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Deep learning accurately classifies 
elbow joint effusion in adult 
and pediatric radiographs
Jarno T. Huhtanen1,2*, Mikko Nyman3, Dorin Doncenco4, Maral Hamedian4, Davis Kawalya4, 
Leena Salminen5, Roberto Blanco Sequeiros3, Seppo K. Koskinen6, Tomi K. Pudas6, 
Sami Kajander2, Pekka Niemi2, Jussi Hirvonen3, Hannu J. Aronen3 & Mojtaba Jafaritadi4

Joint effusion due to elbow fractures are common among adults and children. Radiography is the 
most commonly used imaging procedure to diagnose elbow injuries. The purpose of the study was 
to investigate the diagnostic accuracy of deep convolutional neural network algorithms in joint 
effusion classification in pediatric and adult elbow radiographs. This retrospective study consisted 
of a total of 4423 radiographs in a 3-year period from 2017 to 2020. Data was randomly separated 
into training (n = 2672), validation (n = 892) and test set (n = 859). Two models using VGG16 as the 
base architecture were trained with either only lateral projection or with four projections (AP, LAT 
and Obliques). Three radiologists evaluated joint effusion separately on the test set. Accuracy, 
precision, recall, specificity, F1 measure, Cohen’s kappa, and two-sided 95% confidence intervals were 
calculated. Mean patient age was 34.4 years (1–98) and 47% were male patients. Trained deep learning 
framework showed an AUC of 0.951 (95% CI 0.946–0.955) and 0.906 (95% CI 0.89–0.91) for the lateral 
and four projection elbow joint images in the test set, respectively. Adult and pediatric patient groups 
separately showed an AUC of 0.966 and 0.924, respectively. Radiologists showed an average accuracy, 
sensitivity, specificity, precision, F1 score, and AUC of 92.8%, 91.7%, 93.6%, 91.07%, 91.4%, and 
92.6%. There were no statistically significant differences between AUC’s of the deep learning model 
and the radiologists (p value > 0.05). The model on the lateral dataset resulted in higher AUC compared 
to the model with four projection datasets. Using deep learning it is possible to achieve expert 
level diagnostic accuracy in elbow joint effusion classification in pediatric and adult radiographs. 
Deep learning used in this study can classify joint effusion in radiographs and can be used in image 
interpretation as an aid for radiologists.

Radiographs are still the first-choice imaging modality in elbow trauma1. In the adult and pediatric elbow there 
can be occult fractures that are not visible in radiographs1,2. Elbow fractures are easily missed especially in the 
pediatric population3 due to cartilaginous appearance in the elbow radiographs. In these cases, however, joint 
effusion can be seen in the lateral projection via displacement of anterior and/or posterior fat pads2. Fat pads 
are intracapsular but extrasynovial anatomical structures4 that can be classified either as positive (abnormal) or 
negative (normal) fat pads in radiographs. In normal radiographs with negative fat pads, only the anterior fat pad 
can be seen in contact with anterior humerus, while the posterior fat pad is hidden in the olecranon fossa. In the 
case of intracapsular fracture, the positive anterior fat pad is elevated, and is thereby more sensitive in showing 
joint effusion. A positive posterior fat pad is recognized by the displacement of the fat pad dorsally out of the 
olecranon fossa as a result of joint effusion5. Although the clinical relevance with joint effusion is debatable6, 
it is an important finding that should be in the radiology report. When joint effusion is noted without a visible 
fracture, given the cost-efficiency, follow-up is recommended7.

Errors in image interpretation can lead to worse patient outcomes8, and it is crucial that radiology profession 
is motivated in finding ways that artificial intelligence (AI) can improve patient treatment9–11, minimize image 
interpretation errors10,12 and improve the profession11. AI competence has been studied in various body parts13–16, 
in different non-traumatic conditions17–20, traumatic conditions10,21–23 and in comparison, with radiologists’ level 
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detection of abnormalities24,25. Deep convolutional neural networks (DCNN) can increase fracture detection26 
support clinical decision making12,27. DCNN has been used to detect joint effusion from lateral elbow radiographs 
with a sensitivity of 0.91, a specificity of 0.91, and an accuracy of 0.9128. DCNN models are also able to detect 
supracondylar fractures comparable to radiologists29,30. However, to the best of our knowledge there are no studies 
utilizing DCNN in large clinical populations with both pediatric and adult patients.

The purpose of this study is to investigate DCNN accuracy in classification of joint effusion in pediatric 
and adult elbow radiographs. We hypothesized that (1) DCNN will accurately classify joint effusion in elbow 
radiographs including adult and pediatric patients, and (2) DCNN will reach accuracy levels of three expert 
radiologists. Transfer learning strategy was proposed where a pre-trained model was reused to train a new model 
on a different vision task. Transfer learning was used to train our neural network because comparatively little 
data is required for it to be efficient. This approach offers several advantages, such as reduction in training time 
and improved performance of neural networks. The new task considers using a pretrained convolutional neural 
network that receives elbow radiographs as inputs and outputs the probability of effusion along with a heatmap 
localizing the areas of the image most indicative of effusion.

Materials and methods
Data collection and annotation.  This  retrospective  study received ethical approval from the Ethics 
Committee of the University of Turku (ETMK Dnro: 38/1801/2020). This study complies with the Declaration 
of Helsinki and was performed according to ethics committee approval. Because of the retrospective nature of 
the study, need for informed consent was waived by the Ethics Committee of the Hospital District of Southwest 
Finland. In this study 1309 elbow patient cases were collected from Turku University Central hospital’s picture 
archiving and communication system, including 634 cases of positive and 675 negative fatpad/effusion cases 
(Table 1), of which 208 cases were excluded due to various reason. Therefore, this study included 1101 elbow 
patient cases (de-identified) with a total of 4423 radiographs between  2017 and 2020 and associated radiol-
ogy reports. Table 2 also shows patient’s demographic information in different subsets. All radiographs were 
obtained with the same machinery (Carestream Evolution 2012, B-103H, United States) in an emergency radiol-
ogy department in a tertiary care referral center. Images were obtained in Digital Imaging and Communications 
in Medicine (DICOM) format. AP and oblique projections were taken with 57 kVp and 4 mAs and lateral projec-
tion with 57 kVp and 5 mAs (Fig. 1). Inherent filtration was 3.17 mmAl with no added filtration.

Cases were selected and separated to either positive joint effusion/fat pad group (n = 645) or negative joint 
effusion/fat pad group (n = 455) (Fig. 2). Cases were selected so that they indicated the presence of either positive 
or negative joint effusion in radiographs based on radiologic reports. Inclusion criteria were (a) history of recent 
trauma, (b) adequate radiographs (LAT projection fills the good radiographic criteria), and (c) the radiology 
report stating the presence or absence of joint effusion. There were several dropped cases due to LAT projec-
tion not meeting the good radiographic criteria in test set (n = 5), train set (n = 10) and in validation set (n = 2). 
Exclusion criteria were (a) metal objects (e.g., surgical hardware) in the field of view, (b) dislocation of the elbow 
joint, (c) comminuted fracture of the elbow, and (d) control study of previous trauma. In addition, to improve the 

Table 1.   Patient demographics in pediatric and adults groups (from the main data registry). *Two-sample 
t-test significant test.

Patients’s demographics
Positive fatpad/effusion
(n = 634)

Negative fatpad/effusion
(n = 675) p value*

Age (years)

Pediatrics (n = 490) 8.6 (1–18) 10.95 (0–18) < 0.005

Adults (n = 819) 49.56 (19–97) 49.85 (19–98) 0.83

Sex (pediatric)

Female 134 (121) 109 (126) 0.17

Sex (adults)

Female 146 (233) 223 (217) < 0.005

Table 2.   Patient demographics in different subsets.

Patients’s Demographics
Training
(n = 666)

Validation
(n = 222)

Test
(n = 213)

Total
(N = 1101)

Age (years)

Mean (whole population) 34.6 35.5 33

Pediatric (1–18) 248 80 79 407

Adults (19–98) 418 142 134 694

Sex

Male 324 101 91 516

Female 342 121 122 585
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accuracy of joint effusion cases were reviewed by an external reader who is qualified for MSK reporting (3 years 
experience). In cases where the consensus was met with the original radiology report they were included in the 
study. There were a number of cases excluded because of disagreement in the dataset (n = 32, 2.9%). Cases were 
randomly split into three subsets: train (n = 666), validation (n = 222), and test (n = 213).

Figure 1.   Example of normal adult radiographs including AP, external oblique, internal oblique and lateral 
projections used in this study.

Figure 2.   AI study method diagram. NFP = Negative Fat Pads/joint effusion; PFP = Positive Fat Pads/joint 
effusion; DCNN = Deep Convolutional Neural Network; ROC = Receiver Operating Characteristic; AUC = Area 
Under the Curve.
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In this study DCNN model performance was evaluated compared to three radiologists with 23, 29 and 
21 years of clinical experience, respectively. Radiologists labeled test set lateral elbow radiographs in positive or 
negative joint effusion groups. This was then compared to DCNN model results. In addition, two data categories 
were created: 4-projection and lateral projection (Table 3). Each patient directory consisted of between 2 and 6 
radiographs of different projections.

Image pre‑processing.  The dataset was pre-processed including conversion of the original radiographs in 
DICOM to Portable Network Graphics format and resized them to 224 × 224 pixel and 72 pixel/inch resolution. 
All images were rescaled by a factor of 1/255 for the pixel intensity normalization. In addition to image stand-
ardization, the train set images are augmented to prevent overfitting during training. The augmentation is done 
with random horizontal flips, random rotations of up to 40°, random width and height shifts of up to 0.2 (20%), 
random shear angling up to 0.2 (20%), and random zooms up to 0.2 (20%). The augmentation was implemented 
using the Keras’ ImageDataGenerator framework which applied these image transformations along with the 
network training.

DCNN model selection  and classification.  Multiple DCNNs were examined including VGG1631, 
MobileNet32, Residual Nets33, Inception Residual Net34, NASNet Large35, DenseNet36, and CheXnet25, with vary-
ing network architecture and hyperparameter settings as briefly describe in Table 4. Initially, these models were 
studied with different base pretrained architectures and depths. On the basis of the primary experiments, the 
VGG1631 was deemed to be the most reliable network for fine-tuning. All the DCNNs were initialized with the 
previously trained weights obtained from ImageNet dataset37.

Two models using VGG16 as the base architecture were trained as follows:

1.	 Model A: Training on the dataset containing lateral projection images only.
2.	 Model B: Training on the dataset containing all 4-projection images.

Both models considered the area under the receiver operating characteristic curve (AUC-ROC) as the clas-
sification metric for monitoring.

From the topless VGG16 model pre trained with a large collection (more than 14 million images) of human 
annotated images (ImageNet), the last convolutional block was chopped off, and four layers including batch 
normalization, max-pooling, flattening, and a fully connected neural network with a rectified linear activation 
(ReLU) function were added on top. The model architecture uses the same first 4 convolutional blocks as VGG16. 
Then the output of the last convolutional block is flattened and the following layers are added: 1. connected layer 
with 512 neurons, 2. connected layer with 512 neurons, 3. connected layer with 256 neurons, 4. connected layer 

Table 3.   The number of images in train, validation and test set in 4-projection and lateral dataset.

Data category Train Validation Test

Four-projections 2672 892 859

Single lateral projection 944 229 215

Table 4.   Different DCNN models trained in this study and model descriptions.

Model Description Number of layers/trainable parameters

VGG16 A 16-layer architecture consisting of convolution layers, Max-pooling layers, and 3 fully connected layers at the end. It 
has a deep network but end-to-end small 3 × 3 Convolutional filters

16 layers
138.4M parameters

DenseNet201
A CNN architecture consisting of Densely connected blocks, where each layer input comes from previous layer output 
feature maps. It has two block types, Dense blocks including batch normalization, ReLU activation and 3 × 3 convolu-
tion layers, a Transition layer consisting of Batch normalization, 1 × 1 convolution and Average pooling layers. Transi-
tion blocks are placed after each dense blocks

402 layers
20.2M parameters

MobileNet
An architecture that utilizes depth-wise separable convolutions and thus reducing the number of parameters. These are 
made of two operations: depthwise convolution for filtering, and point-wise convolution for combining the outputs of 
depth-wise convolutions with 1 × 1 convolution

55 layers
4.3M parameters

ResNet152
The main feature of ResNet architecture is the existence of residual blocks that utilize shortcuts to skip some layers. 
Each residual block consists of two Conv-layers, with batch normalization and ReLU activation, using 3 × 3 filters with 
stride 1. Resnet is famous for solving the Vanishing Gradient problem

307 layers
60.4M parameters

InceptionV3
A CNN model that is made of symmetric and asymmetric building blocks that consist of Convolutions, AVG-pooling, 
Max-pooling, dropouts, and fully connected layers. The convolutions are factorized that results in a reduced number of 
learnable parameters

189 layers
23.9M parameters

NASNetLarge
Stands for Neural Search Architecture network and works best on small datasets. In simple terms, it automates the 
network architecture engineering, and identifies and evaluates the performance of possible architecture designs without 
training. Furthermore, it utilizes a regularization technique called ScheduledDropPath

533 layers
88.9M parameters

CheXNet It is a 121 layer Convolutional neural network that inputs a chest X-ray image and outputs the probability of a pathol-
ogy

121 layers
6.9M parameters
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with 256 neurons. Finally, an output dense layer using the Sigmoid activation function was added that produced 
prediction values between 0 and 1 corresponding to the prediction probabilities of the negative and positive 
classes, respectively. The base of the model was frozen, and the added layers were trained for 256 epochs using 
a learning rate of 1e-05, binary cross-entropy as the loss function, batch size of 32, and Adam as the optimizer. 
Early stopping call back was also used which stops the training process when there is no learning progress with 
the network, meaning that the neurons stop updating the weights to avoid overfitting the model. Figure 3 rep-
resents the modified VGG16 model trained for this paper. The network was fine-tuned by unfreezing the top 
layers of the frozen base model and was trained on both the newly added network layers and the last layers of 
the base model. This allowed us to fine-tune the higher-order feature representations in the base model to make 
them more relevant for the specific task. The experiments were performed on a virtual workstation with NVIDIA 
TITAN V100 GPU and 32 GB memory.

Statistical analysis.  The statistical analyses were performed in Python (version 3) and using a scikit-learn 
library (version 0.22.2)37. Accuracy, precision, recall, specificity, F1 Measure, and Cohen’s kappa coefficient were 
calculated to evaluate the performance of the deep learning models. Two-sided 95% confidence intervals (CI) 
were used for an aggregate measure of model performance and network stability, and to be more conservative for 
accuracy. McNemar’s Chi-Square significant test was used to compare paired predictions obtained by the neural 
network model and radiologist experts. The CI for the performance metrics was obtained with 10 replications of 
the entire train, validation, and test process. The convolutional neural network was trained using Keras (version 
2.3.0) and TensorFlow (version 2.2.0).

To estimate the reliability and agreement of the expert radiologists, pairwise observer agreements were 
measured. Overall inter-rater agreement (Cohen kappa statistic) was calculated using the Pingouin package in 
Python programming language39.

Results
Comparison of AUCs obtained from these models in this study is shown Fig. 4. Different DCNN models showed 
variation in ROC (Fig. 4A) and Precision-Recall (Fig. 4B) area under the curves ranging from 0.699 to 0.945, 
and 0.691 to 0.933, respectively.

ROC and Precision-Recall area under the curves obtained over the best training iteration for models A and 
B are shown in Fig. 5. The proposed deep learning framework showed an AUC of 0.951 (95% CI 0.94–0.955) 
and 0.906 (95% CI 0.89–0.91) for the model A and B in the test set, respectively. ROC curves obtained over the 
best iteration for adult and pediatric patient groups separately are shown in Fig. 6. The AUC’s of the radiologist 
experts in the test set showed a range of 0.923 to 0.928 with no significant statistical difference.

The average confusion matrices of the models A and B are shown in Fig. 7. Table 5 shows the diagnostic 
performance of deep learning models for lateral projection and four projection views. The average accuracy, 
sensitivity, specificity, F1 score, and AUC of the model A and B including pediatric and adult patient groups 
separately are reported in Table 5.

In elbow joint effusion classification with DCNN activation heat map visualizations were obtained using 
Keras library Grad-CAM class. Examples of these heat map visualizations are shown in Fig. 8. Grad-CAM class 
allows delineating a heatmap that highlights areas of the image that the neural network was able to extract impor-
tant features of positive and negative joint effusion classes. Looking at the Grad-CAM activation visualization it 
can be noted that when there is joint effusion present in radiographs it concentrates on the anterior and posterior 
joint effusion regions (Fig. 8A–D). On the contrary, when there is no joint effusion present in radiographs the 

Figure 3.   Architecture of the modified VGG16 model trained for this paper.
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heat map does not highlight these anatomical regions (Fig. 8E–H). The normal undisguised anterior joint effu-
sion did not show heat map visualization (Fig. 8F,H).

In this study three radiologists labeled cases based on joint effusion appearance in test set lateral radiographs. 
Radiologists’ classification performances and AUCs are reported in Table 6. Compared with the AI model A 
at the average operating point, the three radiologists showed an average accuracy, sensitivity, specificity, preci-
sion, F1 score, and AUC of 92.8%, 91.7%, 93.6%, 91.07, 91.4%, and 92.6, respectively. The judgments provided 
by the three radiologists showed substantial agreement. The overall Cohen Kappa agreement between the three 
reviewers was 0.801 (0.779–0.827). There was no statistically significant difference between the AI model A and 
the three radiologists in elbow joint effusion classification (p value > 0.05).

Discussion
In this study it was demonstrated that DCNN can classify elbow joint effusion in pediatric and adult patients with 
an average AUC of 0.95. Especially in the elbow there can be occult fractures that are not visible in radiographs1,2 
and joint effusion is an important finding7 determining patient’s treatment. In addition, due to the importance 
of joint effusion in the radiographs the developed DCNN can be very helpful to radiologists, radiology trainees 
or general practitioners to highlight this important finding. Deep learning algorithms that can accurately, reli-
ably, and rapidly classify radiological images into normal and pathological findings have considerable clinical 
value, because they can lessen the burden on both the radiologist and the referring physician by providing fast 

Figure 4.   Different deep learning model comparisons are seen with their true positive rate (A) and precision 
(B).

Figure 5.   ROC AUC (A) and AUPRC (B) obtained from best training iterations for Models A (Lateral 
Projection data) and B (4-Projections data). AUC = Area Under the Curve and AUPRC = Area Under the 
Precision Recall Curve.
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Figure 6.   AUC curves obtained from best training iterations for Model A with lateral projection data (A) and 
Model B with 4-projections data (B) in pediatric and adult patients. AUC = Area Under the Curve.

Figure 7.   Averaged confusion matrices for the model A and B over the 10 iterations. Confusion matrices show 
performance of a deep learning model that was trained with only lateral projection (A) and a model that was 
trained with four projections (B).

Table 5.   Classifications scores of Model A and Model B. Values (except F1-score and AUC) are shown in 
percentage. The Confidence level was set to 95%. (P) = Pediatric patients only, (A) = Adult patients only.

Model Precision Sensitivity Specificity Accuracy F1-score AUC​

Model A 86.8%
(83.3–90.3)

88.5%
(87.0–90.1)

90.2%
(87.1–93.3)

89.5%
(88.0–91.0)

0.876
(0.86–0.89)

0.951
(0.94–0.96)

Model B 77.9%
(75.1–80.8)

82.2%
(76.8–87.5)

83.1%
(79.4–86.7)

82.7%
(81.8–83.6)

0.797
(0.78–0.81)

0.906
(0.89–0.91)

Model A, (P) 86.4%
(83.7–89.1)

84.9%
(82.4–87.3)

85.3%
(81.7–88.9)

85.1%
(83.6–86.5)

0.856
(0.84–0.87)

0.924
(0.91–0.93)

Model A, (A) 87.3%
(82.7–91.8)

91.7%
(89.9–93.4)

92.4%
(89.2–95.6)

92.1%
(90.2–94.0)

0.893
(0.87–0.92)

0.966
(0.96–0.97)

Model B, (P) 83.4%
(81.0–85.7)

75.7%
(73.0–78.3)

83.3%
(80.1–86.4)

79.3%
(77.7–81.0)

0.793
(0.78–0.81)

0.866
(0.85–0.88)

Model B, (A) 83.3%
(80.4–86.2)

78.0%
(74.5–81.5)

91.3%
(89.1–93.6)

86.7%
(85.8–87.5)

0.804
(0.79–0.82)

0.924
(0.92–0.93)
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Figure 8.   Pediatric (Male, 10y) and adult (Female, 19y) patient with joint effusion (A,C) seen anteriorly (orange 
arrow) and posteriorly (blue arrow) but without visible fracture. Heat map highlights joint effusion (B,D). 
Pediatric (Female, 8y) and adult (Female, 36y) patient with no joint effusion (E,G) anteriorly (orange arrow) or 
posteriorly (blue arrow) and without visible fracture. Heat map does not highlight normal joint effusion (F,H).
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automated diagnostics. In such cases DCNN presented in this study could have clinically significant impact on 
patient management. The developed model showed good sensitivity, specificity and accuracy for elbow joint 
effusion classification and differentiation.

England et al.28 demonstrated that DCNN can accurately detect elbow joint effusion from lateral projections in 
pediatric patients. Our study considered a less complex artificial neural network (VGG16) with only 16-layers in 
joint effusion classification and included both pediatric and adult patients. This approach is more general as there 
is more anatomic variation when both adults and pediatric patients are included on model training. Pediatric 
elbow joint is different compared to adults and not least because of the ossification centers. In addition, joint 
effusion classification can differ from adults because undeveloped coronoid fossa and olecranon fossa and soft 
tissue injury might result in appearance of joint effusion40. DCNN showed slightly better AUC for lateral view 
in adult patients compared to pediatric patients 0.966 and 0.924, respectively. The difference is small and might 
be related to above mentioned anatomic differences, but also to the smaller sample size of pediatric patients in 
model training. Increasing the amount of pediatric cases in training might bring the models performance with 
pediatric patients closer to the performance with adults.

AI has reached the level of radiologists in elbow radiographs29,30 and in other regions22,23. In this study, AI 
performance was compared to three expert radiologists to whom it was superior in AUC comparison. Compared 
to PGY5 emergency medicine residents in a previous study28 AI in this study showed higher specificity but lower 
sensitivity and accuracy.

To our knowledge, there is a limited number of studies that utilize multiple radiographic projections using 
DCNN30 which is more difficult and time consuming due to anatomic variation. Joint effusion is clinically 
evaluated on lateral projections, but it can be seen in other elbow projections including radial head projection. 
Results in this study showed that using only the lateral projection in effusion classification was superior to using 
4 projections in AI approach. Model A which was trained on the lateral view resulted in higher AUC as com-
pared to the model B which was trained with all projections. This indicates that when training with the lateral 
projection images, the CNN model better extracts high level features representing the joint effusion, as expected. 
A comparison of the two models reveals superior classification performances for the model A in average, but 
the results obtained for the model B still support the feasibility of determining effusion from other projections 
using AI as well. In future studies, however, it may be interesting to see if using more or different projections 
adds sensitivity or accuracy. The approach used in this study’s deep learning model can be further developed 
to extend imaging findings from joint effusion to other critical findings where all projections are necessary2.

Findings in this study indicate that a lateral projection approach yields best results. One interesting future 
direction to further improve the performance of DCNN is to include vision transformers (ViT) and generative 
adversarial networks (GAN) to generate radiographs without any need for subject-specific labeling. This can be 
obtained by learning to generate images that imitate the patient’s musculoskeletal features and elbow joint char-
acteristics which are learned in an unsupervised manner from x-ray images of the positive and negative cases.

Limitations.  In this study there are  several  limitations. First, this study was a retrospective single center 
study without external dataset which may affect the generalization of the results. Second, our dataset could have 
been larger, and AI was tested with one hospital data only. Therefore, our model may not be generalized enough 
for the larger population. In addition, this model was investigated on data from one x-ray device, and it would 
be beneficial to test the model with multicenter study36. Third, joint effusions were classified based on consensus 
with the radiologist’s report and external validation which are subjective assessments. Further validating joint 
effusion with MRI would have been more objective. While it was not possible in the present study setting, it 
would add an objective gold standard to the assessment. Without such correlation, as in most clinical situa-
tions, it is usually the radiologist’s report which determines the diagnosis and directs care of the patient. Binary 
classification could have been made using the three radiologists’ evaluations to obtain a stronger agreement on 
the labeling process prior to training the DCNN, but this was used in post validation to see if there were inter-
radiologists’ variations and if there were agreement between the AI model predictions and radiologists’ predic-
tion. Finally, in the future it could be beneficial to use other DCNN models and compare the performances in 
joint effusion classification.

Table 6.   AI model and Radiologist performance comparisons on the lateral elbow test set.

Model Model A Radiologist 1 Radiologist 2 Radiologist 3

AUC​ 0.951 0.927 0.923 0.928

Accuracy 89.8% 93% 92.5% 93%

Sensitivity 88.8% 92.1% 91.01% 92.1%

Specificity 90.5% 93.6% 93.6% 93.6%

Precision 86.8% 91.1% 91.01% 91.1%

F1 score 87.8% 91.6% 91.01% 91.6%
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Conclusion
In this study an automated method based on transfer learning was developed to classify joint effusion from elbow 
radiographs at a level comparable to a radiologist. DCNN classified joint effusions in both pediatric and adult 
patients with high accuracy. With AI-assisted interpretation of radiograph images at the level of experts, we hope 
that this technology can enhance the status of the radiology delivery, and patient’s treatment.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to IRB restrictions 
but are available from the corresponding author on reasonable request.
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