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Abstract

Adoptive transfer of suppressive thymic CD4+CD25+ Tregulatory cells (tTreg) can control auto- 

and allo-immune responses, but typically require in vitro expansion to reach the target cell number 

for efficacy. Although the adoptive transfer of expanded tTreg purified from umbilical cord blood 

ameliorated GVHD in patients receiving hematopoietic stem cell transplantation for lympho-

hematopoietic malignancy, individual Treg products of 100×106 cells/kg were manufactured 

over an extended 19 day time period using a process that yielded variable products and was 

both laborious and costly. These limitations could be overcome with the availability of ‘off the 

shelf’ Treg. Previously, we reported a repetitive restimulation expansion protocol that maintains 
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Treg phenotype (CD4+25++127-Foxp3+), potentially providing hundreds to thousands of patient 

infusions. However, repetitive stimulation of Teffectors induces a well-defined program of 

exhaustion that leads to reduced T cell survival and function. Unexpectedly, we find that multiply 

stimulated human tTreg do not develop an exhaustion signature and instead maintain their Treg 

gene expression pattern. We also find that tTreg expanded with 1 or 2 rounds of stimulation, and 

tTreg expanded with 3 or 5 round of stimulation, preferentially express distinct subsets of a group 

of five transcription factors that lock-in Treg Foxp3 expression, Treg stability and suppressor 

function. Multiply restimulated Treg also had increased transcripts characteristic of Tfollicular 

regulatory cells, a Treg subset. These data demonstrate that repetitively expanded human tTreg 

have a Treg locking transcription factor with stable FoxP3 and without classical T cell exhaustion 

gene expression profile, desirable properties that support the possibility of off-the-shelf Treg 

therapeutics.
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Introduction

Regulatory T-cells (Treg) are CD4+ suppressor cells that co-express the high affinity 

IL-2Ralpha chain, CD25, and the master transcription factor, Foxp3. Treg are essential 

immune system controllers, limiting self-reactive T-cells responsible for autoimmunity, 

and alloreactive T-cells in transplant recipients that destroy foreign antigen-bearing tissues 

resulting in tissue inflammation and injury1. Treg generated in response to commensal 

bacteria or their products facilitate tissue and organism homeostasis2–4. Treg can be 

classified by their site of differentiation in the thymus (thymic Treg, or tTreg)5–7 or induced 

in the periphery (pTreg) or in vitro (iTreg)8,9. Under specific inflammatory conditions, Treg 

can become unstable and convert to Teffectors (Teffs).

Allogeneic hematopoietic stem cell transplantation (HSCT) can be complicated by graft-

versus-host disease (GVHD)10–12 caused by donor T-cells that attack host tissues; GVHD 

occurs in up to 70% of transplant recipients, leading to high rates of morbidity and 

mortality13,14. The adoptive transfer of high Treg numbers can prevent murine GVHD15–19. 

Donor and third-party Tregs were similarly effective in suppressing murine GVHD20. 

Circulating human Treg are present at low frequency (1–2%), and as such may require 

in vitro expansion to achieve favorable Treg: Teff ratios needed to control adverse Teff 

responses. Because short-course expansion of Treg is often inadequate to obtain sufficient 

Treg yields16, we developed an in vitro expansion protocol that preferentially supports Treg 

over Teffs. Robust expansion was achieved by repetitively stimulating Treg after return to 

resting size. Integral to this process is the immunosuppressant rapamycin, which selectively 

expands murine and human CD4+25+Foxp3+ Treg vs. Teffector/memory cells21–23. In the 

clinic, a cord blood tTreg expansion protocol that incorporated a re-stimulation step allowed 

high donor Treg:Teff ratios of ~7:1; the infusion of these in vitro expanded, third-party HLA 

3–6/6 tTregs resulted in virtually no acute GVHD24.
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During the course of preclinical optimization of re-stimulation cultures, we tested an 

expansion platform consisting of flow cytometer-sorted peripheral blood (PB) human 

tTreg expanded on GMP-grade artificial antigen-presenting cells (aAPC) for a total of 

5 stimulations with rapamycin present in the culture to suppresses Teff expansion and 

enhance Foxp3 and tTreg stability22,25,26. Treg expansion of ≥10,000,000-fold was attained, 

while retaining Foxp3 expression and in vitro and in vivo xenogeneic GVHD suppressor 

function15,16,27. Using a computational network inference approach, Fu identified 5 

redundant transcription factors (TF) (Eos, Lef1, Satb1, IRF4 and GATA1) that individually 

synergize with Foxp3 to stabilize Foxp3 expression and “lock in” the Treg transcriptional 

signature28. Recent studies characterized additional TF that maintain Foxp3 expression and 

Treg stability29–32. Expression of two of these TF (TCF-1 and LEF1) defines three tTreg 

subsets as resting (TCF-1+LEF1+), activated (TCF-1+LEF1+/lo), and effector (TCF-1-

LEF1-). TCF-1 and LEF1 were required for increased expression of specific Treg signature 

genes, in vivo Treg competitive fitness and Tfollicular regulatory (Tfr) cell development but 

were dispensable for in vitro suppressive function31,32.

Chronic Teff stimulation can drive cells into a state of exhaustion resulting in Teff 

dysfunction33–35. The TF and gene sets enforcing exhaustion have been documented and 

include TOX, associated with exhausted murine and human CD8 T-cells, and TCF-1 

associated with exhausted T-cell precursors36–39. One of the dominant T-cell exhaustion 

characteristics is the upregulation of multiple inhibitory receptors, including PD-1, Lag-3, 

Tim-3, CD160 and CTLA440.

Herein, we show that naïve PB Treg either stimulated 2 times without rapamycin 

(resulting in ~10,000-fold expansion) or Treg stimulated 5 times in rapamycin (resulting 

in ~10,000,000-fold expansion) preferentially express different sets of previously defined 

Treg locking factors (Eos, Lef1, Satb1, IRF4, GATA1), TCF1 and Bach2 that promotes the 

differentiation of Treg and homeostasis. Importantly, Treg cultured in rapamycin did not 

increase exhaustion gene expression even after 5 stimulations, in contrast to Treg stimulated 

2 times without rapamycin that upregulated genes found in previously annotated exhaustion 

gene sets. The lack of observed signs of exhaustion of Tregs stimulated at resting size 

in rapamycin suggests that highly expanded Treg could become a clinically applicable 

off-the-shelf cellular therapeutic.

Methods

Thymic Treg and CD4 T-cell purification and validation

Non-mobilized peripheral blood (PB) leukapheresis products were purchased from 

Memorial Blood Center (St. Paul, MN). Naïve human PB tTreg (CD4+25+127−45RA+) 

were sort-purified from PB mononuclear cells (PBMNCs) (Ficoll-Hypaque, Amersham 

Biosciences, city, state) in a two-step procedure in which CD25+ cells were initially 

enriched from PBMNCs by AutoMACS (PosselD2) with GMP grade anti-CD25 microbeads 

(Miltenyi Biotec, Auburn, CA). CD25high cells were stained with CD4, CD25, CD127 and 

CD45RA and sorted via FACSAria as CD4+, CD25high, and CD127− CD45RA using a 

fluorochome-conjugated anti-CD25 antibody that recognizes a different epitope from bead-

bound anti-CD25. Naïve human CD4 T-cells were sort-purified from the CD25- fraction as 
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CD4+25–127+45RA+ (Figure S1). To determine the methylation status of the TSDR in the 

Foxp3 gene, DNA was purified from sort-purified tTregs expanded. Samples were submitted 

to EpigenDx Inc. (Worcester, MA 01606) for bisulfite modification and sequencing of 11 

CpG motifs in the TSDR.

In vitro tTreg and CD4 T-cell expansion

Purified naïve tTreg and CD4 T-cells were stimulated with a human myelogenous leukemia 

cell line, K562, engineered to express CD86 and CD64, the high-affinity Fc receptor 

(KT64/86) (2:1 tTreg:KT64/86), which had been irradiated with 10,000 cGy and loaded with 

anti-CD3 mAb (Miltenyi Biotec, Auburn, CA)16,24. tTreg and CD4+ Teff were re-stimulated 

up to 4 times as shown in Figure S2. tTreg and CD4+ Teff cell size was monitored 

3x weekly, and re-stimulation was performed after they had returned to a resting size 

(8.5μm and 9.2μm, respectively), which we have shown maximizes expansion16. In some 

experiments, tTregs that had been stimulated with KT64/86 cells that were preloaded, 

irradiated, and frozen were used at a 1:1 tTreg:KT64/86. Naive tTreg and CD4 T-cells were 

cultured in X-Vivo-15 (BioWhittaker, Walkersville, MD) media supplemented with 10% 

human AB serum (Valley Biomedical, Winchester, VA). Recombinant IL-2 (300 IU/mL 

for Treg, 50 IU/mL for CD4+ T-cells; Chiron, Emeryville, CA) was added on day 2 and 

maintained for culture duration. Cultures were refed at least every Monday, Wednesday and 

Friday, and plated at 0.25 × 106 to 0.5 × 106 viable nucleated cells/ml. Where indicated, 

rapamycin (Rapamune, Wyeth-Ayerst, Princeton, NJ) at 109 nM was added on day 0 

and with subsequent media supplementations. At the termination of each culture (7–10 

days following the last stimulation), cells were aliquoted and frozen. To avoid experiment 

variability, analyses were conducted concurrently with all samples after thawing.

Suppression assays

The in vitro–suppressive capacity of expanded tTreg was assessed with a carboxyfluorescein 

succinimidyl ester inhibition assay as published41. Briefly, PBMNCs were purified, labeled 

with the intracellular dye CFSE (Invitrogen) that dilutes with each division, and stimulated 

with anti-CD3 mAb-coated beads (Dynal, InVitrogen) ± cultured tTreg (1:2–1:32 tTreg/

PBMNCs). On day 4, cells were stained with antibodies to CD4 and CD8 and suppression 

was determined from Division Index (FlowJo). tTreg comparably suppressed CD4 and CD8 

T cell responses; therefore, only CD8 data are presented.

Flow cytometry and antibodies

Human-specific antibodies were used for flow cytometry and included CD4 (clone 

RPA-T4), CD8 (RPA-T8), CD14 (MSE2), CD19 (HIB19), CD25 (M-A251), CD45RA 

(HI100), PD-1 (eBioJ105) and Lag-3 (3DS223H) were purchased from BD Pharmingen 

or eBioscience (San Diego, CA). Anti-Foxp3 (clone 249D) was from BioLegend (San 

Diego, CA) and stains were performed with the Foxp3 staining kit (BioLegend, 421403) per 

manufacturer recommendations. Acquisition was performed using a FACScalibur or LSRII 

(BD Bioscience, San Jose, CA) and data were analyzed using FlowJo software (TreeStar 

Inc., Ashland, OR).
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Microarray analysis

Cell pellets (1–2×106 cells) were frozen in RNAlater at harvest. 100 ng of total RNA 

extracted using the RNeasy Mini Plus Kit with on-column DNase digestion (Qiagen) was 

amplified using Ambion WT expression kit (Life Technologies) according to manufacturer’s 

instructions. mRNA was reverse transcribed into cDNA and a second strand cDNA was 

generated, then used as a template for in vitro transcription for cRNA synthesis. Following 

purification, the cRNA was converted into cDNA and excess RNA was removed by RNase 

H treatment. cDNA was fragmented by restriction digestion and end terminal labeled with 

GeneChip WT Terminal Label kit (Affymetrix). Samples were hybridized to Human Gene 

ST 1.0 Arrays (Affymetrix) in a GeneChip Hybridization Oven 640 >16 hours, 45°C, 

60 rpm, stained on a GeneChip Fluidics Station 450, and scanned by GeneChip Scanner 

(Affymetrix).

Bioinformatic Analysis

Fluorescent intensity data (CEL files) were imported and Robust Multi-array Average 

(‘RMA’) normalized using the Bioconductor ‘oligo’ package. Probesets were annotated 

using the Affymetrix annotation file and the Bioconductor ‘biomart’ package. Normalized 

fluorescent intensities were filtered using a variance cutoff of 0.3 with the Bioconductor 

‘genefilter’ package. Differential gene expression thresholds included a log2 fold-change 

cutoff of 0.5 and significance threshold of 0.05 using a moderated T-statistic corrected for 

multiple hypothesis testing (Bioconductor ‘limma’ package). Gene modules were identified 

using the WGCNA package.

Gene-set enrichment analysis (GSEA) and its single-sample variant were performed using 

gene sets from the MSigDB. Single sample GSEA to assess correlation of in vitro expanded 

naïve tTreg and CD4 Teff with ImmSig gene sets comparing Treg and conventional CD4 T 

cells isolated from: mouse adipose tissue (GEO accession code 7852), a composite of mouse 

adipose/spleen/lymph node (GEO accession code 7852), or human fetus (GEO accession 

code 25087). Single sample GSEA to assess correlation of in vitro expanded naïve tTreg 

and CD4 Teff with ImmSig gene sets comparing acute and chronically stimulated T cells, 

including: CD4+ T cells isolated from mice infected with the clone 13 vs Armstrong variant 

of LCMV (GEO accession code 30431), a composite of mouse and human transcriptomic-

derived exhaustion-specific genes (GEO accession code GSE96578) or human CD8+ T cells 

isolated from patients with a progressing HIV infection versus those with controlled HIV 

infection (GEO accession code 25087).

Statistical analyses

Data were analyzed by one-way analysis of variance (ANOVA) or Student t test. Probability 

(P) values less than or equal to 0.05 were considered statistically significant.
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Results

Sort-purified naïve tTreg maintain Foxp3 and suppressive function after 5 repetitive 
stimulations over 50-day time period.

Chronic activation of human or murine T cells leads to exhaustion associated with 

hypofunction and shortened longevity33,35,42. To assess culture expansion effects on human 

naïve tTreg and non-Treg CD4 T cell populations, naïve tTreg (CD4+25++127–45RA+) 

and control naïve CD4 T cells (CD4+25–127+45RA+) were sort-purified from the same 

donors and expanded in parallel (see Figure S1 for details). Naïve tTreg yield from PBMC 

following sorting was 0.08±0.05% tTreg can be distinguished from iTreg or pTreg by 

hypo-methylation of the conserved non-coding sequence 2 located in the first intron of the 

Foxp3 gene, known as the Treg-specific demethylated region (TSDR)43,44. Since Foxp3 is 

on the X-chromosome, male donors were selected for TSDR analysis. Foxp3 expression in 

the sorted population (85±7%) correlated with TSDR demethylation (77±5%) (Figures S1D, 

E).

Sort-purified naive CD4 T cells and naïve tTreg were separately expanded using KT64/86 

cells27,41. tTreg without rapamycin (tTreg-No Rapa) were re-stimulated after returning to 

resting size (day 12), when Treg are highly receptive to TCR signals and hence expansion16 

(Figure S2). CD4+25–127+45RA+ T-cells (referred to as CD4 Teff) increased 3.9±0.2×104-

fold after 2 stimulations, while tTreg expanded ~3.5-fold less, at 1.1±0.7×104-fold under 

the same conditions (Figure 1A). Such tTreg maintained high Foxp3 (75±2% and 69±10% 

for 1 and 2 stimulations, respectively) and concomitant TSDR demethylation (Figure 1B 

and C, respectively). We have previously shown that tTreg cultures stimulated a third time 

in the absence of rapamycin have greatly decreased %Foxp3+16. Because a decrease in 

%Foxp3+ cells was observed in naïve tTreg cultures stimulated a third time in the absence of 

rapamycin (Figure S2C), this condition was excluded from further analyses.

To determine whether a far greater expansion of tTreg would retain the phenotype observed 

with 2 stimulations as used in our clinical trials24,27, a portion of the naïve tTreg sorted 

from the same donor was stimulated a total of 5 times (Figure S2D). In these longer-term 

cultures, the addition of rapamycin suppressed the proliferation of Teffs and favored tTreg 

expansion and stability16. Despite known rapamycin anti-proliferative properties, naive 

tTreg cultured in rapamycin and stimulated for a total of 5 times expanded 1.0±0.6×107-fold 

(Figure 1D and S2E), >1,000-fold more than twice-stimulated tTreg without rapamycin. 

All cultures remained ≥69% CD127-Foxp3+, and averaged 86±5% CD127-Foxp3+ (Figure 

1E). Compared to one stimulation, Foxp3 mean fluorescent intensity progressively increased 

in tTreg+Rapa (relative Foxp3 expression stimulated 4 or 5 times was 168% or 211%, 

respectively) (Figure 1F). To compare suppressive function of all culture conditions without 

potential assay variations, frozen Treg aliquots were thawed and concurrently assayed in a 

CFSE-based, anti-CD3 mAb-driven CD8+ T cell proliferation assay at tTreg:PBMNC ratios 

from 1:2–1:8. All cultures had ≥ 42% suppressor function at 1:4 (Treg:PBMNC). While the 

average suppression of Treg stimulated 5 times in the presence of rapamycin was lower, it 

was not statistically significant, and these cultures were still highly suppressive (Figure 1G).

Hippen et al. Page 6

Cytotherapy. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tTreg expanded >10-million-fold maintained tTreg-associated gene expression.

To ascertain the impact of expansion on the expression of Treg-associated genes after 

multiple stimulations, microarray profiling was conducted on RNA purified from CD4 Teff 

or tTregs (tTreg-No Rapa) expanded 1 or 2 times and tTreg expanded with 1, 2, or 5 times in 

rapamycin (tTreg+Rapa) (n=3 donors for each group).

Principal component analysis (PCA) showed significant clustering of gene expression 

patterns by cell type and by number of stimulations (Fig. 2A; see also Table 1), indicating 

individual groups of cells propagated under these discrete conditions were distinct. To 

discern the transcripts most closely associated with each sample type, we employed 

single-sample gene-set enrichment analysis (ssGSEA)45 with special attention to the extent 

to which each population maintained tTreg-associated gene expression. Gene expression 

differences in expanded cell populations were analyzed with previously curated sets of 

Treg-associated genes expressed in Tregs purified from three different sources, PB46, cord 

blood47,48, and adipose tissues46. To interrogate genes directly regulated by Foxp3, we 

also performed ssGSEA against a published murine CHIPseq dataset that identifies genes 

directly bound by FOXP349. In vitro expanded tTreg vs Teff showed enrichment in each of 

these four canonical tTreg gene sets (Figure 2B).

Unlike CD4 Teff, tTreg repetitively stimulated in rapamycin do not upregulate genes 
associated with exhaustion.

Exhaustion was initially described as a condition in which T cells chronically activated by 

virus displayed decrease proliferation and effector function35. Gene expression profiling of 

acute vs. chronically activated T cells has now identified a core group of exhaustion-related 

genes40,42,50. Multiply re-stimulated tTreg maintained both proliferative and suppressive 

function (Figure 1D and G, respectively), providing important functional evidence against 

tTreg exhaustion. To further evaluate exhaustion, we performed ssGSEA to compare 

our transcriptome data to three published gene sets. The first gene set was identified 

as distinguishing exhausted CD4 and CD8 gene expression patterns from mice infected 

with lymphochoriomeningitis virus (LCMV) clone 13 that causes chronic viral T cell 

stimulation and exhaustion vs LCMV Armstrong that causes acute infection and does 

not result in T cell exhausion40. The other two gene sets were identified by comparing 

human CD8 T cell expression patterns from HIV+ patients able to control their infection 

(“controllers”, putatively non-exhausted) in contrast to “progressors” non-controllers who 

developed AIDS (putatively exhausted)42,50 (Figure 3). Genes differentially expressed in 

CD4 Teffs stimulated once versus twice, corresponding to an increase in expansion from 

~400-fold to ~40,000-fold, respectively, showed significant enrichment for genes associated 

with exhausted murine CD4 and CD8 T cells and human CD8 T-cells from patients who 

progressed to AIDS (Figure S3A; false discovery rate (FDR)=0.001). Similarly, gene 

expression changes associated with tTreg stimulated once or twice without rapamycin 

(tTreg-No Rapa) showed enrichment for gene sets associated with murine CD4 and 

CD8, and human CD8 T-cell exhaustion (Figure S3B; FDR=0.001). In contrast, no 

significant enrichment in exhaustion-related genes) was observed in tTreg+Rapa, even 

though expansion with 5 rounds of stimulation was 100,000-fold higher than one stimulation 

(Figure S3C; FDR=0.18). This lack of an exhaustion signature suggests that tTreg highly 
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expanded in rapamycin may have greater in vivo therapeutic advantages than tTreg 

stimulated without rapamycin.

tTreg+Rapa repetitively stimulated 3 or 5 times develop a gene signature distinct from 
tTreg cultured under other conditions.

Supervised hierarchical clustering and expression analyses were performed comparing naïve 

CD4 T cells (expanded with 1 or 2 stimulations), to naïve tTreg (expanded with 1 or 2 

stimulations without rapamycin) and to naïve tTreg (expanded with 1, 2, 3 or 5 stimulations 

in rapamycin). A total of 4359 differentially expressed genes (FDR p<0.05) were identified, 

distributing into 7 independent clusters (Figure 4A). The cluster color-coded ‘red’ identified 

genes enriched in all tTreg groups, and included canonical Treg genes such as Foxp3 and 

Helios, and other genes shown to be differentially expressed in expanded human tTreg (e.g. 

UTS2, SLC14A1, CDKN2B, Eos, PLCL1, SOCS2, CD80, GPR55, LSR)51. The cluster 

color-coded ‘lilac’ was associated with tTreg undergoing one or two rounds of stimulation 

± rapamycin, and included a set of previously reported tTreg-related genes (e.g. RTKN2, 

CASK, SELP, MYO5C, CD27, DGKA, and CCR6)51.

The cluster color-coded ‘purple’ associated with tTreg expanded with 3 or 5 rounds of 

stimulation in rapamycin, and included a separate set of tTreg-related genes (including 

IL1R1, NIPAL2, IL2RA)51,52. Furthermore, several genes in the purple cluster are known 

to be differentially expressed in follicular regulatory T cells (Tfr) including LRRC32 

(GARP), CTLA4, IRF4, and TIGIT53,54, and this cluster also included two additional genes 

(EPHB1, INHA) that may encode potential Tfr effector molecules55,56. EPHB1 inhibits 

Tfollicular helper recruitment and germinal center retention56, while INHA antagonizes 

INHBA-supported Tfollicular helper differentiation55. In agreement with flow phenotyping, 

the purple cluster was enriched in IL2Rα. Aptly, Pim-2, a functional Akt homolog which 

confers rapamycin resistance in Treg25, was associated with the purple cluster. While the 

purple cluster could simply represent genes regulated by rapamycin, tTreg expanded in 

rapamycin receiving more limited stimulation (1–2 stimulations) did not associate with 

the purple cluster. Moreover, ssGSEA showed that tTreg+Rapa expanded with 3 or 5 

stimulations did not preferentially associate with several defined rapamycin-dependent gene 

sets (Figure S4). The gold and gray clusters were not defined by specific cell subsets.

Expanded CD4 Teff have increased expression of multiple inhibitory co-receptors 
compared to tTreg expanded with or without rapamycin.

The cluster color-coded ‘green’, associated with CD4 Teff populations, and was comprised 

of a large set of genes enriched in murine and human CD4 (non-Treg) cells including: 

IL-7Rα (CD127) and Themis51,57, as well as several genes involved in effector (e.g. TBX21, 

ID2, CD40L) and exhaustion (Eomes, TOX) differentiation40,42,50. Co-expression of 

multiple inhibitory receptors which regulate TCR signaling represent a molecular hallmark 

of exhausted CD4 and CD8 T-cells40,42. Studies indicate that the degree of exhaustion was 

not linked to expression of any single inhibitory receptor, but to the aggregate number of 

individual receptors co-expressed on a given cell, typically including PD-1, Lag-3, Tim-3, 

CD160 and CTLA440. More recently, TIGIT and KLRG1 were shown to be upregulated in 

exhausted human CD8 T cells42. In agreement with ssGSEA, the green cluster contained 
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several inhibitory receptors previously correlated with exhaustion (Lilrb3, PD-L1, PD-L2, 

Tim-3, CD274, KLRG1, CD96 and LAIR1)58 as well as several Killer Inhibitory Receptors 

(KIR) genes, both inhibitory (KIR2DL2, KIR2DL3, KIR2DL4, KIR3DL3, KIR2DL5B) and 

activating (KIR2DS2, KIR2DS3, KIR2DS4), associated with a late memory CD4 T-cell 

phenotype59. Two inhibitory receptors (CTLA4, TIGIT), which are typically expressed on 

tTreg, were associated with the purple cluster which defined tTreg stimulated 3–5 times in 

rapamycin.

To determine inhibitory receptor protein expression in CD4 Teff and tTreg cultures, aliquots 

were concurrently thawed and stained with antibodies to CTLA4, TIGIT, PD-1 and Lag-3. 

As expected, ≥70% of tTreg+Rapa cultures expressed CTLA4 and TIGIT after 1 stimulation 

(Figure 5A and B). CTLA4 did not further increase with up to 5 stimulations. CTLA4 

and TIGIT expression on naïve and memory CD4+ T cells (CD45RA+ and CD45RA−, 

respectively) was compared to tTreg directly analyzed ex vivo. CTLA4 expression was 

higher in both naïve and memory tTreg than in CD4+ T cells (Figure 5A). Consistent with 

activation-induced expression of inhibitory receptors, a higher % of memory CD4+ T cells 

expressed TIGIT compared to naïve CD4+ T cells (Figure 5B). Compared to CD4+ T cell 

subsets, a higher % of naïve and memory tTreg expressed TIGIT and memory tTreg had 

greater TIGIT expression than naïve tTreg.

PD-1 was not identified in the cluster color-coded ‘black’ in Figure 4 and was expressed in 

only ~5% of tTreg+Rapa stimulated 5 times (Figure 5C). Memory CD4 T cells and tTreg 

expressed higher PD-1 levels than naïve counterparts and, unlike what was seen following 

in vitro expansion, a higher % of memory tTreg expressed PD-1 than memory CD4 T cells. 

Lag-3 was present in the black cluster and associated with cultures undergoing the greatest 

fold-expansion, increasing to ~30% Lag3+ cells in tTreg+Rapa after 5 stimulations (Figure 

5D). While Lag-3 has been shown to inhibit Teff cells, Treg with an activated phenotype 

have been shown to express this inhibitory receptor, and Lag-3 expressing Treg specifically 

inhibit IL-1ß and IL-23 expression by CX3CR1+ macrophages60,61. Flow cytometry showed 

decreasing TIGIT expression in tTreg+Rapa cells stimulated 2–5 times (61±4% to 51±3%; 

p<0.05) and a paucity (≤4%) of tTreg+Rapa stimulated 5 times co-expressed PD-1 and 

Lag-3 (Figure 5E and F). As tTregs stimulated 5 times had potent suppressor function 

(Figure 1G) and no evidence of an exhaustion signature (Figure 3), in aggregate. these data 

are consistent with tTreg not becoming exhausted despite substantial expansion rates.

Transcription factor WGCNA identifies differentially expressed ‘tTreg locking’ transcription 
factors in tTreg undergoing 1 or 2 vs. 3 or 5 stimulations.

To interrogate the transcriptional programs driving Treg specification and rapamycin effects 

using an unsupervised statistical approach, we applied weighted gene correlation network 

analysis (WGCNA)62 to construct a gene co-expression network63,64. To identify TF that 

might drive expression of target genes associated with differentially cultured Treg, we 

focused the network analysis on the top-1000 most variant TFs identified by gene array. 

To improve statistical power for network analysis, we grouped our samples into CD4 

Teff (1 and 2 stimulations), tTreg-No Rapa (1 and 2 stimulations), tTreg+Rapa (1 and 

2 stimulations), and tTreg+Rapa (3 and 5 stimulations). WGCNA for TFs identified 3 
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discrete self-assembling modules, illustrated by a new cluster color schema (with modules 

color-coded ‘green’; ‘violet’; ‘yellow’) (Figure 6A). CD4 Teff cultures were associated 

with the green module (Figure 6B) enriched for Teff TF including Tbet (Tbx21), Eomes, 

and BATF. This module also includes 52 separate histone genes, shown to increase greatly 

during S-phase in CD4 T-cells65. Correspondingly, flow phenotyping showed that CD4 Teff 

had significantly higher expression of Ki-67, a proliferation marker most highly expressed 

during S-phase, than tTreg grown in the presence or absence of rapamycin (not shown).

tTreg-No Rapa and tTreg+Rapa (1 and 2 stimulations each) cultured cells associated 

with the violet module contained many canonical Treg-associated TF, including Foxp3. 

Importantly, while Foxp3 gene expression was more enriched in the violet-associated tTreg-

No Rapa and tTreg+Rapa (1 and 2 stimulations) populations, flow cytometry phenotyping 

demonstrated that Foxp3 protein was highest in the tTreg+Rapa (3 and 5 stimulations) 

cultures, suggesting post-transcriptional regulation of Foxp3 is also likely involved (Figure 

1C,S5A). Helios, an Ikaros-family transcription factor and Foxp3 co-factor that is required 

to maintain Foxp3 expression in a chronic inflammatory microenvironment66,67, was also 

present in the violet module, consistent with flow cytometry data showing increased protein 

expression in tTreg cultures with 1 or 2 stimulations (Figure S5B). Eos, another Ikaros-

family TF that binds to and maintains Foxp3 expression, preventing Treg reprogramming 

into Teff68, was also significantly enhanced in the violet TF module.

Using a computational algorithm [the context likelihood of relatedness (CLR)69] to predict 

TF that contribute to the Treg signature, a recent study identified five TFs (Eos, IRF4, 

Satb1, Lef1, GATA-1), in addition to Helios and Xbp1, that act in synergy with Foxp3 in a 

redundant manner to ‘lock in’ the Treg cell signature28,70. The violet and yellow modules 

were enriched in specific subsets of these ‘Treg locking factors. The violet module contained 

three of the ‘Treg locking factors’, (Eos, Lef1 and Satb1)71. We previously showed that 

Bach2 has a similar ‘Treg-locking’ function and maintains Treg stability by repressing 

effector gene expression30,72. Bach2 was present in the violet transcription factor module 

and associated with tTreg groups stimulated 1–2 times.

tTreg stimulated 3 or 5 times in rapamycin was associated with the yellow module (Figure 

5B), enriched in IRF4 and GATA1. IRF4 is a positive regulator of Treg homeostasis and, by 

upregulating PRDM1 expression (also present in the yellow module) and IL-10 production, 

controls differentiation of effector Treg which undergo stimulus-specific differentiation 

to Treg helper types73,74. IRF4 expression is enhanced by TCR stimulation and IRF4 

mRNA expression was further increased when Treg were activated in the presence of the 

mTOR inhibitors Torin 1 or PP24275. IRF4 increases Pim-2, the rapamycin-independent 

Akt functional homolog25. One of the top Treg connections for GATA1 identified by CLR 

analysis was CD2528, consistent with tTreg+Rapa (3 and 5 stimulations) having the highest 

CD25 expression (Figure 1B). GATA1 also potently down-regulates IFNγ expression76, 

consistent with the lack of enrichment for this effector cytokine in tTreg cultures in 

rapamycin, providing supporting evidence for preservation of a tTreg signature.
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Discussion

Our goals were two-fold: to determine whether naive tTreg maintain expression of tTreg-

associated genes after multiple rounds of in vitro expansion, and whether such a technique 

would result in an exhausted phenotype as can be seen in human Teff cells expanded for 

cancer immunotherapy71. Using a bioinformatics approach, we report that in vitro expanded 

tTreg maintained a tTreg signature, even after ten million-fold expansion. While a single 

re-stimulation of CD4 Teff resulted in a significant increase in the expression of mRNAs 

present in exhaustion-related gene sets, no increase was observed in tTreg stimulated 5 

times in the presence of rapamycin. One of the hallmarks of exhaustion is the accumulated 

expression of a group of inhibitory receptors. Hierarchical clustering found a group of 13 

inhibitory receptor genes that were preferentially associated with CD4+ Teff cultures but not 

in the highly expanded tTreg. The 3 inhibitory receptors (CTLA4, TIGIT and Lag-3) with 

increased expression on expanded Treg compared to CD4 Teff have each been shown to 

mark Treg with enhanced suppressive function77. The ability of this stimulation protocol to 

generate such robust expansion without significant signs of exhaustion or activation induced 

cell death are likely multifactorial. These may include the conditions and use of a cell-based 

artificial antigen presenting cell (aAPC) for stimulation, choice of aAPCs expressing co-

stimulatory molecules (including 4.1BBL and TRAIL), surface expression of CD58 that 

binds to CD2 on T cells to strengthen cell adhesion, and the timing of stimulation. With 

respect to the latter, we have previously reported that allowing Tregs to return to a resting 

size prior to additional stimulation increases their expansion which we ascribe to avoiding 

restimulation during a period of relative TCR signaling refractoriness.

This bioinformatic approach also found that, while all expanded tTreg express a core group 

of genes (that includes Foxp3 and Helios), one key difference between tTreg expanded 

with 1 or 2 rounds versus 3 or 5 rounds of stimulation was the differential expression 

level of 5 previously defined ‘Treg locking genes’ (Eos, Lef1, Satb1, IRF4, GATA1). tTreg 

expanded with 1 or 2 stimulations had increased expression of Eos, Lef1 and Satb1 (as 

well as the more recently defined Bach2 and TCF1), whereas tTreg+Rapa cells expanded 3 

or 5 times had increased expression of 2 of the 5 Treg locking signature genes, IRF4 and 

GATA1, associated with effector tTreg74. To our knowledge, this is the first example of an 

expansion-based, differential expression of these TF for human Tregs, suggesting an ordered 

approach to the transcriptional control of Treg stability and function.

tTreg receiving 3 or 5 rounds of stimulation in rapamycin also developed an independent 

gene expression pattern that did not overlap with genes previously demonstrated to be 

regulated by rapamycin suggesting that tTreg had intrinsic properties that favored a locking 

Treg signature and disfavored the acquisition of an exhaustion signature. The link between 

this cluster of genes and Tfr-associated genes is intriguing and is reminiscent, especially 

in the context of differential Treg-locking gene expression, of the recently described 

connection between murine resting Treg and Tfr associated with the activated Treg subset32. 

Expression of Lef1 and TCF1 can be used to divide Treg into resting (TCF1+LEF1+), 

activated (TCF1+LEF1+/lo), and effector (TCF1-LEF1-) subsets32. Similar to our data, this 

report found, in addition to Lef1 and Tcf1, resting Treg had higher expression of Satb1 and 
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Bach2. Additionally, Tfr cells were almost exclusively derived from the activated Treg pool 

that uniquely, amongst the three subsets, expressed both GATA1 and IRF4.

In conclusion, this study has shown that, in addition to maintaining Foxp3 expression 

and suppressive function, large-scale in vitro expanded tTreg maintained a canonical tTreg 

transcriptional profile and did not develop a signature consistent with exhaustion. The 

presence of increased inhibitory receptor expression on memory tTreg analyzed directly ex 
vivo suggests clinical products would best be started with naïve tTreg, which also maintain 

higher Foxp3+ expression after expansion than memory tTreg78, even though this would 

reduce initial yield. In regards to potential clinical banking, a typical apheresis unit of 

12×109 cells would yield ~10×106 purified naïve tTreg which, after 10×106-fold expansion 

from 5 rounds of stimulation in the presence of rapamycin, would generate a bank of 

~1×1014 cells. Since CD45RA expression on CD4 T cells decreases with age79, and our 

starting tTreg population was only 14±3% CD45RA+, bank size could be further increased 

by restricting donor age or by using UCB tTreg, which are uniformly CD45RA+80. While, 

admittedly, many additional factors will play into how many patients a bank of this size 

could treat, it is interesting to note that, at the 100×106/kg dose our recent clinical trial 

with UCB tTreg showed almost completely ameliorated GVHD, the upper limit would be 

10,000 patients receiving a single tTreg infusion. These data pave the way for consideration 

of generating tTreg banks of multiply re-stimulated cells to provide an off-the-shelf product, 

especially given that our prior data24,81and that of others82 indicate that related or unrelated 

donor Treg need not be more than HLA 3/6 matched with the possibility that HLA-matching 

requirements would be limited if at all. These studies provide relevant insights on the 

mechanisms of Treg-mediated protection from GVHD and support for the use of third-party 

Treg in clinical trials.
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Figure 1: Sort-purified naïve tTreg maintain Foxp3 and suppressive function after multiple 
stimulations. In vitro expansion of naïve human tTreg and naive CD4 T cells.
Naïve PB CD4+ T cells and tTreg were sort-purified (CD4+25–127+45RA+ and 

CD4+25hi127−45RA+, respectively) and expanded with anti-CD3 mAb-loaded KT64/86 

using two rounds of stimulation. tTreg were also stimulated 5 times in the presence 

of rapamycin. (A) Average expansion for CD4 T cells (Teff) and tTreg-No Rapa. (B) 

Representative example (left) and average percent CD127−Foxp3+ (CD4-gated). (C) 

Average (n=3) %TSDR demethylation of naïve tTreg stimulated once or twice in the absence 

of rapamycin compared with Foxp3 expression. (D) Average expansion for naïve tTreg 

stimulated 1–5 times in the presence of rapamycin. (E) Representative example (above) 

and individual data points along with average percent CD127−Foxp3+ (CD4-gated) for 

tTreg+Rapa stimulated 1–5 times as indicated. Mean ± 1 SEM is shown. (F) Average 

relative Foxp3 expression in naïve tTreg expanded in rapamycin with the indicated number 

of stimulations normalized to 1 stimulation. (G) Percent suppression of in vitro CD8 T 

cell proliferation tTreg/PBMNC ratios of 1:2, 1:4 and 1:8 for tTreg cultures stimulated the 

indicated number of times in the presence or absence of rapamycin. Data shown are mean 

± SEM. No significant differences were observed in suppression. All results are from 3–4 

independent experiments.
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Figure 2: Thymic Treg expanded >10-million fold maintain expression of tTreg-associated genes.
Naïve PB CD4+ T cells and tTreg were sort-purified (CD4+25–127+45RA+ and 

CD4+25hi127−45RA+, respectively) and expanded with anti-CD3 mAb-loaded KT64/86 

using up to 5 rounds of stimulation, and microarray profiling performed. (A) Principle-

component analysis (PCA) comparing CD4 Teff, tTreg-No Rapa, and tTreg-Rapa expanded 

with low (1 or 2) and high (3 or 5) number of stimulations. PCA1, PCA2: principle 

components 1 and 2. (B) Heatmap of Treg-related gene sets enriched between CD4 Teff, 

tTreg-No Rapa and tTreg+Rapa stimulated the indicated number of times using ssGSEA. 

Gene sets were comparisons of Treg vs. conventional T cells isolated from adipose tissue 

(GSE25087), fetal tissue (GSE25087) and peripheral blood (GSE7852). Foxp3 targets is a 

gene set identified by Foxp3 ChIP assay.
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Figure 3: Thymic Treg expanded >10-million do not upregulate genes associated with 
exhaustion.
Naïve PB CD4+ T cells and tTreg were sort-purified (CD4+25–127+45RA+ and 

CD4+25hi127−45RA+, respectively) and expanded with anti-CD3 mAb-loaded KT64/86 

using up to 5 rounds of stimulation, and microarray profiling performed. Heatmap of 

exhaustion-related gene sets enriched between CD4 Teff, tTreg-No Rapa and tTreg+Rapa 

stimulated the indicated number of times using ssGSEA. Gene sets were murine genes 

associated with exhaustion in both murine CD4 and CD8 T cells (Wherry Immunity 2014), 

and two gene sets from human CD8 T cell isolated from HIV+ patients able to control their 

infection (controllers) vs. those who developed AIDS (progressors) (Wherry Immunity 2018 

and GSE24081).
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Figure 4: tTreg+Rapa stimulated 3 or 5 times develop a gene signature distinct from tTreg 
stimulated 1 or 2 times.
To assess in vitro expansion-related changes in global gene expression between CD4 Teff, 

tTreg-No Rapa and tTreg+Rapa, RNA was purified from cultured cells and microarray 

analysis performed. Heatmap of genes differentially expressed between CD4+ Teff and 

tTreg-No Rapa stimulated once or twice, and tTreg+Rapa stimulated 1, 2, 3 or 5 times 

(FDR-adjusted P value, <0.05).
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Figure 5: Expanded CD4 Teff have increased expression of multiple inhibitory co-receptors 
genes compared to tTreg expanded with or without rapamycin.
To assess protein expression of specific inhibitory receptors, aliquots of CD4 Teff and 

tTreg cultured with or without rapamycin undergoing the indicated number of stimulations 

were concurrently thawed and stained with antibodies to CTLA4, TIGIT, PD-1 and Lag-3. 

To determine how this expression compares to naïve and memory CD4 T cells and tTreg 

directly ex vivo, PBMC were also stained for these markers. Representative example and 

average % of CD4+ Teff, tTreg-No Rapa or tTreg+Rapa that express CTLA4 (A) or TIGIT 

(B). Summary of PD-1 (C) and Lag-3 expression (D) in CD4+ Teff, tTreg-No Rapa or 

tTreg+Rapa after expansion or directly ex vivo. (E, F) Pie chart showing Boolean gating for 

PD-1 and Lag-3 co-expression in CD4+ Teff, tTreg-No Rapa or tTreg+Rapa after expansion 

(E) or directly ex vivo (F) from a representative experiment. Results from expanded cells are 

n=3 independent donors and ex vivo data is from n=12 donors.
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Figure 6: Transcription factor WGCNA shows tTreg stimulated 1– 2 times express different 
‘tTreg locking’ transcription factors than tTreg stimulated 3–5 times.
Naïve PB CD4+ T cells and tTreg were sort-purified (CD4+25– 127+45RA+ and 

CD4+25hi127−45RA+, respectively) and expanded with anti-CD3 mAb-loaded KT64/86 

using up to 5 rounds of stimulation, and microarray profiling performed. (A) Topological 

overlap matrix plot with hierarchical clustering tree and the resulting gene modules from 

a weighted network of total CD4 Teff, tTreg-No Rapa and tTreg+Rapa transcripts. (B) 

Eigengene adjacency heatmap showing module eigengene similarity to CD4 Teff, tTreg-No 

Rapa and tTreg+Rapa.
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