOM, 49.0 (IQR: 41–58); and row
and column size of each frame, both 1024. The mask
and bolus frames were registered before subtraction.
To eliminate the index hemisphere opacification

during the arterial and venous phases, we injected con-
trast in the contralateral ICA.

For each DSA run, we calculated the following five

contrast flow-related parameters from a TDC at each

pixel: cerebral blood flow (CBF), cerebral blood
volume (CBV), mean transit time (MTT), time to
peak (TTP), and maximum contrast media concentra-

tion (MAX) (Figure 1). We used a simplified gamma
variate function to fit the TDC,14 and codes for image
preprocessing and TDC fitting were written in Python
(version 3.6.1), as detailed in our previous publica-
tion.15 TTP and MAX were defined as the time when
the TDC reached its maximum value and the maximum
value per se, respectively. MTT was obtained by mea-

suring the average residence time of the contrast and
was calculated as b (aþ 1). CBV was a relative index of
the blood flow volume and was calculated by integrat-
ing the TDC over 10 s. CBF was calculated by dividing
the CBV by MTT.

Radiomic feature extraction and stable
feature selection

To extract the radiomic features, we initially created a

two-dimensional map, on which the pixel value repre-
sented the maximum intensity value across all the
frames at each coordinate. Two interventional neuro-
radiologists delineated the region of interest (ROI) on
the stenosed transverse sinus separately, and both were
blinded to the true pressure gradient. On each param-
eter map, we extracted 18 first-order statistic features,

22 gray-level co-occurrence matrix (GLCM) texture
features, 16 gray-level run-length matrix (GLRLM)
texture features, 280 Laplacian of Gaussian filtered
image features (LoG) and 224 wavelet features. On
the TTP map, we extracted nine two-dimensional
shape features. A total of 2809 radiomic features were

extracted from each DSA run using an open-source
Python package called PyRadiomics (version 3.0).16

For gray-level discretization, a fixed bin width of 0.02
was used. The pixel spacing of each map was resampled
to 0.4mm by 0.4mm. The stability of radiomic features
was tested using intraclass coefficient correlation (ICC)
between two ROI contours; only features with ICC

equal to or greater than 0.8 were considered
stable and were entered into the following classifier
construction. The nomenclature of radiomic features
includes parameter map, image type, feature class,
and feature name. For example, “TTPwavelet.
LH_firstorder_Kurtosis” was the feature Kurtosis

belonging to the first order class, extracted on a
wavelet-transformed TTP map.

Machine learning modeling and statistics

We built an SVM model with a radial kernel to predict

the 6mmHg dichotomized pressure gradient and
another SVM model to predict the 8mmHg dichoto-
mized pressure gradient. Informative radiomic features
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were selected using the least absolute shrinkage and
selection operator (LASSO) algorithm with five-fold
cross validation. The lambda value that gave the max-
imum cross-validated area under the curve (AUC) of
LASSO fit was chosen, and features with non-zero
coefficients were then selected. The hyperparameters
of the SVM classifier were tuned using a grid-search
method. Two hyperparameters were tuned, and both
the gamma value and cost parameter C were tested
for 0.0001, 0.001, 0.01, 0.1, 1.0, 10, and 100. The com-
bination of gamma and parameter C, which maximized
the prediction accuracy of the SVM classifier, was
finally chosen. Classifier performance was evaluated
on the training, test, and test-2 datasets drawn by a
junior neurointerventionalist. Performance metrics,
including sensitivity, specificity, accuracy, F1-score,
and AUC, were calculated. To improve the interpret-
ability of our SVM classifier, we computed feature
importance using the “permutation importance”
method. The importance of the explanatory variable
was ranked using the mean variable importance of
over 1000 permutations. The study process is summa-
rized in Figure 2.

For continuous variables, after assessing normality
(Shapiro-Wilk test), the difference between groups was
calculated using Student’s t-test or Wilcoxon rank-sum
test, as appropriate. For categorical variables, Fisher’s
exact test was used. For descriptive statistics, continu-
ous variables were represented as medians with inter-
quartile range or mean with standard error, and
categorical variables as the number of events with fre-
quencies. Statistical significance was set at p< 0.05. All
statistical analyses were conducted using R software
(version 3.6.1; R Foundation for Statistical
Computing, Vienna, Austria). Packages used for clas-
sifier construction and feature importance calculation
were “e1071,” “caret,” “DALEX,” and “pROC.”

Results

Baseline demographics

In total, 204 manometry instances from 135 patients
were included in the study, of which 69 (33.8%) were
measured after venous sinus stenting. Females were
predominant in the population, and 82.4% (168/204)
of the pressure recordings were obtained from them.
The median age at manometry and body mass index
were 36.0 years (IQR: 28.0–44.0) and 26.9 kg/m2 (IQR:
24.0–30.0), respectively. The median pressure gradient
was 10.0mmHg (IQR: 3.00–15.5), and the maximum
gradient measured was 39.0mmHg. A total of 118
(57.8%) and 128 (62.7%) pressure gradients were
higher than 8mmHg and 6mmHg, respectively. All
manometry instances were randomly split into

a training dataset (n¼ 142) and a test dataset (n¼ 62)

at a ratio of 7:3. As shown in Table 1, the baseline

characteristics showed no statistical differences

between the two datasets.

Radiomic feature extraction and informative

feature selection

In each feature class, the percentage of stable features

exceeded 90%. Detailed percentages of stable features

in each perfusion map are summarized in

Supplementary Table 1. For the 8mmHg threshold

model, the LASSO algorithm selected 23 informative

features with non-zero coefficients, including one shape

feature named sphericity, two features from the CBF

map, three from the CBV map, eight from the MAX

map, one from the MTT map, and eight from the

TTP map. For the 6mmHg model, 28 features, includ-

ing one shape feature named sphericity, two features

from the CBF map, seven from the CBV map, six

from the MAX map, two from the MTT map, and

10 from the TTP map, were selected (Supplementary

Table 2).

Model performance evaluation and feature ranking

Using the informative features selected by LASSO, we

created the thr8-23-SVM model to predict if the gradi-

ent was below the 8mmHg threshold and the thr6-

28-SVM model to predict the 6mmHg dichotomized

pressure gradient. Both models were trained on the

training dataset, tested on the test dataset, and further

validated on the test dataset (denoted as test-2) calcu-

lated from ROIs delineated by a junior neurointerven-

tionalist. The tuning of the hyperparameters is plotted

in Supplementary Figure 1. The confusion matrix-

derived model performance metrics (Table 2) and

AUC values (Figure 3) for both models all exceeded

0.900, except that the specificity of the thr8-23-SVM

model was approximately 0.850 for the three datasets.
We then divided the pressure gradient instances into

six intervals to further explore the distribution of mis-

classified cases. As shown in Figure 4(a), thr8-23-SVM

had most of its false positive predictions in the

6–8mmHg subgroup (6/10, 60.0%), followed by the

4–6mmHg subgroup (4/12, 33.3%). This finding was

similar for the thr6-28-SVM model, but the number of

misclassified cases was much lower in both intervals

(Figure 4(b)). For both models, the false positive pre-

diction rate was 4.69% in the 0–4mmHg interval.
In Table 3, we list the top five important features

ranked using the “permutation method” for both

models. Notably, the shape feature sphericity was

ranked second in the thr6-28-SVM model and ranked

Zhang et al. 1527



18th in the thr8-23-SVM model, and its absence alone

resulted in an accuracy loss of 0.864%.

Discussion

In this study, we created two SVM classifiers based on

DSA perfusion radiomic features that could predict

both the 8mmHg dichotomized and the 6mmHg

dichotomized venous pressure gradients with adequate

accuracy for patients with IIH. These models offer a
new tool to identify candidate patients with IIH who
may benefit from venous sinus stenting.

The rationale of our method is rooted in the fact
that, on trans-stenotic images, intensity attenuation
metrics represent a functional assessment of the steno-
sis beyond the numeric percent stenosis. Similar to per-
cutaneous coronary intervention, fractional flow
reserve serves as the gold standard hemodynamic

Figure 2. Illustration of the study process. DICOM files were compressed into one frame, so that all pixels opacified by the contrast
agent could be shown on the two-dimensional image, then ROIs were delineated by two neurointerventionalists blinded to each
other’s result (1st step). A pixel-wise calculation of the time density curve (TDC) was performed (2nd step), and five perfusion
parameters were derived from the TDC for each pixel. Five perfusion maps were then generated for each patient (3rd step). On each
map, we extracted five group perfusion-related radiomic features, including first-order statistical features, shape features, texture
features, wavelet features, and LoG features (4th step). Informative features were then selective using LASSO, and these features were
entered into the SVM model to predict the pressure gradient, and model’s performance was further tested on an independent test
dataset (5th step).
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evaluation of coronary stenosis,17 which measures the
ratio of distal coronary pressure of the stenosis to the
aortic pressure in an invasive manner using a pressure

wire. However, this pressure measurement can be accu-
rately simulated from CTA images using the

computational flow dynamic technique.18,19 For intra-
cranial arterial stenosis, estimating trans-stenotic
hemodynamics can also be achieved using intensity-

based metrics as a relative index of blood flow.
In its simplest form, Liebeskind et al. used the

Table 1. Baseline clinical and manometry characteristics.

Characteristics Training data (n¼ 142) Test data (n¼ 62) P value

8mmHg model

Sex (male/female) 23/119 (19.3%) 13/49 (26.5%) 0.429

Pressure gradient <8mmHg (yes/no) 60/82 (73.2%) 26/36 (72.2%) 1.000

Age at manometry, years 36.0 (28.0, 44.0) 35.5 (29.0, 44.8) 0.990

Body mass index, kg/m2 26.2 (23.6, 30.0) 27.9 (25.7, 29.9) 0.118

Pressure gradient, mmHg 10.8 (3.00, 15.9) 10.0 (3.00, 14.0) 0.627

6mmHg model

Sex (male/female) 26/116 (22.4%) 10/52 (19.2%) 0.842

Pressure gradient <6mmHg (yes/no) 53/89 (59.6%) 23/39 (59.0%) 1.000

Age at manometry, years 36.0 (29.0, 44.0) 33.5 (27.0, 44.0) 0.202

Body mass index, kg/m2 27.5 (24.0, 30.0) 26.20 (23.8, 30.0) 0.343

Pressure gradient, mmHg 10.0 (3.00, 15.88) 8.00 (3.00, 13.00) 0.542

Table 2. Model performance metrics.

Metrics

Thr8-23-SVM Thr6-28-SVM

Train Test Test-2a Train Test Test-2a

Sensitivity 0.976 0.972 0.944 0.966 0.923 0.923

Specificity 0.850 0.846 0.846 0.925 0.956 0.913

Accuracy 0.923 0.919 0.903 0.950 0.935 0.919

F1-score 0.936 0.933 0.919 0.961 0.947 0.935

AUC (95% CI) 0.965 0.980 0.963 0.988 0.969 0.957

aTest-2 is the dataset of radiomic features extracted from ROIs drawn by a junior neurointerventionalist.

Figure 3. ROC curve for thr8-23-SVM (a) and thr6-28-SVM models (b) on the training dataset (red line), test dataset (blue line) and
test 2 dataset (dark green line). The AUC values and 95% confidence intervals are listed on the bottom right corner.
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distal/proximal signal intensity ratio (SIR) on TOF-

MRA images to identify high-risk intracranial

lesions.20 SIR was reproducible with high interobserver

agreement,21 and their results indicated that SIR <0.9

predicted an elevated stroke risk in the territory for

patients with intracranial artery stenosis and was inde-

pendently associated with downstream cerebral hypo-

perfusion as evidenced on CTP maps.20,22 Compared

with SIR, which only measures the trans-stenotic inten-

sity change, a more robust approach was the addition

of time parameters by tracking the contrast bolus and

extracting perfusion features from a TDC. Perfusion

features, including the time to peak, MTT, cerebral

blood flow, and CBV, can be derived from MRI per-

fusion images and DSA images.23,24 The application of

these features has expanded to clinical settings, such as

the prediction of aneurysm occlusion,25 AVM rupture
26 and AVM embolization outcome.27 Most of the

studies focused on flow estimation on arteries, but

not until very recently, this method was translated

into the venous sinus.
Almadidy et al. first derived the venous stenosis

index (VSI) from color-coded DSA images to classify

hemodynamically significant stenosis using the

8mmHg criteria.28 Smaller VSI values have been

observed in less stenosed and post-stented sinuses. In

a cohort of 11 patients, VSI �1.36 had a sensitivity of

72.7% and an AUC of 0.82 in predicting whether the

gradient pressure was above 8mmHg.28 By definition,

VSI represents the cerebral blood flow reduction rate

across the sinus stenosis, which is equivalent to the

CBV value. This study proved that the contrast flow

Figure 4. Scatterplot of misclassified pressure gradient recordings for the thr8-23-SVM (a) and thr6-28-SVM models (b). The X axis
was subdivided into six intervals, and the Yaxis denoted the actual pressure gradient for each manometry instance in each group. False
predictions were labeled with their true pressure gradient value, and the line did not point exactly to the dot; thus, the dots were
jittered to avoid overlapping. For example, in Figure a (Group 2), there were four false predictions; the true gradient values were
5mmHg, 5.5mmHg, 4mmHg, and 4mmHg, but these 4 instances were predicted to be over the 8mmHg threshold; therefore, they
were false-positive predictions.

Table 3. Top 5 features of the two models.

Feature ranking Accuracy loss

Thr8-23_SVM model

TPoriginal_glrlm_RunLengthNonUniformityNormalized 3.68%

MAXwavelet.LL_firstorder_skewness 3.03%

TTPlog.sigma.3.0mm_glcm_MaximumProbability 2.60%

CBFwavelet.LL_glcm_Correlation 2.60%

MAXlogsigma.5.0mm_glcm_MaximumProbability 2.49%

Thr6-28_SVM model

CBFwavelet.LL_glcm_Correlation 4.42%

TTPoriginal_shape2D_Sphericity 3.36%

CBFlog.sigma.4.0mm_glrlm_LowGrayLevelRunEmphasis 2.73%

MAXlog.sigma.3.0mm_glcm_Imc2 2.73%

CBVwavelet.HL_glrlm_GrayLevelNonUniformity 1.89%
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pattern change existed in patients with IIH and served
as a good measure of pressure gradient. However, the
color-coded DSA software cannot calculate the MTT
and CBF parameters in a pixel-wise manner.29 The
proposed VSI used a mean value calculated on a man-
ually selected ROI, and the choice of the ROI size and
location seemed arbitrary, which may lead to poor
interrater reliability.30

To ease the problem of ROI placement and take
advantage of the pattern change information hidden
in the pixel-wise calculated perfusion maps, we adopted
a radiomic approach to decode the flow patterns within
an ROI that incorporated the stenosed sinus segment
as a whole. Similar to the VSI, which calculated the
mean value of CBV, our two SVM models also incor-
porated mean value formed perfusion parameters,
namely, MAXwavelet.HH_firstorder_Mean for thr8-
23-SVM model and TTPwavelet.LH_firstorder_
Median for thr6-28-SVM model. In contrast to VSI,
which could predict the gradient group very accurately,
these two features ranked 20th and 19th places in their
models, and their absence can only cause a slight accu-
racy loss. A pivotal role in both models was features
that represented the pixel distribution and feature map
textures. These features were able to represent flow
changes due to focal stenosis, but the interpretation
of their true clinical relevance was difficult. The only
instinctively comprehensible feature incorporated into
both models was the shape feature called sphericity.

Sphericity was the second most important explana-
tory feature in the thr6-28-SVM model, and its absence
led to a 3.36% decrease in prediction accuracy. Focal
stenosis of the venous sinus can be identified in up to
33% of patients in a general population and in more
than 90% in patients with IIH. Visually rated stenosis
has been proven to be able to identify patients with IIH
with a sensitivity and specificity of 93%,31,32 the influ-
ence of stenosis rate on the pressure gradient has not
been completely elucidated. Our two-dimensional
shape feature sphericity was the first index to quantify
stenosis severity; it is the ratio of the perimeter of the
ROI to the perimeter of a circle with the same surface
area as the ROI. Therefore, smaller sphericity values
denote more severe stenosis, which is in accordance
with our result that patients with IIH with higher pres-
sure gradients had smaller sphericity values. Of note,
sphericity ranked 18th place in the thr8-23-SVM
model. Its decreasing importance in models with a
higher threshold may indicate that morphological
change was the initiating factor of elevated pressure,
but as the pressure increased, more hemodynamic
changes were involved to further accelerate the disease
progression. The drawback of sphericity lies in its two-
dimensional nature. Although the Towne’s position
best delineated the stenosis in most patients, stenosis

was most evident on the lateral oblique view in some
cases. Therefore, we speculate that numeric shape fea-
tures extracted from the three-dimensional image are
promising for further improving the classifier’s
performance.

In our study, we trained a binary model to predict
two dichotomized gradients, rather than a regression
model that estimated the continuous pressure gradient.
This was mainly because clinical decision-making was
based on these two thresholds. Theoretically, a correc-
tion of a 7mmHg gradient decreases the ICP of
9–10 cmH2O, and the consensus now is that venous
stenting should be reserved for patients with IIH with
a minimum pressure gradient of 6–8mmHg.9,33 For the
8mmHg threshold model, most of the misclassified
instances were adjacent to the threshold. For these
borderline gradient values, because both catheter
manometry had a certain degree of fluctuation of
approximately 2mmHg in measurements, the clinical
significance of these mispredictions needs to be further
explored in a clinical setting. In other words, even
though we predicted the gradient instances within the
6–8mmHg interval false positively as above the thresh-
old, if sinus stenting was performed following the pre-
diction result, those patients might still expect a
symptom improvement. However, the 4.69% false-
positive predictions in the 0–4mmHg intervals for
both models lead to excess treatment. This reflected
in our classifiers that had some limitations because gra-
dients below 4mmHg generally required no venous
stenting.

We failed to make our models totally non-invasive
because current imaging protocols did not include CT
or MRI images that could be used to calculate the
TDC. Other approaches capable of realizing non-
invasive manometry include computational hemody-
namic modeling techniques and four-dimensional
(4D) flow MRI techniques. The pioneering work by
Levitt et al. first reported that the flow and wall
shear stress throughout the sinuses were higher in
patients with pathologic pressure gradients than in
those without them.34 However, these differences are
not sufficient to predict the 8mmHg or 6mmHg
dichotomized pressure status. Moreover, two factors
restrict it from becoming totally non-invasive and accu-
rate. First, patient-specific pressure boundary condi-
tions cannot be obtained without venous manometry.
As reported by many studies, the pressure values of
venous sinuses are quite variable, and the standard
deviation of pressure recordings at the transverse
sinus was reported to be over 8mmHg.33 Second,
patient-specific anatomic models should not be simpli-
fied into a tubular form, because in the settings of IIH,
the collected occipital emissary vein and vein of Labbe
are major outflow channels.35 In our unpublished 4D
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flow data, venous sinuses proximal to the stenosis had

a much larger flow than the distal segment, indicating

the existence of tributary venous outflows proximal to

the stenosis. Recently, 4D flow has been applied to

explore the pressure distribution in venous sinus

lesions. Ding et al. reported a significant correlation

between the trans-stenotic velocity difference and pres-

sure gradient (R¼ 0.675).36 However, as reported in

literature and our own data, the current 4D flow

MRI-derived venous sinus pressure, which is calculated

using the Navier–Stokes equation, is an order of mag-

nitude smaller than venous manometry data. The

development of a 4D flow MRI-based substitute for

venous manometry requires additional data and exper-
imental modeling.

Conclusion

In conclusion, the two SVM binary classifiers with

hemodynamic radiomic features derived from the

DSA perfusion maps were able to predict the trans-

stenotic pressure gradient at an acceptable accuracy.

This result suggests that analysis of the contrast hemo-

dynamics on arterial DSA images may be a good sur-

rogate for retrograde venography and manometry. Our

classifiers lacked external validation, and a test set

from DSA images acquired at different centers is war-

ranted to further validate their generalizability.
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