Skip to main content
. 2022 Jul 10;23:270. doi: 10.1186/s12859-022-04758-z

Table 5 .

Comparison of diagnosis accuracy with one source batch for training and another target batch for testing

Source Target Baseline ComBat Ratio_G fSVA ResNet NormAE Remove_R Ours
1 2 0.753 0.778 0.798 0.773 0.791 0.805 0.852 0.889
1 3 0.813 0.797 0.858 0.836 0.803 0.812 0.856 0.879
2 1 0.799 0.817 0.821 0.857 0.824 0.827 0.839 0.875
2 3 0.828 0.851 0.818 0.829 0.852 0.866 0.833 0.870
3 1 0.876 0.861 0.864 0.854 0.868 0.889 0.863 0.907
3 2 0.763 0.759 0.754 0.824 0.805 0.799 0.821 0.884
Overall 0.805 0.811 0.819 0.829 0.824 0.833 0.844 0.884

“Baseline” denotes classification based on raw input data without any calibration for batch effect removal