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STRUCTURED ABSTRACT

Objective: To establish a liquid-biopsy assay to predict response to neoadjuvant therapy (NAT) 

in esophageal squamous cell carcinoma (ESCC) patients.

Summary Background Data: Pretreatment prediction of resistance to NAT is of great 

significance for the selection of treatment options in ESCC patients. In this study, we 

comprehensively translated tissue-based microRNA (miRNA) and messenger RNA (mRNA) 

expression biomarkers into a liquid biopsy assay.

Methods: We analyzed 186 clinical ESCC samples, which included 128 formalin-fixed 

paraffin-embedded and a matched subset of 58 serum samples, from 2 independent institutions. 

We performed quantitative reverse-transcription polymerase chain reaction, and developed a 

resistance-prediction model using the logistic regression analyses.

Results: We first evaluated the potential of 4-miRNAs and 3-mRNAs panel, which robustly 

predicted resistance to NAT (area under the curve [AUC]: 0.85). Moreover, addition of tumor size 

to this panel increased predictive potential to establish a combination signature (AUC: 0.92). We 

successfully validated this signature performance in independent cohort, and our model was more 

accurate when the signature was combined with clinical predictors (AUC: 0.81) to establish a 

NAT resistance risk (NATRR) model. Finally, we successfully translated our NATRR model into a 

liquid biopsy assay (AUC: 0.78), and a multivariate regression analysis revealed this model as an 

independent predictor for response to NAT (odds ratio: 6.10; P < 0.01).
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Conclusions: We successfully developed a liquid biopsy-based assay that allows robust 

prediction of response to NAT in ESCC patients, and our assay provides fundamentals of 

developing precision-medicine.

Mini-Abstract

Pretreatment prediction of resistance to neoadjuvant therapy (NAT) is of great significance for 

the selection of treatment options in esophageal squamous cell carcinoma (ESCC) patients. In 

this study, we analyzed 186 clinical ESCC samples from multiple independent institutions, and 

successfully developed a liquid biopsy assay to allow robust prediction of response to NAT in 

ESCC patients.
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INTRODUCTION

Esophageal cancer is the tenth most common cause of cancer and the sixth leading cause 

of cancer-related deaths, with 604,100 new cases and 544,076 cancer deaths in 2020 [1, 

2]. There are two histologic subtypes of esophageal cancer – esophageal squamous cell 

carcinoma (ESCC) and adenocarcinoma (EAC). ESCC is one of the most aggressive and 

lethal subtypes, with a 5-year overall survival (OS) rate of less than 20% in United 

States [3, 4]. Surgery, which primarily involves esophagectomy and lymphadenectomy, 

remains the most attractive curative treatment in ESCC patients; however, in spite of the 

use of such treatment modalities, the survival outcomes have not significantly improved 

for decades [5]. Recent randomized controlled trials have indicated that addition of 

neoadjuvant therapy (NAT) might help improve the long-term survival in ESCC patients 

[6, 7], and accordingly the National Comprehensive Cancer Network (NCCN) Guidelines 

now recommend neoadjuvant chemotherapy (NAC) and neoadjuvant chemoradiotherapy 

(NACRT) in patients with advanced disease [8].

Nevertheless, the treatment outcomes of NAT have been heterogeneous and only 40–60% 

of ESCC patients with resected tumors demonstrate some histopathological response, while 

only 20–30% of patients achieve a complete pathological response [7, 9, 10]. In other words, 

non-responder patients harboring more than 50% of residual cancer after NAT, do not benefit 

from such therapies vis-à-vis upfront surgery. Unfortunately, the clinical challenge in such 

non-responsive patients is further exacerbated because these patients often miss out on the 

opportunity to undergo radical surgery due to their disease progression while receiving 

NAT, resulting in an overall worse prognosis. Furthermore, NAT in ESCC patients is often 

accompanies by significant undesirable effects, with more than 50% of patients experiencing 

grade 3 or 4 toxicities [11–13]. To make matters worse, some of the patients lose their 

ability to tolerate curative surgeries due to irreversible and severe adverse effects of NAT 

and succumb to death from the serious adverse effects of such treatments. As we usher into 

the era of precision oncology, it is imperative that patients are offered treatment that have 

higher likelihood of benefit and minimal toxicity; hence, prediction of therapeutic resistance 
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to NAT prior to initiation of treatment is of great significance for appropriate selection of the 

subset of ESCC patients that stand to derive clinical benefit from such treatments.

In recent years, attempts have been made to develop various types of molecular biomarkers, 

including genes, microRNAs (miRNAs), DNA methylation, and somatic copy-number 

alterations, to predict response to cancer therapies and assess survival outcomes. In this 

context, a panel of tissue-based miRNA and messenger RNA (mRNAs) biomarkers that 

predicted the response to NACRT in ESCC patients were recently reported [14, 15]. While 

these biomarkers seem promising, their clinical significance remains unclear. Therefore, a 

systematic and comprehensive validation of these biomarkers in multiple and independent 

cohorts of ESCC patients might reveal the true predictive potential of these markers. 

Furthermore, if possible, the translation of these biomarkers into a blood-based liquid 

biopsy would be clinically attractive as it will obviate the need for availability of tissue, 

can overcome intratumor heterogeneity in cancer cells, and could offer a platform for 

non-invasive assay for predicting therapeutic response to NAT in ESCC patients.

Accordingly, in this study, we evaluated the feasibility of developing transcriptomic 

biomarkers (genes and miRNAs) for predicting response to NAT, as well as their translation 

into a liquid biopsy in ESCC patients. This transcriptomic signature was first systematically 

validated in two independent clinical cohorts, followed by its clinical performance in 

pre-treatment blood specimens. In conclusion, we have successfully established a liquid 

biopsy-based risk-prediction model for NAT in ESCC patients, which allows simple, facile 

and non-invasive pretreatment selection approach in patients suffering from this malignancy.

MATERIALS AND METHODS

Patient cohorts

This study included analysis of a total of 186 clinical specimens from ESSC patients, which 

involved 128 formalin-fixed paraffin-embedded (FFPE) specimens and 58 pretreatment 

serum samples to evaluate the predictive accuracy of the mRNA and miRNA biomarkers 

[14, 15]. For the initial training of biomarkers, we analyzed RNA derived from FFPE 

specimens from 43 ESCC patients enrolled at the Kumamoto University, Japan, between 

2009 and 2015 (the clinical training cohort). For the clinical validation of the signature, 

we examined another independent cohort of 85 patients enrolled at Nagoya University, 

Japan, between 2008 and 2015 (the clinical validation cohort). Finally, for the performance 

evaluation of these tissue-based biomarkers in the blood specimens, we analyzed 

pretreatment serum specimens from 58 patients (the performance evaluation cohort), which 

included a subset of patients for which matched serum specimens were available from the 

clinical validation cohort. The clinicopathological characteristics of each clinical cohort are 

shown in Supplementary table S1.

All relevant clinical data were collected from a clinical database and/or electronic 

medical records at each enrolling institution. These data included patient demographics, 

comorbidities, and survival outcomes. All tumors were diagnosed histologically as ESCC 

and classified according to the Union for International Cancer Control (UICC) TNM 

classification of Malignant Tumors version 7. Exclusion criteria included the presence of 
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distant metastasis or tumor histology other than ESCC. All the enrolled ESCC patients were 

evaluated by computed tomography (CT) and esophago-gastroduodenostomy before any 

cancer treatment and after NAT (if applicable). Follow-up was until patient death or January 

2017 in the clinical training cohort and January 2018 in the clinical validation cohort. A 

written informed consent was obtained from each patient, and the study was conducted in 

compliance with the Declaration of Helsinki and was approved by the Institutional Review 

Boards of all participating institutions.

Neoadjuvant therapy and histologic evaluation

The NAT regimens were 5-fluorouracil (5-FU)- and cisplatin-based chemotherapy, as 

described previously [16–18]. Each NAT regimen was as follows; 3 cycles of DCF 

(docetaxel, 70 mg/m2/day, day 1; cisplatin, 70 mg/m2/day, day 1; 5-FU, 750mg/m2/day, 

days 1–5; every 3 weeks) [16], 2 cycles of FP (5-FU, 800mg/m2/day, days 1–5; cisplatin, 

80mg/m2/day, day 1; every 3 weeks) [17], 2 cycles of SP (S-1, 40–80mg/m2/day, days 1–14; 

CDDP, 75mg/m2/day, day1; every 4 weeks) [18]. The radiotherapy was delivered with 6–10 

MV photons to a total dose of 41.4 Gy in 23 fractions over 5 weeks [16]. After NAT, all 

patients underwent curative esophagectomy and lymphadenectomy within 3 to 5 weeks after 

completion of NAT.

After NAT and surgery, esophagectomy specimens were macroscopically assessed by 

pathologists, as previously described [19, 20]. Resected surgical specimens with no 

observable residual cancer cells at both the primary tumor site and the resected lymph 

nodes were defined as pathological complete response. Patients with 1–50% residual tumor 

were deemed to have partial response, and those with more than 50% residual tumors were 

considered non-response. Pathological complete and partial responders were categorized as 

responders of NAT in this study.

RNA extraction from FFPE and serum specimens

Total RNA extraction from FFPE and serum specimens was performed, as described 

previously [21–23]. The RNA was extracted from 10um-thick FFPE surgical specimens 

by microdissection for enrichment of cancer cells using an AllPrep DNA/RNA FFPE kit 

(Qiagen, Hilden, Germany). For serum samples, the RNA was extracted using the Qiagen 

miRNeasy Kit (Qiagen, Hilden, Germany). 200uL of serum was centrifuged at 3000g for 

5 minutes to remove cell debris. Next, 200uL of the supernatant was lysed in 5 times the 

volume of QIAzol solution (Qiagen). Total RNA was subsequently enriched and purified 

following the manufacturer’s instructions. Extracted RNA from FFPE and serum specimens 

was reversely transcribed to complementary DNA (cDNA) before polymerase chain reaction 

(PCR) assays. For mRNA, synthesis of cDNA was performed using a high-capacity cDNA 

Reverse Transcription Kit (Thermo Fischer Scientific, Waltham, MA). For miRNA, a 

miRCURY LNA RT Kit (Qiagen) was used to synthesize cDNA.

Real-time quantitative reverse-transcription polymerase chain reaction assays

Real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR) assays 

was performed using a SensiFAST SYBR Lo-ROX Kit (Bioline, London, United Kingdom) 

and the QuantStudio 6/7 Flex RT-PCR System (Applied Biosystems, Foster City, CA). 
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The miR-16–5p and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were used as an 

internal control for the normalization of miRNA and mRNA expression, respectively. The 

delta Ct method, where delta Ct is the difference in Ct values between the abundance of 

target transcripts and the internal control, was used for quantification. Normalized values 

were further log10 transformed [24–27]. The primers for mRNAs used in the present study 

were described in Supplementary table S2. The primers for miRNAs used in this study were 

purchased from Thermo Fisher Scientific (Catalog No: 4427975).

Statistical analysis

Two-sided Student’s t-test was used to analyze differences between continuous variables, 

and Fisher’s exact test was used to analyze categorical variables. Spearman’s rank 

correlation coefficient was indicated as R. The cut-off points for continuous variables 

were divided by the mean value in each clinical cohort. Survival curves were constructed 

using the Kaplan-Meir method and were compared with the log-rank test. Binary logistic 

regression model was used to train a classifier based on the expression of candidate mRNAs 

and miRNAs. Once the model was trained in the clinical training cohort, the same statistical 

model was applied in the clinical validation cohort and the performance evaluation cohort.

For all cohorts, receiver operating characteristics (ROC) curve and the area under the 

curve (AUC) values were used to evaluate the performance of the panel or signature for 

predicting the resistance of NAT. The factors acquired from univariate analysis (P < 0.10) 

were included in multivariate analysis with the binary logistic regression model. All P values 

were two-sided, and P < 0.05 was considered statistically significant. All statistical analyses 

were performed using EZR [28], which is a graphical user interface for R (R Foundation for 

Statistical Computing, Vienna, Austria, version 4.0.3) designed to add statistical functions 

and is frequently used in biostatistics.

RESULTS

ESCC patients with a lack of response to NAT exhibit worse survival outcomes

At the very outset, we compared the OS and recurrence-free survival (RFS) between 

responders and non-responders to NAT in the clinical training cohort. The 3-year OS and 

RFS rates were significantly worse in non-responders compared to responders (57.4% vs. 

81.8%, P < 0.05; 59.6% vs. 86.4%, P = 0.04, respectively; Fig. 1A and B). We performed 

univariate logistic regression analyses by analyzing key clinical factors for predicting 

resistance to NAT in the clinical training cohort. This analysis revealed that larger tumor 

size was the singular significant predictive factor for predicting response to NAT in ESCC 

patients (odds ratio [OR]: 9.33; 95% confidence interval [CI]: 2.18–40.0; P < 0.01; Fig. 

1C). The current treatment strategy, which includes NAT followed by surgery, is considered 

unacceptable for non-responders due to their worse prognosis, and our data revealed that 

only tumor size was able to predict non-responders in the clinical training cohort. These data 

highlight the need to develop more robust molecular biomarkers for predicting resistance to 

NAT in ESCC patients.
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A combination signature predicts resistance to NAT in patients with ESCC

The previous studies reported a tissue-based panel of 4 miRNAs (miR-145-5p, miR-152, 

miR-193b-3p, and miR-376a-3p) and 3 genes (matrix metalloproteinase 1 [MMP1], LIM 

and calponin homology domain 1 [LIMCH1], and chromosome 1 open reading frame 226 

[C1orf226]) for predicting the response of NAT in ESCC patients [14, 15]. However, these 

biomarkers were established in a single study and lacked a systematic and comprehensive 

validation in multiple independent cohorts, which would likely reveal their true clinical 

significance. Moreover, these panels required tissue specimens, while adaptation to a liquid 

biopsy assay is clinically more attractive, which would enable a noninvasive and facile assay 

for ESCC patients. To address these concerns, in this study, we evaluated the expression 

of these transcriptomic biomarkers in multiple, large, independent cohorts in our study, 

including their translation in a liquid biopsy assay.

Using logistic regression analysis, we first established a resistance-prediction model in the 

clinical training cohort. This risk-prediction panel had a reasonable accuracy even when 

using 3 mRNAs (AUC: 0.70; 95% CI: 0.54–0.86) or 4 miRNAs (AUC: 0.80; 95% CI: 0.66–

0.93; Fig. 1D). However, intriguingly, when we combined all 3 mRNAs and 4 miRNAs 

together, the predictive potential of our panel was significantly superior to individual 

panels using either type of transcriptomic biomarkers (AUC: 0.85; 95% CI: 0.74–0.96; Fig. 

1D). Furthermore, when we included additional clinicopathological features to this model, 

particularly, the tumor size, this resulted in an even higher predictive power compared 

to the transcriptomic panel alone (AUC: 0.92; 95% CI: 0.64–0.99; Fig. 1D and E). This 

combination signature was calculated based on the biomarker coefficients derived from the 

clinical training cohort as follows; Logit (P) = (−1.3548 × MMP1) + (1.6179 × LIMCH1) 

+ (−0.4391 × C1orf226) + (2.1503 × miR-145–5p) + (5.0902 × miR-152) + (0.1270 × 

miR-193b-3p) + (−10.1033 × miR-376a-3p) + (0.6431 × Tumor size (cm)) – 15.4989. 

Herein, these data show we successfully established a signature that could robustly predict 

resistance to NAT in ESCC patients.

Successful validation of the risk prediction signature for NAT in an independent cohort of 
ESCC patients

We next performed the validation of predictive power for our combination signature in 

an independent cohort of ESCC patients (clinical validation cohort). In this phase, during 

univariate analyses, distal tumor location, larger tumor size, and the presence of lymphatic 

invasion were identified as significant predictive clinicopathological factors (OR: 2.83, 95% 

CI: 1.10–5.17, P = 0.03; OR: 2.84, 95% CI: 1.15–6.99, P = 0.02; OR: 3.27, 95% CI: 

1.18–9.03, P = 0.01, respectively; Fig. 2A). Unfortunately, the predictive potential of any of 

these clinicopathological features on their own for their ability to predict resistance to NAT 

was insufficient (Fig. 2B). Interestingly, the combination signature established in the clinical 

training cohort was still superior to any of these clinicopathological factors (AUC: 0.78; 

95% CI: 0.67–0.88; Fig. 2B). However, when we included significant clinicopathological 

predictors to this signature, it led to a further enhancement of the predictive power, and we 

defined this as NAT resistance risk (NATRR) model (AUC: 0.81; 95% CI: 0.70–0.89; Fig. 

2B and C). This NATRR model derived from the clinical validation cohort was as follows; 
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Logit (P) = (0.3827 × combination signature score) + (0.9833 × Tumor location) + (0.6612 × 

lymphatic invasion) – 0.8569.

We categorized all patients into high- and low- NATRR model scoring groups using cut-

off thresholds derived from the Youden’s index [29], which was −0.16 (sensitivity: 0.85; 

specificity: 0.74). Among the key clinicopathological features, tumor location and lymphatic 

invasion, were significantly related to the NATRR model (P < 0.01; P < 0.01, respectively; 

Supplementary table S3). To evaluate the clinical applicability of our NATRR model, we 

examined the correlation between our model and tumor recurrence. The 3-year RFS rate was 

significantly worse in patients with high-risk scores than in those with low scores (47.9% vs. 

74.9%, P = 0.04; Fig. 2D). Furthermore, half of pathological responders with high NATRR 

model score developed recurrence, which was significantly higher recurrence rate than those 

with low score. On the other hand, pathological non-responders with low scores exhibited 

lower recurrence rates. Regardless of pathological responders or non-responders, patients 

with high NATRR model scores experienced higher recurrence rate than those with low 

score (Fig. 2E). Collectively, we successfully validated our transcriptomic signature and the 

newly established a NATRR model to robustly predict response to NAT in ESCC patients. 

Furthermore, our NATRR model was able to predict not only response to NAT but also 

survival outcomes, such as RFS, in ESCC patients.

A NATRR model robustly predicts resistance to NAT in both early- and advanced-stage 
ESCC patients

To examine that our NATRR model can be applied to various patients and treatment 

options, we performed subgroup analyses in the patients within the clinical validation 

cohort. Our NATRR model yielded a remarkable accuracy for discriminating non-responders 

from responders to NAT in patients within each stage category, with an AUC of 0.80 

in stage I & II patients and 0.79 in stage III & IV patients (Fig. 3A and B), which 

means a NATRR model can adapt to patients with various degrees of tumor progression. 

Furthermore, our model had sufficiently impressive predictive potential in each patient 

who received either NACRT or NAC (AUC: 0.88; AUC: 0.77, respectively; Fig. 3C and 

D). The predictive potential of our model didn’t depend on the regimen of chemotherapy 

and was equally relevant and exhibited high predictive power in all patients who received 

either FP or SP (AUC: 0.84; AUC:0.76, respectively; Fig. 3C and D). Furthermore, non-

responders exhibited a significantly higher NATRR model score compared to responders in 

all subgroups (Fig. 3E). Accordingly, these findings indicate that our model can robustly 

predict response to NAT in a variety of patients and treatment strategies.

Successful translation of the NATRR model as a liquid biopsy assay in ESCC patients

To translate our NATRR model into a liquid biopsy assay, which would enable a noninvasive 

and facile assay for predicting resistance to NAT in ESCC patients, we analyzed a subset of 

58 patients within the clinical validation cohort, from whom such matched pretreatment 

serum specimens were available (performance evaluation cohort). The NATRR model 

yielded an AUC value of 0.78 (95%CI: 0.67–0.90; sensitivity: 0.70; specificity: 0.71) for 

discriminating non-responders from responders to NAT (Fig. 4A and B). In line with the 

results from the clinical validation cohort, non-responders possessed a significantly higher 
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NATRR model score compared to responders in the liquid biopsy specimens (Fig. 4C). 

When we compared AUC values among our NATRR model and key clinicopathological 

factors, our NATRR model revealed notably superior AUC values compared to any of the 

clinicopathological factors (Fig. 4D). In these key clinicopathological factors, only tumor 

location, was significantly related to the NATRR model (P < 0.01; Supplementary table S4). 

Furthermore, according to multivariate logistic regression analysis, which included factors 

acquired from univariate analysis (P < 0.10), our NATRR model emerged as a significant 

and independent predictor for resistance to NAT (OR: 6.10; 95%CI: 1.60–23.2; P < 0.01; 

Table 1).

Finally, using Spearman’s correlation test, we examined the associations between a NATRR 

model score and survival times. A NATRR model score confirmed a negative correlation 

with RFS time (R = −0.40, P < 0.05; Fig. 4E) and OS time (R = −0.48, P = 0.02; Fig. 

4F). This indicates that patients with high NATRR model score might have risks of early 

recurrence and early death and highlights the potential clinical significance of our liquid 

biopsy model in ESCC patient. Accordingly, we successfully established a robust liquid 

biopsy model to predict response to NAT in ESCC patients.

DISCUSSION

Current well-designed randomized clinical trials demonstrated that NAC and NACRT prior 

to surgery improved the survival outcomes of patients with ESCC, and, NAT in particular, 

is becoming the standard treatment in patients with advanced ESCC. Accordingly, non-

responders, who accounts for more than half of all patients with ESCC, not only did not 

benefit from these therapies compared to upfront surgery, but also suffered from undesirable 

toxicity and a missed opportunity for a curative operation. Therefore, identification of 

patients that will or will not benefit from such therapies is of great clinical significance, 

which will allow tailored development of individualized treatment strategies to maximize 

therapeutic efficacy in each patient. Advances in molecular biology technologies in recent 

years have led to the rapid development of precision-medicine in cancer, which allows 

novel multimodality treatment strategies for patients with cancer. With regards to ESCC, in 

spite of the fact that molecular biomarkers to predict response to NAT have been reported 

previously [14, 15, 30–38], none of these have yet been utilized in actual clinical practice. 

For the clinical application of molecular biomarkers, the need for the availability of accurate, 

noninvasive, and easy-to-use biomarkers are widely acknowledged. In particular, remarkable 

progresses have recently been made in the realm of liquid biopsy biomarkers, and such a 

platform is deemed awfully attractive. In this study, we undertook a systematic series of 

experiments to delineate a panel of molecular biomarkers that were successfully developed 

in a liquid biopsy assay for predicting resistance to NAT in ESCC patients.

In this study, we demonstrated a NATRR model using 7 molecular biomarkers [14, 15], 

and 3 clinicopathological factors, which included tumor size, tumor location, and lymphatic 

invasion. Several previous studies have identified molecular biomarkers, including mRNAs 

and miRNAs, to predict the response to NAT in ESCC patients [14, 15, 30–38]. However, 

most of these studies were performed in FFPE tissues and were based upon single institution 

cohorts and lacked independent validation of such marker panels. Our study had several 
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unique advantages compared to most previous studies. First, we comprehensively validated 

our NATRR model in multiple independent clinical cohorts from different institutions, 

which ensured generalizability of our model. Second, we translated our model into a liquid 

biopsy assay, which offers a distinct advantage in terms of its easier clinical implementation 

and noninvasive nature. A liquid biopsy assay is attractive and can be easily applied in 

routine clinical practice. Clinicians and surgeons always collect and evaluate other biological 

analytes in blood prior to initiation of any cancer treatment; hence, availability of a 

predictive assay in a liquid biopsy sample will obviate the need for additional biospecimen 

collection and easier implementation of such an assay in clinical practice. Third, by 

translating into a liquid biopsy, we can overcome the molecular intratumoral heterogeneity. 

In clinical practice, ESCC patients are invariably biopsied endoscopically, however, the 

major limitation of tumor biopsy is its inability to detect intratumoral heterogeneity, 

which characterizes most of advanced ESCCs [39–41]. Endoscopic biopsy from one part 

of a solitary tumor may miss the molecular intratumoral heterogeneity. A liquid biopsy 

is superior to endoscopic biopsy in terms of this point. Fourth, we used a multi-omic 

transcriptomic biomarkers (both mRNAs and miRNAs) in this study, which were able to 

offer a superior predictive accuracy compared to individual types of markers.

In the present study, for the definition of NAT response, we adopted pathological response 

instead of the Response Evaluation Criteria in Solid Tumors (RECIST) (version 1.1) system 

[42]. The RECIST system is the gold standard for evaluating chemotherapy response and 

is widely used in clinical practice. However, we did not have available data on RECIST 

classification in all patients of our cohort, and current systematic review and several previous 

studies for ESCC suggested that the RECIST system does not reflect actual treatment 

effects [43–45]. Despite the additional analyses using the RECIST data may be more 

helpful and beneficial, we used only pathological response to definite NAT response. For 

the definition of non-responders in this study, we defined pathological non-responders, with 

more than 50% residual cancer, as non-responders. The NCCN guidelines recommend 

a 3-category system, which divides all patients into pathological complete responders, 

partial responders (with 1–50% residual cancer), and non-responders (with more than 50% 

residual cancer) [46, 47]. However, due to the limited sample size in our cohorts, separating 

all patients into 3 categories were not possible. Furthermore, even in everyday clinical 

practice, identification of non-responders is more important, rather than all three subgroups. 

Therefore, we grouped pathological complete and partial responders as responders, and 

pathological non-responder as non-responder in our study.

Several limitations of our study must be acknowledged. First, our biomarker selection was 

based on previous data from a single institution, which could potentially introduce some 

inadvertent bias in the selection of patients and treatment approaches. Second, ours was 

a retrospective cohort study with a limited number of patients. To further confirm the 

predictive potential of our model, the results need to be validated in future large prospective 

clinical trials. Third, there were some minor inconsistencies in treatment strategies in each 

cohort. In clinical training cohort, none of the patients underwent radiation therapy, and 

the regimen of chemotherapy also differed between the two cohorts. While our final model 

exhibited remarkable predictive potential in patients who received each treatment option 

in subgroup analyses (Fig. 3C and D), to further ensure its predictive ability, the results 
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need to be validated in future well-designed prospective clinical trials with larger patient 

cohorts. Finally, our liquid biopsy-based NATRR model included mRNAs, which can be 

unstable in the blood. Recent studies have demonstrated that mRNAs encapsulated within 

extracellular vesicles, such as exosomes and microparticles, are stable due to their protection 

by the cellular membrane and circulating RNAs include mRNA from these vesicles [48, 49]. 

In this study, we did not have information about which vesicles mRNAs are derived from, 

however, information of these extracellular vesicles may be helpful in the development of 

better methods. Thus, future analyses about these extracellular vesicles may be able to bring 

greater potentials of our liquid biopsy-based model.

In conclusion, we have successfully identified and developed a liquid biopsy-based model 

that allows robust prediction of resistance to NAT in patients with ESCC. Our findings could 

help in the selection of the best treatment strategy in patients with ESCC. Furthermore, 

our study provides a proof-of-concept precision-medicine assay, for its further validation in 

future prospective clinical trials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Clinical training phase for the combination signature for predicting resistance to NAT 
in ESCC patients.
(A) Kaplan-Meier curves depicting the overall survival for responders (n = 23) or non-

responders (n = 20) to NAT. (B) Kaplan-Meier curves exhibiting the recurrence-free survival 

in responders and non-responders to NAT. (C) Forest plot with odds ratio for each of the key 

clinical characteristics in univariate logistic regression analysis within the clinical training 

cohort (n = 43). (D) Receiver operating characteristics curve values for each signature 

or panels in the clinical training cohort (AUC: 0.70 for 3 mRNAs panel; 0.80 for 4 

miRNAs panel; 0.85 for 3 mRNAs + 4 miRNAs panel; 0.92 for combination signature). 

(E) Waterfall plot representing the combination signature score in clinical training cohort. 

NAT, neoadjuvant therapy; OR, odds ratio; CI, confidence interval; AUC, area under the 

curve.
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Figure 2: Clinical validation phase of a NATRR model for predicting resistance of NAT in ESCC 
patients.
(A) Forest plot with odds ratios of each key clinicopathological characteristics in univariate 

logistic regression analysis for clinical validation cohort (n = 85). (B) Receiver operating 

characteristics curve values for each model, signature or characteristics in the clinical 

validation cohort. NATRR model includes the combination signature and significant key 

clinical predictors (tumor location and lymphatic invasion) and exhibited a superior 

predictive potential than the combination signature and other clinicopathological factors 

individually (AUC: 0.81). (C) Box plots representing the NATRR model score in the clinical 

validation cohort. (D) Kaplan-Meier curves of the recurrence-free survival in patients with 

NATRR model score high (n = 46) or low (n = 39). (E) Pie chart with NATRR model 

score and recurrence. Regardless of pathological responder or non-responders, patients with 

high NATRR model score possessed higher recurrence rates than those with low score. 

NAT, neoadjuvant therapy; SCC Ag, squamous cell carcinoma antigen; OR, odds ratio; CI, 

confidence interval; AUC, area under the curve.
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Figure 3: Subgroup analyses of the NATRR model for predicting the resistance to NAT in ESCC 
patients in clinical validation phase.
(A) Receiver operating characteristics curve values for the NATRR model in early- and 

advanced stage subgroups. NATRR model had sufficient potential in both early- and 

advanced-stage patients (AUC: 0.80; AUC: 0.79, respectively). (B) Forest plot with AUC 

of NATRR model in subgroup analyses focused on tumor progression. (C) Receiver 

operating characteristics curve values for the NATRR model in subgroup analyses focused 

on chemoradiotherapy and the regimen of chemotherapy. The NATRR model had sufficient 

potential in patients treated by chemoradiotherapy or chemotherapy only (AUC: 0.88; AUC: 

0.77, respectively), and treated by FP or SP (AUC: 0.84; AUC:0.76, respectively). (D) Forest 

plot with AUC of NATRR model in subgroup analyses focused on chemoradiotherapy and 

regimen of chemotherapy. (E) Box plots representing the NATRR model score of subgroup 

analyses in the clinical validation cohort. AUC, area under the curve; CI, confidence 

interval; NACRT, neoadjuvant chemoradiotherapy; NAC, neoadjuvant chemotherapy; FP, 

5-FU + CDDP; SP, S-1 + CDDP.
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Figure 4: Clinical performance evaluation phase of a NATRR model for predicting the resistance 
to NAT in ESCC patients in serum specimens.
(A) Receiver operating characteristics curve values for NATRR model score in the clinical 

performance evaluation cohort (n = 58). (B) Waterfall plot represents the NATRR model 

score in the clinical performance evaluation cohort. (C) Box plots representing the NATRR 

model score in the performance evaluation cohort. (D) Forest plot with AUC of NATRR 

model and key clinicopathological factors to predict response to NAT in ESCC patients. (E) 

Pearson’s correlation of a NATRR model score and recurrence-free survival time in patients 

experienced recurrence (R = −0.40, P = 0.05). (F) Pearson’s correlation of a NATRR model 

score and overall survival time in patients experienced recurrence (R = −0.48, P = 0.02). 

AUC, area under the curve; CI, confidence interval; NAT, neoadjuvant therapy; SCC Ag, 

squamous cell carcinoma antigen.
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Table 1.

Univariate and multivariate analysis of factors contributing to resistance of neoadjuvant therapy in patients 

with ESCC

Univariate Multivariate

OR (95% CI) P value OR (95% CI) P value

Age, > 66 versus ≤ 66 years 1.14 (0.41 – 3.21) 0.80

Sex, female versus male 1.07 (0.35 – 3.32) 0.91

Tumor location, upper versus lower 2.80 (0.88 – 8.91) 0.08 1.82 (0.50 – 6.64) 0.36

Tumor size, > 4.2 versus ≤ 4.2 cm 2.70 (0.93 – 7.82) 0.07 2.58 (0.80 – 8.38) 0.11

SCC Ag, > 1.5 versus ≤ 1.5 ng/ml 1.38 (0.48 – 3.96) 0.55

T stage, T3–4 versus T1–2 2.59 (0.80 – 8.36) 0.11

Lymph node metastases, positive versus negative 2.13 (0.66 – 6.62) 0.19

Venous invasion, positive versus negative 1.74 (0.56 – 5.39) 0.34

Lymphatic invasion, positive versus negative 2.06 (0.69 – 6.21) 0.20

NATRR model, high versus low 6.86 (1.91 – 24.6) < 0.01 6.10 (1.60 – 23.2) < 0.01

OR, odds ratio; CI, confidence interval; SCC Ag, squamous cell carcinoma antigen

Ann Surg. Author manuscript; available in PMC 2023 July 01.


	STRUCTURED ABSTRACT
	Mini-Abstract
	INTRODUCTION
	MATERIALS AND METHODS
	Patient cohorts
	Neoadjuvant therapy and histologic evaluation
	RNA extraction from FFPE and serum specimens
	Real-time quantitative reverse-transcription polymerase chain reaction assays
	Statistical analysis

	RESULTS
	ESCC patients with a lack of response to NAT exhibit worse survival outcomes
	A combination signature predicts resistance to NAT in patients with ESCC
	Successful validation of the risk prediction signature for NAT in an independent cohort of ESCC patients
	A NATRR model robustly predicts resistance to NAT in both early- and advanced-stage ESCC patients
	Successful translation of the NATRR model as a liquid biopsy assay in ESCC patients

	DISCUSSION
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Table 1.

