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Abstract
Opal is the first published example of a full-stack platform infrastructure for an implementation science designed for ML 
in anesthesia that solves the problem of leveraging ML for clinical decision support. Users interact with a secure online 
Opal web application to select a desired operating room (OR) case cohort for data extraction, visualize datasets with built-
in graphing techniques, and run in-client ML or extract data for external use. Opal was used to obtain data from 29,004 
unique OR cases from a single academic institution for pre-operative prediction of post-operative acute kidney injury (AKI) 
based on creatinine KDIGO criteria using predictors which included pre-operative demographic, past medical history, 
medications, and flowsheet information. To demonstrate utility with unsupervised learning, Opal was also used to extract 
intra-operative flowsheet data from 2995 unique OR cases and patients were clustered using PCA analysis and k-means 
clustering. A gradient boosting machine model was developed using an 80/20 train to test ratio and yielded an area under 
the receiver operating curve (ROC-AUC) of 0.85 with 95% CI [0.80–0.90]. At the default probability decision threshold of 
0.5, the model sensitivity was 0.9 and the specificity was 0.8. K-means clustering was performed to partition the cases into 
two clusters and for hypothesis generation of potential groups of outcomes related to intraoperative vitals. Opal’s design has 
created streamlined ML functionality for researchers and clinicians in the perioperative setting and opens the door for many 
future clinical applications, including data mining, clinical simulation, high-frequency prediction, and quality improvement.

Keywords  Implementation science · Anesthesia information management system (AIMS) · Machine learning · Artificial 
intelligence · Data organization and processing · Medical outcome monitoring and prediction

1  Introduction

The application of machine learning (ML) algorithms toward 
clinical decision support (CDS) has been demonstrated to be 
effective in many fields of medicine [1, 2]. Within clinical 
anesthesia, ML models have been trained to predict numer-
ous clinical outcomes including intraoperative hypotension 
[3], post-operative length to discharge [4], and post-opera-
tive mortality [5, 6]. However, there remains a significant 
disparity between the rate of development of ML models 
and their clinical integration within the perioperative setting.

Clinical dashboards are the primary approach to data 
management within the perioperative environment [7, 8]. 
One example is the anesthesia information management 
system (AIMS), a comprehensive system of hardware and 
software integrated with the electronic health record (EHR) 
that combines perioperative documentation review with the 
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intraoperative record [9, 10]. AIMS allow for a streamlined 
provider workflow with improved perioperative assessments, 
automated clinical decision support, quality improvement 
measures, and billing [10–13]. A survey of academic medi-
cal institutions found that 75% of U.S. academic anesthesi-
ology departments had adopted AIMS in 2014, with 84% 
expected to do so by 2018–2020 [14].

Due to its broad national adoption, AIMS has been widely 
utilized for CDS [15–17]. AIMS-based systems have been 
implemented to target post-operative nausea and vomiting 
[18], gaps in blood pressure monitoring [19], intraoperative 
hypotension and hypertension [20], hypoxia and acute lung 
injury [21], and quality and billing improvement measures 
[22–24]. High-frequency data updating AIMS-based sys-
tems have also been developed including Smart Anesthesia 
Manager (SAM), a near real-time AIMS-based system for 
addressing issues in clinical care, billing, compliance, and 
material waste [25]. However, SAM and other AIMS-based 
systems have not yet been shown to be compatible with ML 
algorithms.

ML has the potential to significantly reshape the intra-
operative course of care. Wijnberge et al. demonstrated that 
an ML-based early warning system reduced median time 
of intraoperative hypotension [26]. However, prediction of 
hypotension in this study was performed solely based on 
the intraoperative arterial waveform without additional data 
from the EHR. While a single-variable ML predictor has 
clinical value, we believe that a multi-variable ML system 
that combines intraoperative and EHR data can broadly 
improve effectiveness of anesthesia care.

Here we discuss Opal, a specialized AIMS-based ML sys-
tem designed for clinical and research operations that serves 
as a seamless connection between the EHR and health care 
providers. Opal provides expedient data extraction, adjust-
able queries by provider-determined cohort selection, and 
a detailed dashboard for comprehensive data visualization 
and implementation of ML algorithms. This comprehensive 
approach to clinical ML provides a unified solution to the 
traditional problems of data accessibility, provider usability, 
and security.

As a demonstration of Opal’s capabilities, we have devel-
oped two simple machine learning models. One supervised 
learning model that predicts post-operative acute kidney 
injury (AKI) and a clustering model that uses intra-opera-
tive flowsheet values to cluster patients based on intraopera-
tive vitals. Post-operative AKI is an important outcome to 
predict because AKI is associated with dangerous cardiac 
events and increased mortality. If early warning is available 
for an anesthesiologist, there are interventions available to 
reduce the likelihood that patient will have a poor outcome. 
Here we provide the development of these models and a sim-
ple internal validation of the AKI model, but external vali-
dation of both models would be recommended before use.

2 � Methods

Data retrieval was approved by the UCSF institutional 
review board (IRB #17–23,204) from UCSF’s EHR data 
warehouse for all operative cases from 2012 onward and 
the requirement for informed consent was waived by the 
IRB. Opal is an online application for physician use that 
performs streamlined ML for prediction and classification 
purposes within the clinical setting. It consists of a JavaS-
cript web client and a PostgreSQL database that is populated 
with data from the EHR. Users interact with the web client 
as a front-end interface to extract information from the data-
base based on a selected cohort. An overview of the Opal 
dataflow is provided in Fig. 1 and is divided into three key 
phases: cohort selection, data extraction and visualization, 
and clinical prediction.

2.1 � Cohort selection and query building

During dynamic cohort selection, the user interacts with a 
client dashboard on the web browser that allows for selec-
tion of retrospective cases by patient identifier, time period, 
patient demographics, procedures, problem lists, and pre-
operative laboratory values (Fig. 2). Prior to data visuali-
zation, users are provided with a sample size estimate for 
their given set of parameters, which may be re-adjusted to 
match the desired sample size prior to submission. The user 
is also required to indicate a post-operative outcome of inter-
est from a list of options, with examples including all-cause 
mortality, delirium, acute kidney injury, and nausea and 
vomiting. Once selection criteria are finalized, a dynamic 
SQL query of the variable database is executed when the 
user selects “Launch Visualization” on the dashboard.

2.2 � Data extraction and visualization

There are currently 29,004 unique case IDs available for 
extraction within the Opal database that correspond to 
operative cases within the University of California, San 
Francisco health system between December 7, 2016 and 
December 31, 2019. The Opal database serves as a Post-
greSQL database that is structurally divided into two sepa-
rate partitions: a smaller cohort database that stores a list of 
case identifiers (ID) with corresponding clinical features that 
correlate with cohort selection, and a larger feature database 
that stores the complete set of medical features by case ID 
for data retrieval. Both databases will be updated weekly 
from the EHR and stored separate from the EHR, which 
allows for ML-optimized data processing. Large structural 
changes to the data are performed in this step (e.g. joining of 
medications with multiple names, validation of lab ranges, 
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calculation of oral morphine equivalents). Once a cohort 
has been finalized, data is extracted from the variable data-
base and outputted to the JavaScript web client for review 
and visualization (Fig. 3). For large datasets, the web client 
can be bypassed and the data can be exported directly to an 
external source for large-scale analysis.

When data is first passed into the JavaScript web client, 
a second step of automated data processing occurs to maxi-
mize data accuracy and completeness (see supplement for 
more details). Further data cleaning steps that were other-
wise not performed in the PostgreSQL database occur here 
(e.g. regression imputation of missing values, merging of 
duplicate values, separation of boluses and infusions). Users 
have the option to omit this step if they prefer manual pro-
cessing, but automated pre-processing occurs at default.

Users may access the Opal web client from any secure, 
in-network workstation including verified desktops, laptops, 
and mobile devices. The web client interface allows for users 
to review individual cases within the cohort. In the case 
review format, users can view vital signs, fluid administra-
tion, laboratory values, medications, and ventilation of ret-
rospective cases in a chronologically ordered fashion. This 
is further discussed in the results section below. Opal also 
supports in-client ML though both unsupervised (K-means 
clustering) and supervised (logistic regression, random for-
est, gradient boosting machines) architectures, which can 

be used for comparison of current patient with retrospective 
cases. Deletion or omission of individual cases can also be 
performed at this time for further data processing. Once the 
user finalizes the cohort and meets the appropriate necessary 
IRB and other data safety requirements, the cases can be 
exported to an external platform via a JavaScript object nota-
tion (JSON) or comma-separated value (CSV) file for exter-
nal analysis and model training. The case data can then be 
utilized for independent research or used to train a machine 
learning model to integrate back into Opal.

2.3 � Machine learning and clinical prediction

Opal can be utilized for clinical ML prediction. In its cur-
rent iteration, Opal supports logistic regression (LR), ran-
dom forest (RF), and gradient boosting machines (GBM) 
architectures, with support for additional architectures, 
such as neural networks. In order to perform clinical pre-
diction in Opal, users can either first train a ML model on 
an external platform and then upload the model parameters 
back within Opal or train a smaller dataset using the Opal 
platform. For example, in order to employ a LR architec-
ture users can provide an outcome of interest, a list of pre-
dictive features, and their corresponding weights. Once the 
user has defined the model within Opal, high-frequency 
data updates for a prospective patient can be retrieved by 

Fig. 1   Overview of the Opal dataflow structure. The dataflow of Opal 
is outlined in three phases: cohort selection, data extraction and vis-
ualization, and machine learning prediction. A cohort is first speci-
fied by the user to build a query for the Opal database. Data is then 
extracted via a two-step process with a superficial query of the cohort 
database to identify appropriate case IDs followed by a detailed query 
of the variable database to extract data from those cases for output. 
Once data has been extracted to the client, the user has the oppor-
tunity to visualize the data on the Opal dashboard, refine the cohort 

to better match the desired specifications, or export the data to an 
external platform for model training or any other research application. 
If machine learning prediction is desired the user can upload model 
parameters back into the Opal client, which can then use real-time 
data asynchronously from the EHR to generate live predictions. Icons 
used in generating this diagram were obtained from the Noun Project 
and are cited in the article references. EHR electronic health record, 
ID identifier
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the JavaScript client from the EHR API to perform predic-
tion on prospective cases. Models can be used for single 
cases to answer clinical questions, for batch prediction on 
a set of multiple cases, or can saved to be used for future 

use such as prospective analysis of predictive value for 
research models. All model prediction is performed within 
the JavaScript web browser, thereby increasing accessibil-
ity and usability for Opal users.

Fig. 2   Opal web dashboard for 
dynamic cohort selection. The 
Opal web dashboard can be 
accessed through any in-system 
web browser and is used for 
cohort selection to generate 
the desired dataset. Desired 
case characteristics are selected 
on the dashboard interface 
through the use of sliding scales 
for quantitative variables and 
checkbox selections for qualita-
tive variables. A Opal dash-
board landing page. B Selection 
interface for demographics. C 
Selection interface for problem 
list. D Selection interface for 
laboratory values
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2.4 � Data security

Security remains a large issue for all EHR and AIMS-based 
data systems, and Opal is designed to maximize security 
at each step of the data transfer. Since the Opal web client 
is available via web browser, it may be securely accessed 
on any encrypted, in-network device. A valid dual-authen-
tication user sign-on in addition to pre-approved device 
encryption are baseline requirements for accessing Opal. 
The subnet for the web client is private. The PostgreSQL 
databases are stored on secure, encrypted servers and no data 
is directly stored on the device at any time prior to a data 
export request from the user. As with most EHRs, logs are 
kept on every user and instance that accesses data on Opal 

for use tracking, and auditing is performed on an external 
server. Penetration testing is performed on a regular basis to 
ensure system security.

2.5 � Example models developed with Opal

By providing streamlined access to EHR data, Opal allows 
for a variety of direct data analysis applications. Here we 
provide two discrete examples of data extraction through 
Opal, for use in ML analysis of acute kidney injury (AKI) 
and intraoperative vitals clustere analysis. Supervised 
learning via a gradient boosting machine (GBM) was con-
ducted to train a model for the prediction of prospective 
AKI patients, while unsupervised learning via K-means 

Fig. 2   (continued)

Fig. 3   Sample table of resulting cases from cohort selection. Several 
rows from a sample table of cases are displayed here to serve as an 
example of the list of cases which is returned to the user on the Opal 
web client following cohort selection and initial data extraction. Each 
row represents a separate case, with the corresponding case identi-
fier, case date, and clinical data listed for each case. From this screen, 
users may conduct case review on individual cases, choose to omit 
individual cases from the cohort by clicking on the rightmost “Omit” 

column, or launch visualization in the toolbar located at the top of 
the screen. All case data provided in this figure are falsified and serve 
only as a viewing example. BMI body mass index, BUN blood urea 
nitrogen, Cl Chloride, CO2 carbon dioxide, CR creatinine, GLC glu-
cose, HGB hemoglobin, INR international normalized ratio, K potas-
sium, MRN medical record number, NA sodium, PLT platelets, PT 
prothrombin time, PTT partial thromboplastin time, WBC white blood 
count
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clustering was used to analyze intraoperative vitals for 
hypothesis generation.

2.6 � Gradient boosting machine for prediction 
of post‑operative acute kidney injury

After above-mentioned IRB was attained, a cohort of 
29,004 adult operative cases at UCSF hospitals Moffitt-
Long and Mission Bay between December 7, 2016 and 
December 31, 2019 available in the Opal database were 
extracted via the Opal pipeline. The patient characteristics 
from the cohort are outlined in Table 1. A binary stage 1 
or greater AKI outcome was defined using the KDIGO 
criteria [27] of a post-operative creatinine increase of 
0.3 mg/dL or greater (chosen over AKIN and RIFLE cri-
teria) [28]. Of the 29,004 cases, patients without a pre-
operative creatinine value were excluded leaving 8,858 
cases. Post-operative AKI was predicted pre-operatively at 
the moment immediately prior to transporting the patient 
to the operating room for anesthesia. 155 clinical vari-
ables were extracted for all cases, including patient demo-
graphics, medications, ICD10 codes, laboratory values, 
surgery-specific risks, and vital signs. Data pre-processing 
including standardizing, imputation, dataset merging, and 
visualization served to validate data quality. Sample size 
was chosen based upon the maximum available data with 
available outcomes to optimize training of the model. 
Missing data in input variables were imputed to zero in 
some variables such as medication administrations and 
ICD10 codes, but in other cases were not imputed and left 
as NaN values as the missing value provides added predic-
tive value in the model we chose (XGBoost). 74 categori-
cal variables were one-hot-encoded and ICD10 codes were 
enumerated by category for each patient. Variables that 
contained information after the prediction timepoint were 
truncated to the end of the anesthetic case. The 8,858 cases 
were split into training (80%) and test (20%) datasets. 
Because of the class imbalance and in order to improve 
the model sensitivity, AKI cases were oversampled in the 
training set to match the number of non-AKI cases. We 
compared this model to a reference logistic regression with 
a similar training/test split, using the most important vari-
ables identified in the gradient boosting model using the 
Shapley method of machine learning interpretation.

A gradient boosting machine learning decision tree 
(XGBoost python package) was trained externally to Opal 
due to the size of the dataset (as mentioned above, these 
weights can be uploaded to Opal for prediction of new 
cases). Feature importance was calculated by randomly 
permuting each variable in the training set and measuring 
the effect on prediction.

Table 1   Cohort characteristics for prediction of acute kidney injury

Continuous variables are summarized by mean (SD) and categorical 
variables are summarized by n (%)
AKI acute kidney injury, Peds pediatrics, ASA American Society of 
Anesthesiologists, ASA E emergency surgery, h hour, kg kilogram, m 
meter

No AKI AKI P*

Total cases 8474 (95.7) 384 (4.3)
Age (years) 60.1 (15.9) 58.7 (14.6) 0.08
Gender
 Female 3035 (45.7) 132 (39.5) 0.03
 Male 3603 (54.3) 202 (60.5)

Body mass index (kg/m2) 27.7 (7.7) 28.1 (7.9) 0.29
Weight (kg) 79.2 (23.0) 81.4 (25.9) 0.13
ASA class
 1 105 (1.6) 0 (0.0)  < 0.001
 2 1619 (24.7) 31 (9.5)
 3 4209 (64.2) 244 (74.8)
 4 621 (9.5) 51 (15.6)
 5 7 (0.1) 0 (0.0)

ASA E
 No 4165 (62.7) 226 (67.7) 0.079
 Yes 2473 (37.3) 108 (32.3)

Primary service
 Anesthesia 18 (0.3) 1 (0.3)  < 0.001
 Breast 5 (0.1) 1 (0.3)
 Cardiac surgery 123 (1.9) 3 (0.9)
 Cardiology 465 (7.0) 22 (6.6)
 Cardiology peds 7 (0.1)
 Gastroenterology 106 (1.6) 7 (2.1)
 General surgery 1184 (17.8) 29 (8.7)
 Genito urology 237 (3.6) 21 (6.3)
 Genito urology peds 1 (0.0) 0 (0.0)
 Gynecology 25 (0.4) 2 (0.6)
 Gynecology oncology 7 (0.1) 0 (0.0)
 Neurological surgery 1038 (15.6) 15 (4.5)
 Ophthalmology 19 (0.3) 2 (0.6)
 Oral Maxillo-facial surgery 66 (1.0) 2 (0.6)
 Orthopedics surgery 1144 (17.2) 29 (8.7)
 Otolaryngology 136 (2.0) 4 (1.2)
 Plastic surgery 269 (4.1) 23 (6.9)
 Pulmonary 103 (1.6) 2 (0.6)
 Thoracic surgery 110 (1.7) 5 (1.5)
 Transplant 809 (12.2) 103 (30.8)
 Vascular surgery 766 (11.5) 63 (18.9)

30 Day prior admission
 No 3826 (57.6) 201 (60.2) 0.39
 Yes 2812 (42.4) 133 (39.8)

90 Day prior admission
 No 2526 (38.1) 130 (38.9) 0.79
 Yes 4112 (61.9) 204 (61.1)

Case length (h) 179.1 (113.7) 171.6 (108.7) 0.22
Number of allergies 5.9 (8.7) 7.2 (9.6) 0.07
3 Year prior anesthesia cases 2.3 (3.5) 2.6 (3.4) 0.07
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2.7 � K‑means clustering of intraoperative vitals

The Opal dataflow was used to retrieve data from 2995 
unique case IDs corresponding to a continuous period 
between January 1, 2017 and February 28, 2018. These 
operative cases were also taken from UCSF where opera-
tions occurred at Moffitt-Long hospital and are a subset of 
the patients described in Table 1. As the training of this 
model occurred within the Opal infrastructure, we chose 
a smaller dataset to assure there would be sufficient com-
putational power. A total of 6 variables were included in 
the analysis, which consisted of intraoperative vital signs. 
Missing data was imputed with simple forward fill and the 
remaining missing values were imputed with the value “0”. 
Time of clustering occurred at the end of the operation.

Data from these case IDs were loaded into the Opal web 
client. PCA dimension reduction were applied to the input 
variables and then K-means clustering was performed to par-
tition the cases into two clusters. Case review was performed 
on individual patients in each cluster to review vital signs for 
each respective cluster.

3 � Results

3.1 � Gradient boosting machine for prediction 
of post‑operative acute kidney injury

Of the 8858 cases, 4.3% of the patients had postoperative 
AKI based upon the definition described above. Validation 
of the model on the holdout test dataset yielded an area 
under the receiver operating curve (ROC-AUC) of 0.85. 
The 95% confidence interval for the ROC-AUC was 0.80 
to 0.90 measured using the DeLong method. At the default 

probability decision threshold of 0.5, the model sensitiv-
ity was 0.9 and the specificity was 0.8. Figure 4 shows the 
ROC curve and feature importance of the initial retrospec-
tive model prediction of AKI. This model performed sig-
nificantly better than our reference logistic regression model 
that predicted with a ROC-AUC of 0.73 (0.70–0.76) using 
the most important variables selected from the gradient 

A

DeLong 95% CI  (0.80-0.90)

B

C

Fig. 4   Results from gradient boosting machine for acute kidney 
injury. 8,858 unique cases with pre-operative creatinine values 
were extracted from the Opal database and exported to train a gra-
dient boosting machine for the prediction of AKI in post-operative 
patients. 155 different clinical variables were used, including patient 
demographics, medications, ICD10 codes, laboratory values, surgery-
specific risks, and vital signs. Cases were divided into training (80%) 
and test (20%) datasets. The model achieved a ROC-AUC of 0.85 
[0.80,0.90] when validated on the holdout test set, with a sensitivity 
of 0.9 and sensitivity of 0.8 at a selected decision threshold of 0.5. 
The precision-recall curve and a chart listing the most predictive clin-
ical features of the model are provided here as well. Panel C presents 
the most predictive features in the model in order of importance, with 
letter variables representing corresponding ICD 10 codes as follows: 
I circulatory system, K digestive system, N genitourinary system, J 
respiratory system, R abnormal lab findings, Z factors influencing 
health status. A ROC-AUC curve for the GBM model. B Precision-
recall curve for the GBM model. C List of most important features 
for the GBM model. AKI acute kidney injury, GBM gradient boosting 
machine, ICD10 International Statistical Classification of Diseases 
and Related Health Problems, ROC-AUC​ area under the receiver 
operating curve

▸
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boosting model (see SHAP figure in supplemental materi-
als). These results and the details of the reference logistic 
regression model are shown in the supplement materials.

3.2 � K‑means clustering of intraoperative vitals

2995 cases were analyzed using the clustering analysis. 
Figure 5 demonstrates the results of the K-means cluster-
ing after PCA dimension reduction and case review on the 
Opal dashboard. Opal was able to successfully partition the 
cases into two distinct groups based on the provided pre-
dictive features, thus allowing for prospective clustering of 
future cases. Performance evaluation was assessed via visual 
inspection as the goal was hypothesis generation for future 
investigation.

4 � Discussion

In this study we present Opal, a comprehensive AIMS-based 
ML system that designed specifically for large-scale ML. 
Opal addresses problems of data accessibility, provider 
usability, and security that have historically limited ML 
development in medicine.

The greatest strength of the Opal system is its ability to 
extract large-scale datasets for both research and clinical 
applications. The EHR is the most widely used data source 
for training of ML models. Studies that utilize data from the 
EHR often require manual data extraction, a process which 
can be both difficult and time-consuming, particularly for 
large-scale queries. Opal creates a streamlined pipeline for 
data extraction that is standardized, replicable, and compre-
hensible. Users may extract data simply by selecting ranges 
in case criteria without the need for advanced query func-
tions or knowledge of database-specific languages, such as 
SQL or CACHE. A wide set of set of features are available 
in Opal including vital signs, laboratory values, problem 
lists, and procedures which maintains the ability to lever-
age a large set of features to draw complex associations, 
one of the fundamental strengths of ML algorithms. Data 
extracted from Opal is automatically pre-processed with the 
use of regression imputation, joining of duplicate values and 
features, and validation of data with exclusion of significant 
outliers. This greatly lowers the threshold for whom ML 
can be performed. Opal’s infrastructure also brings us as a 
medical field much closer to being able to run algorithms 
that use EHR data in a real-time way to inform and improve 
clinical care. Many retrospective ML algorithms have been 
developed, but unless we can build platforms like Opal that 
integrate with the EHR and can process complex data in 
ways the EHR is limited, we will not be able to use these 
ML algorithms for clinical decision support.

One of the greatest criticisms of current ML algorithms 
is that the statistical process remains opaque the use, thus 
creating a “black box” algorithm. While Opal does not solve 
the fundamental issue of statistical obscurity, it does help 
to bridge the gap between provider and algorithm through 
the use of dynamic cohort selection and data visualization 
techniques that increase user feedback and data clarity. 
The immediate visual feedback allows users to adjust case 
cohorts as necessary to generate an appropriate target dataset 
and to better understand the distribution of their datasets 
prior to formal analysis. This greater familiarity with the 
data enables hypothesis generation by the user and more 
accurate training of statistical models.

Data taken from Opal can be used for large-scale sta-
tistical analyses or randomized clinical trials by clinicians 
and researchers alike and creates the opportunity for a broad 
spectrum of clinical applications including data mining, 
clinical simulation, high-frequency prediction, and quality 
improvement. Opal has already been shown to be effective 
for unsupervised ML with relation to intraoperative vitals 
and supervised learning for AKI. PCA dimension reduc-
tion of the vitals provided the optimal separation of cases, 
suggesting that non-linear representations of hemodynamic 
control may be associated with meaningful separations 
between patient outcomes. Further research can be per-
formed to train a ML model to predict predefined outcomes 
in future patients, and can readily validated through the Opal 
framework. Furthermore, this same process can be applied 
to any clinical outcome of interest, thus opening the door 
for a multitude of large-scale statistical analyses and clini-
cal trials. While more complex model architectures such as 
artificial neural networks are not available at this time, they 
can be readily added to the existing pipeline and are cur-
rently being implemented.

We acknowledge several limitations with this study. One 
widely recognized constraint of EHR data revolves around 
its inaccuracy or missingness based on inconsistency of 
provider entry for clinical data. While Opal creates a pipe-
line for expedited data retrieval from the EHR and includes 
multiple steps for data processing, it cannot guarantee data 
accuracy or avoid missingness of EHR data any more that 
traditional methods of data extraction. Thus, user post-
processing of data may still be required for larger datasets 
to ensure precision of data. Opal does offer several points 
for data processing, including an automated pre-processing 
steps in both the PostgreSQL database and the JavaScript 
web client that includes variable standardization, flagging 
of abnormal values, and baseline regression imputation for 
missing values. Despite these steps, we still recognize that 
data extracted via Opal may still have deficiencies and may 
require additional review prior to analysis.

One possible unintended consequence of increasing 
availability of data extraction and ML through Opal is that 
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Fig. 5   K-means clustering of intraoperative vitals. 2,995 unique cases 
were extracted from the Opal database and were visualized on the 
Opal web client for unsupervised machine learning analysis. K-means 
clustering was performed on the cohort to partition the cases into 
two clusters. Individual cases were chosen for case review by click-
ing each circle from the data visualization graph on the left. Case 
data from the selected case was displayed corresponding to the data 
categories in the blue toolbar and time frame on the grey timeline 
selected by the user on the upper right-hand side. Different combi-
nations of the vital signs flowchart, laboratory values, fluids, and 
medications can be selected at once for viewing. Supervised machine 
learning architectures including logistic regression and random for-
est can also be performed by the web application to allow the user to 

compare a prospective patient with similar past cases. After review-
ing the cohort, the user may modify the list of cases to better match 
his or her research or clinical needs and may export the data to an 
external platform for further analysis. A Individual case analysis of 
vital signs flow chart. B Individual case analysis of laboratory values, 
fluid administration, and medications. dbp diastolic blood pressure, h 
heart rate, PCA principal component analysis, po pulse oximetry, rr 
respiratory rate, sbp systolic blood pressure. The numbers separated 
by the blue lines in the top right of the image are the laboratory val-
ues of the patient showing the Complete Blood Count (CBC), Chem-
istry 7 (CHEM 7), and coagulation (COAG) in the traditional “fish-
bone” shorthand representations of these laboratories regularly used 
in United States medical centers
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some users may not have formal statistical training or be as 
familiar with ML techniques. Therefore, there is some risk 
of provider misinterpretation of results when using Opal. 
To counteract this, the Opal interface informs all users that 
results shown are for research and clinical development 
purposes and all the data presented by Opal indicate data 
associations and not causal relationships.

Another limitation is the limited generalizability and lack 
of interoperability of Opal in both its implementation and 
data extraction. Since Opal is designed specifically to match 
the system of our EHR, other institutions may have a difficult 
time replicating Opal if their EHR system differs greatly 
in accessibility, structure, and security. Furthermore, data 
extracted via Opal is limited to a single institution which 
limits the power and generalizability of clinical trials or 
analyses that may be generated from this data. However, 
extracted data can still be shared through an external process 
mediated by the user. Despite these limitations, we believe 
that there remains a significant importance in reporting the 
success of Opal at a single institution to promote the creation 
of additional EHR data pipelines broadly across the nation 
to promote ML.

Supplementary Information  The online version of this article con-
tains supplementary material available https://​doi.​org/​10.​1007/​
s10877-​021-​00774-1.
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