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ABSTRACT
Breast cancer is the most frequent cancer among women and the second highest mortality in 
female across the world. Recent studies have illustrated that sex-determining region Y (SRY)-box 
protein (SOX) family plays essential roles in regulating various cancers. Nevertheless, the detailed 
effects of SOX13 on breast cancer are still uncovered. In our present study, SOX13 protein level 
was measured by using western blot assay in tissues and cells, and the results showed that SOX13 
was upregulated in breast cancer tissues and cells compared with normal samples. Moreover, 
silencing SOX13 inhibited breast cancer cell viability, arrested cell cycle at G1/S phase and 
suppressed glycolysis, while overexpression of SOX13 reversed these events. Additionally, 
SOX13 knockdown reduced the level of proteins related to Wnt/β-catenin signaling pathway, 
whereas overexpression of tripartite motif containing 11 (TRM11) efficiently attenuated the 
effects, indicating that SOX13 controlled Wnt/β-catenin pathway depending on TRIM11. 
Furthermore, the data gained from xenograft tumor model illustrated that silencing SOX13 
suppressed the tumor growth in nude mice and the glycolysis of tissues. In conclusion, our 
investigation illustrated that SOX13 facilitated breast cancer cell proliferation and glycolysis by 
modulating Wnt/β-catenin signaling pathway affected via TRIM11.
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Highlight

● This work elucidated the roles of SOX13 in 
breast cancer progression.

● This study uncovered that SOX13 promoted 
breast cancer growth and glycolysis.

● The finding proved that SOX13 regulated 
TRIM11/Wnt/β-catenin signaling pathway.

● More downstream genes of SOX13 involved 
in glycolysis will be explored.

Introduction

Breast cancer, a highly heterogeneous disease, is 
considered the leading malignancy in women all 
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over the world and the second highest cause of 
mortality in female [1–3]. Neither early diagnosis 
nor treatment for a favorable prognosis of breast 
cancer has been effective in reducing mortality [4]. 
Surgery as the major treatment strategy for treat
ing breast cancer has some negative effects on 
patients’ physiology, emotion, as well as social 
activity [5]. Emerging evidence proves that breast 
carcinogenesis is a complicated process with elu
sive molecular mechanisms [6]. In addition, sev
eral vital oncogenes and anti-oncogenes have been 
found to be associated with breast tumorigenesis 
[7,8]. However, the details of pathogenic mechan
isms and therapeutic gene targets remain unclear. 
For good prognosis, it is crucial to explore novel 
genes related to breast cancer progress.

Even though cancer cells are rich in oxygen, 
glucose metabolism is still largely dependent on 
glycolysis. Aerobic glycolysis, also known as the 
Warburg effect, is verified to be the leading out
come of oncogenic drivers [9]. Wnt/β-catenin 
signaling pathway is essential for maintaining 
the development of normal tissue and disordered 
Wnt signaling results in tumorigenesis [10,11]. 
The members of Wnt family can stabilize β- 
catenin in an indirect way. β-catenin is an 
important transcription factor that will transfer 
into the nucleus to mediate relevant genes influ
enced by Wnt pathway like c-Myc and Axin2 
[10]. C-Myc, as one of the oncogenes, satisfies 
the demands of rapidly growing cancer cells by 
up-regulating glycolytic activity [12,13]. 
Moreover, in addition to lactate dehydrogenase 
A (LDHA), c-Myc is capable of up-regulating 
several genes related to glycolysis such as glucose 
(GLUT1), and hexokinase 2 (HK2). It also sig
nificantly promotes the uptake and converse of 
glucose into lactate, thereby facilitating glycolytic 
activity [14–16].

TRIM11, an E3 ubiquitin ligase, has been dis
covered to facilitate various cancers progress [17]. 
For example, Liu J et al. revealed that TRIM11 
accelerated the growth and invasion of hepatoma 
cell [18]. Yin Y et al. reported that TRIM11 pro
moted colon cancer progress by enhancing cell 
viability and inhibiting cell apoptosis [19]. For 
breast cancer, Wenbo Song et al. uncovered that 
TRIM11 promoted breast carcinoma cell prolifera
tion via modulating serine/threonine kinase 1/ 

glucose transporter 1 (AKT/GLUT1)-associated 
glycolysis [20]. Previous studies have reported 
that Wnt/β-catenin pathway is involved in the 
development of breast cancer [21,22]. In addition, 
it is reported that silencing TRIM11 suppressed β- 
catenin activity through the ubiquitination of 
Axin1, thereby attenuating lymphoma [23], indi
cating that TRIM11 possesses regulatory effect on 
Wnt/β-catenin signaling pathway. Nevertheless, 
whether TRIM11 regulates Wnt/β-catenin signal
ing pathway in breast cancer progression remains 
unclear.

Sex-determining region Y (SRY)-box protein 
(SOX) family, the testis-determining factor of 
mammal, consists of approximately 20 SOX 
proteins, which all have SRY-related high moti
lity group (HMG) domain, the highly conserved 
DNA-binding sequences in mammals [24]. 
Recent studies have illustrated that genes in 
SOX family were tightly correlated with the 
occurrence and development of diverse cancers, 
such as hepatocellular carcinoma [25] and 
squamous-cell carcinoma [26]. SRY-BOX13 
(SOX13) as a crucial member of SOX family 
has been proved to exert essential role in reg
ulating normal and cancer cell properties by 
mediating Wnt/β-catenin signaling pathway 
[27]. Previous investigation also found that 
SOX13 was highly expressed in multiple cancers 
and contributed to poor prognosis for patients 
[28,29]. Furthermore, it is reported that SOX13 
is able to trigger TRIM11 transcription by bind
ing 18 bp upstream of transcriptional initiation 
site of TRIM11 promoter and accelerate thyroid 
cancer [30]. However, the effect of SOX13 on 
breast carcinogenesis has not been elucidated.

Here, we hypothesized that SOX13 is closely 
related to the development of breast cancer. 
Therefore, this work aimed to verify the essen
tial roles of SOX13 in breast cancer progress 
and to explore the molecular mechanism of 
SOX13.

Materials and methods

Human tissue specimens

Fifty paired breast cancer tissues and their adjacent 
tissues used in this investigation were collected from 

13034 X. JIN ET AL.



Taizhou Municipal Hospital. All patients received 
mastectomy at this hospital and did not receive 
chemoradiotherapy or other adjuvant treatment 
before surgery. All experiments in this study were 
approved by the Ethics Committee of Taizhou 
Municipal Hospital (Approval no. 2021LW008) and 
performed in accordance with the policy of the 
Declaration of Helsinki. All patients participating in 
this research have signed informed consent.

Cell culture

MDA-MB-231, SK-BR-3, ZR-75-30 and BT-474 
cells were incubated in Dulbecco’s modified eagle 
medium (DMEM, L110KJ, Basal Media, China) 
added with 10% fetal bovine serum at 37°C incu
bator containing 5% CO2. MCF-10A cells were 
cultured according to a protocol provided in 
a previous reporter [31].

Plasmids and RNA inference

To knockdown SOX13, small interfering RNA 5’- 
GAGAGUAGAUGUCCUAUAA-3’ was pur
chased from GeneChem Co. Ltd (China). 
Disordering edition of this sequence was used as 
control. The above-mentioned sequences were 
inserted into lentiviral plasmids (pLKO.1), which 
is operated by GeneChem Co. Ltd. For overexpres
sing SOX13, full-length sequence of human SOX13 
was constructed into pcDNA plasmid.

For transient transfection, plasmids were trans
fected into cells by using Lipofectamine 2000 
(12,566,014, Invitrogen, USA). To establish stable 
cell lines, the lentiviral plasmid pLKO.1 with 
shRNA and 2 helper plasmids, psPAX2 and 
pMD2.G were transfected into HEK293T cells 
using Lipofectamine 2000. Then, the medium was 
replaced after 6 h and viral particles in the med
ium were harvested after 48 h. Next, a 0.45-μm 
filter was employed to screen the supernatant. 
Seventy percent confluence MDA-MB-231 cells 
were infected with the supernatant containing 
viral particles and 2 μg/ml polybrene (TR-1003- 
G, Sigma, Germany). Finally, the positive cells 
were selected by 2 μg/ml puromycin (A1113803, 
Gibco, USA) [32].

3-(4, 5-dimethylthiazol-2-yl)-2, 
5-diphenyltetrazolium bromide (MTT) assay

MDA-MB-231 cells were seeded in 96-well plates 
(5 × 103 cell/mL/well) and were transiently trans
fected with the indicated vectors for 24 h. Then, 
20 μL 5 mg/mL MTT solution (V13154, 
Invitrogen, USA) was added into each well at 0, 
24, 48 and 72 h and incubated with cells for 4 h at 
37°C in the dark. Next, MTT solution was replaced 
with 150 μL dimethyl sulfoxide, and a microplate 
reader was introduced to record the 590 nm absor
bance of cells [32].

Cell cycle

MDA-MB-231 cells were grown in 6-well plates 
(5 × 105 cells/well) overnight and were transiently 
transfected with indicated vectors for 24 h. Then, 
the cells were harvested in phosphate buffer sal
ine (PBS) solution (B320KJ, Basal Media, China). 
Seventy percent ethanol was utilized to fix cells in 
PBS for 2 h on ice, and the cells were washed 
twice using PBS. Next, the mixture was centri
fuged (2000 rpm/min for 5 min), and the super
natant was abandoned. The cells were re- 
suspended using 500 μl staining buffer (A10798, 
Invitrogen, USA) and were incubated at 37°C. 
After 30 min, cells were analyzed with the flow 
cytometer (CytoFLEX, Beckman Coulter, USA) 
immediately [33].

Western blot assay

Total proteins of MDA-MB-231 cells were har
vested by using Radioimmunoprecipitation assay 
buffer (RIPA) lysis buffer (20–188, Millipore, 
USA), and the concentration was estimated uti
lizing bicinchoninic acid (BCA) protein assay kit 
(P0012, Beyotime, China) according to the man
ufacturer’s protocol. The total proteins were then 
isolated by 10% sodium dodecyl sulfate polyacry
lamide gel electrophoresis (SDS-PAGE) and 
transferred onto 0.45 μm polyvinylidene fluoride 
(PVDF) membranes (FFP32, Beyotime, China). 
Next, the membranes were treated with 3% 
defatted milk for 40–60 min at room tempera
ture. Subsequently, membranes were incubated 
with primary antibody SOX13 (18,902-1-AP, 
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Proteintech, USA, 1:1000, Rabbit), lactate dehy
drogenase A (LDHA, 3582, Cell Signaling 
Technology, USA, 1:1000, Rabbit), GLUT1 
(ab652, Abcam, UK, 1:1000, Rabbit), hexokinase 
2 (HK2) (22,029-1-AP, Proteintech, USA, 1:1000, 
Rabbit), β-catenin (8480, Cell Signaling 
Technology, USA, 1:1000, Rabbit), Axin1 (2087, 
Cell Signaling Technology, USA, 1:1000, Rabbit), 
CyclinD1 (GB13079, ServiceBio, China, 1:1000, 
Rabbit), c-Myc (sc-40, Santa Cruz 
Biotechnology, USA, 1:1000, Mouse), TRIM11 
(10,851-1-AP, Proteintech, USA, 1:1000, Rabbit), 
proliferating cell nuclear antigen (PCNA, sc-56, 
Santa Cruz Biotechnology, USA, 1:1000, Mouse) 
and glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH, 60,004-1-Ig, Proteintech, USA, 1:1000, 
Mouse) at 4°C for a night. After washing 3 times 
using Tris Buffered saline Tween (TBST, T9039- 
10PAK, Sigma, Germany) solution, membranes 
were incubated with Anti-rabbit immunoglobulin 
G (IgG), horseradish peroxidase (HRP)-linked 
Antibody (7074, Cell Signaling Technology, 
USA, 1:10,000) or Anti-mouse IgG, HRP-linked 
Antibody (7076, Signaling Technology, USA, 
1:10,000) for 1 hour and protein bands were 
detected with the Hesper chemiluminescence 
imaging system (GD50401, Monad, China). The 
levels of proteins were quantified using an imageJ 
software v 1.8.0 (NIH, USA) [33].

Immunohistochemistry (IHC)

IHC assay was performed with the guidelines 
offered in the previous study [34]. Briefly, tissue 
slices were dewaxed and then were treated with 
graded ethanol to rehydrate. Next, 10 mM citrate 
buffer was used to boil the above-mentioned tissue 
sections for 20 min, and 3% H2O2 was employed 
to block the tissues. Subsequently, the tissue slices 
were incubated with anti-SOX13 (18,902-1-AP, 
Proteintech, USA, 1:300) antibody, while the con
trol group was treated with immunoglobulin IgG 
(7074, Cell Signaling Technology, USA, 1:300) 
overnight at 4°C. Finally, the slices were counter
stained with hematoxylin followed by visualizing 
with 3, 3’-diaminobenzidine [35].

Glucose consumption, lactate production and 
adenosine triphosphate (ATP) level detection

In this part, Glucose Assay Kit (F006-1-1, njjcbio), 
Lactate Assay Kit (MAK064, Sigma, USA) and 
ATP Assay Kit (A095-1-1, njjcbio, China) were 
utilized to estimate the glucose consumption, lac
tate production and ATP level according to the 
detailed protocol of manufacturer [36].

Xenograft tumor model

All operations were approved by the Ethics 
Committee of the Taizhou Municipal Hospital 
and are in compliance with the policy of the 
Institutional Animal Care and Use Committee. 
Briefly, the stably transfected MDA-MB-231 cells 
were injected into the left flank of nude mice (4– 
6 weeks, each group had 6 nude mice). The tumor 
size was recorded at day 7, and it was measured 
every 7 days for a total of 35 days (The tumorigen
esis rate in nude mice was 100%). Finally, the 
volume of tumor was calculated in accordance 
with the formula: length × (width2/2) [32].

Statistical analysis

Student’s t-test and one-way analysis of variance 
(ANOVA) were employed to analyze unpaired 
data and multiple comparisons, respectively, by 
using GraphPad Prism 6.0. Comparing mean ± 
deviation (SD) was used to determine statistical 
significance and P < 0.05 was identified significant 
(***p < 0.001, +++p < 0.001, **p < 0.01, ++p < 0.01, 
*p < 0.05, +p < 0.05) [35]. All experiments were 
repeated for at least three times.

Results

In this study, we assumed that SOX13 exerted crucial 
roles in breast cancer progression and aimed to verify 
this hypothesis. In summary, this investigation 
revealed the increased expression and tumor- 
stimulative effect of SOX13 on breast cancer pro
gress. In addition, our study expounded that SOX13 
was capable of mediating Wnt/β-catenin signaling 
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pathway through TRIM11, which contributed to pro
mote aerobic glycolysis and breast carcinogenesis.

SOX13 is highly expressed in breast cancer 
tissues and cells

First, the protein level of SOX13 in breast cancer and 
para-carcinoma tissues was measured, and the data 
illustrated that SOX13 expression was higher in 
tumor tissues than in para-carcinoma samples 
(n = 50, ***p < 0.001, Figure 1(a)). Then, immuno
histochemical analysis was employed to prove that 
the protein level of SOX13 was increased in tumor 
tissues compared with para-carcinoma tissues 
(***p < 0.001, Figure 1(b)). To explore the role of 
SOX13 in breast cancer cells, western blot was con
ducted to estimate the protein level of SOX13 in 

human epithelial breast cell-line MCF10A and four 
breast cancer cell lines MDA-MB-231, SK-BR-3, ZR- 
75-30 and BT-474. As is expected, SOX13 expression 
at protein level was notably promoted in MDA-MB 
-231, SK-BR-3, ZR-75-30 and BT-474 cells com
pared with MCF10A cells (***p < 0.001, **p < 0.01, 
*p < 0.05, Figure 1(c)). These data showed that 
SOX13 was obviously up-regulated in breast cancer 
tissues and cells, implying that SOX13 may be clo
sely associated with the progression of breast cancer.

SOX13 promotes the proliferation of breast 
cancer cells

SOX13-targeting siRNA (si-SOX13#1, si- 
SOX13#2) and corresponding controls (si-NC) 
were transfected to establish SOX13-knockdown 

Figure 1. SOX13 is highly expressed in breast cancer tissues and cells. (a) The protein level of SOX13 in breast cancer and normal 
tissues measured by western blot (***p < 0.001). (b) Immunohistochemical staining of SOX13 detected by IHC (***p < 0.001). (c) The 
protein level of SOX13 in breast cancer cells and normal cells measured by western blot. Each bar is regarded as the mean ±SD of 3 
independent experiments (***p < 0.001, **p < 0.01, *p < 0.05). ***p < 0.001, **p < 0.01, *p < 0.05 versus MCF1A.
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MDA-MB-231 cell lines, while SOX13-expressing 
plasmids (pcDNA-SOX13) or control plasmids 
(pcDNA) were introduced to overexpress SOX13. 
Besides, si-SOX13#1 was chosen for subsequent 
analyses for its better efficiency (***p < 0.001, ++ 

+p < 0.001, Figure 2(a)). As shown in 2B, silencing 
SOX13 dramatically suppressed viability of MDA- 
MB-231 cells, whereas overexpressing SOX13 
accelerated it (**p < 0.01, ++p < 0.01, Figure 2 
(b)). The significant effects of SOX13 on MDA- 
MB-231 cells growth predicted that SOX13 might 
disturb events related to cell cycle. To verify this 
hypothesis, we conducted flow cytometry using 
the above-mentioned cell lines to determine cell 
cycle progress. The results demonstrated that 
knockdown of SOX13 notably up-regulated the 
cell content of G1 stage and down-regulated the 
cell content of S stage. However, the overexpres
sion of SOX13 decreased the cell percentage of G1 
phase and markedly increased the percentage of 
S phase (***p < 0.001, +p < 0.05, Figure 2(c,d)). 

Thus, SOX13 promoted breast cancer cells prolif
eration by accelerating G1/S transition of MDA- 
MB-231.

SOX13 promotes glycolysis of breast cancer 
cells

Given that SOX13 promotes glycolysis in multiple 
myeloma and that glycolysis effectively affects breast 
cancer growth [37,38], this work investigated 
whether SOX13 regulates glycolysis in breast cancer 
cells. Glucose Assay Kit, Lactate Assay Kit and ATP 
Assay Kit were introduced to reveal that silencing 
SOX13 dramatically downregulated glucose con
sumption, lactate production and ATP level, while 
transfection with pcDNA-SOX13 effectively 
increased these indexes (*p < 0.05, +++p < 0.001, 
Figure 3(a)). Meanwhile, we analyzed the level of 
proteins related to glycolysis and discovered that 
LDHA, GLUT1 and HK2 were reduced by knock
down of SOX13, but dramatically increased by 

Figure 2. SOX13 promotes the proliferation of breast cancer cells. (a) The protein level of SOX13 measured by western blot 
(***p < 0.01, +++p < 0.001). (b) Cell viability recorded by MTT assay (**p < 0.01, ++p < 0.01). (C&D) Cell cycle detected by flow 
cytometry. Each bar is regarded as the mean ±SD of 3 independent experiments (***p < 0.001, +p < 0.05). ***p < 0.001, **p < 0.01 
versus si-NC group, +++p < 0.001, ++p < 0.01 versus pcDNA group.
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overexpression of SOX13 (**p < 0.01, *p < 0.05, ++ 

+p < 0.001, ++p < 0.01, +p < 0.05, Figure 3(b)). Taken 
together, these findings indicated that SOX13 effec
tively facilitated glycolysis in breast cancer cells.

SOX13 regulates the Wnt /β-catenin pathway 
through TRIM11

Previous studies have proved that Wnt/β- 
catenin signaling pathway exerts vital roles in 
regulating glycolysis as well as tumorigenesis 
and TRIM11 mediated the activity of Wnt/β- 
catenin pathway [10,23,39]. In addition, SOX13 
has been found to regulate TRIM11 transcrip
tion and affect Wnt signal [27,30]. Therefore, 
we assumed that SOX13 affected breast cancer 
and glycolysis by mediating TRIM11/Wnt/β- 
catenin pathway. As is expected, TRIM11 was 
decreased by SOX13 knockdown and was 
obviously increased by SOX13 overexpression 
(***p < 0.001, +++p < 0.001, Figure 4(a)). 
Additionally, silencing SOX13 significantly 
reduced the content of β-catenin, CyclinD1 

and c-myc, and increased the protein level of 
Axin1. However, overexpressing SOX13 pro
duced reverse effects (***p < 0.001, **p < 0.01, 
*p < 0.05, ++p < 0.01, +p < 0.05, Figure 4(b)). 
Further rescued experiments showed that over
expressing TRIM11 effectively counteracted the 
effects of SOX13 knockdown on β-catenin, 
CyclinD1, c-myc and Axin1 (***p < 0.001, 
**p < 0.01, *p < 0.05, +++p < 0.001, + 

+p < 0.01, +p < 0.05, Figure 4(c)). Collectively, 
our investigations proved that SOX13 regulated 
Wnt/β-catenin pathway via TRIM11.

SOX13 knockdown inhibited tumorigenicity 
of breast cancer cell in vivo

Subsequently, nude mice were employed to deter
mine whether SOX13 affected tumorigenesis 
in vivo. We hypodermically injected MDA-MB 
-231 cells transfected with sh-SOX13 or sh-NC 
into nude mice (n = 6 for every group). The 
tumor formation was recorded at day 7, and it 
was measured every 7 days for a total of 35 days 

Figure 3. SOX13 promotes glycolysis of breast cancer cells. (a) The glucose consumption, lactate production and ATP level measured 
by specific assay kit (*p < 0.05, +++p < 0.001). (b) The protein level of LDHA, GLUT1 and HK2 detected by western blot. Each bar is 
regarded as the mean ±SD of 3 independent experiments (**p < 0.01, *p < 0.05, +++p < 0.001, ++p < 0.01, +p < 0.05). **p < 0.01, 
*p < 0.05 versus si-NC group. +++p < 0.001, ++p < 0.01, +p < 0.05 versus pcDNA group.
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Figure 4. SOX13 regulates the Wnt /β-catenin pathway through TRIM11. (a) The protein level of TRIM11 measure by western blot 
(***p < 0.001, +++p < 0.01). (b) The protein level of β-catenin, Axin1, CyclinD1 and c-myc measured by western blot (***p < 0.001, 
**p < 0.01, *p < 0.05, ++p < 0.01, +p < 0.05). (c) The protein level of β-catenin, Axin1, CyclinD1 and c-myc treated with TRIM11. Each 
bar is regarded as the mean ±SD of 3 independent experiments (***p < 0.001, **p < 0.01, *p < 0.05, +++p < 0.001, ++p < 0.01, 
+p < 0.05). ***p < 0.001, **p < 0.01, *p < 0.05 versus si-NC group or si-NC+pcDNA group. +++p < 0.001, ++p < 0.01, +p < 0.05 versus 
pcDNA group or si-SOX13+ pcDNA group.

Figure 5. SOX13 knockdown inhibited tumorigenicity of breast cancer cell in vivo. (a) The volume and weight of tumor 
(***p < 0.001). (b) The protein level of SOX13, TRIM11, PCNA and GLUT1 detected by western blot. Each bar is regarded as the 
mean ±SD of 3 independent experiments (**p < 0.01, *p < 0.05). ***p < 0.001, **p < 0.01, *p < 0.05 versus sh-NC group.
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(The tumorigenesis rate in nude mice was 100%). 
As presented in Figure 5(a), sh-SOX3 dramatically 
inhibited tumor growth in vivo with notably 
decreased volume and weight of tumor 
(***p < 0.001, Figure 5(a)). Western blot assay 
illustrated that SOX13 was significantly reduced 
by sh-SOX13. Meanwhile, silencing SOX13 effec
tively suppressed the protein level of TRIM11, 
PCNA and GLUT1, indicating that SOX13 knock
down inhibited growth as well as glycolysis of 
tumor (**p < 0.01, *p < 0.05, Figure 5(b)). These 
investigations revealed that silencing SOX13 mark
edly restrained the formation of tumor by modu
lating glycolysis.

Discussion

Breast cancer that exhibits high level of heteroge
neity is identified as the most frightening malig
nancy worldwide [40]. Surgery and chemotherapy 
as the conventional therapies have not had satis
factory outcomes for patients diagnosed with 
breast cancer [20]. Hence, further exploration of 
the complicated molecular network of breast can
cer is beneficial to discover accurate prevention 
and treatment targets for sufferers.

In the present study, we systemically summar
ized that SOX13 promoted glycolysis and viability 
of breast cancer cells by activating TRIM11- 
mediated Wnt/β-catenin signaling pathway. In 
addition, the results collected from SOX13 knock
down and SOX13 overexpression experiments 
in vitro and in vivo were consistent, which con
firmed the reliability of our conclusion.

SOX13 is an essential member of SOX family, 
a collection of transcription factors that play an 
important role in the progression of cell develop
ment. The disorders of SOX genes are verified to be 
associated with the multiple diseases as both onco
genes and anti-oncogenes [41]. For example, SOX1 
was reported to inhibit hepatocellular carcinoma 
progression by mediating Wnt/β-catenin pathway 
[42]. On the contrary, SOX10 significantly facili
tated and maintained melanoma development [43]. 
Additionally, SOX13 as a part of SOX family has 
been found to be involved in diverse cancers, such 
as colorectal cancer [44], Pancreatic Cancer [45] and 
gastric carcinoma [28]. Nevertheless, its detailed 
effects on breast cancer are still unclear. This study 

discovered that SOX13 was upregulated in breast 
cancer tissues and cells compared with normal sam
ple. Knockdown of SOX13 dramatically inhibited 
MDA-MB-231 cells proliferation and arrested cell 
cycle at G1/S phase, whereas overexpression of 
SOX13 introduced adverse results. These findings 
implied that SOX13 might promote breast cancer 
progression.

Subsequently, we explored the potential mechan
isms of SOX13 in breast carcinogenesis, and we 
found that silencing SOX13 significantly inhibited 
glycolysis, whereas overexpressing SOX13 acceler
ated the glycolysis of breast cancer cells. Previous 
studies have proved that glycolysis is needed for 
various cancers including breast cancer. It could 
offer the main energy source under different condi
tions. Scientists regard this phenomenon as the 
Warburg Effect, which is characterized by up- 
regulation of glucose consumption and lactate pro
duction [46]. Moreover, the GLUT1, HK2 and 
LDHA protein levels in cells were increased, indicat
ing the activation of glycolysis [47]. Our investiga
tion revealed that SOX13 inhibition notably 
decreased the glucose consumption, lactate produc
tion and ATP, LDHA, GLUT1 in addition to HK2 
level in MDA-MB-231 cells, whereas SOX13 over
expression exhibited reverse effects on these indexes. 
Additionally, the activation of Wnt/β-catenin has 
been reported to facilitate the occurrence of glycoly
sis in cancer cells [48]. TRIM11 was proved to be 
closely related with breast cancer, and SOX13 was 
proved to affect various cancers by regulating Wnt/ 
β-catenin pathway [23,49]. Interestingly, our present 
study confirmed that silencing SOX13 suppressed 
Wnt/β-catenin pathway activity, while TRIM11 
overexpression effectively eliminated these effects, 
indicating that SOX13 might regulate Wnt/β- 
catenin pathway via TRIM11. Furthermore, results 
obtained from xenograft tumor model demonstrated 
that silencing SOX13 significantly inhibited the 
tumor growth in vivo and reduced TRIM11 and 
glycolysis-associated proteins expression. These 
findings suggested that SOX13 exerted vital roles 
both in vitro and in vivo. However, how SOX13 
mediated TRIM11 and the other downstream genes 
of SOX13 involved in glycolysis need more investi
gations in the future.
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Conclusion

In conclusion, this study for the first time revealed 
that SOX13 promoted breast cancer progression 
by accelerating TRIM11/Wnt/β-catenin network- 
mediated glycolysis. These findings strongly sug
gest that SOX13 as a breast cancer oncogene has 
the potential to be developed as the biomarker and 
therapeutic target of breast cancer.
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