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Abstract

The interpretation of ion mobility coupled to mass spectrometry (IM-MS) data to predict unknown 

structures is challenging and depends on accurate theoretical estimates of the molecular ion 

collision cross section (CCS) against a buffer gas in a low or atmospheric pressure drift chamber. 

The sensitivity and reliability of computational prediction of CCS values depend on accurately 

modeling the molecular state over accessible conformations. In this work, we developed an 

efficient CCS computational workflow using a machine learning model in conjunction with 

standard DFT methods and CCS calculations. Furthermore, we have performed Traveling Wave 

IM-MS (TWIMS) experiments to validate the extant experimental values and assess uncertainties 

in experimentally measured CCS values. The developed workflow yielded accurate structural 

predictions and provides unique insights into the likely preferred conformation analyzed using 

IM-MS experiments. The complete workflow makes the computation of CCS values tractable for a 

large number of conformationally flexible metabolites with complex molecular structures.

Graphical Abstract
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INTRODUCTION

The metabolome is the total collection of biologically active small molecules with 

molecular weights lower than about ~1.5 kDa.1,2 This includes endogenous molecules 

that are biosynthesized by metabolic networks in "primary metabolism", specialized 

"secondary metabolite" signaling, or defense molecules, molecules derived from diet or 

environmental exposures (the exposome), and molecules derived from the biosynthetic 

interactions with associated microbes (the microbiome). Metabolites, both known and 

unknown, have structures that span a wide chemical structure space.3,4 The chemical space 

of metabolites of 100 atoms or less is on the order of ~1060 unique molecules, which 

makes it a grand challenge to explore and characterize metabolomes using experimental and 

theoretical tools.5–7 Metabolomics utilizes sophisticated experimental and computational 

technologies for the identification of biologically relevant metabolites.8,9 Identification 

of metabolites is important in order to understand metabolic diseases, develop precision 

medicine, and elucidate the pathways altered in complex metabolic networks.10–12 The 

experimental annotation of metabolites is performed by matching chemical features against 

databases or, if available, with appropriate chemical standards.13,14 Currently, this last 

approach is nontrivial as the vast majority of metabolites do not have such standards. 

For example, the HMDB database contains a small percentage of the total number of 

metabolites across multiple organisms, and most of the of molecules in the HMDB do 

not have authentic chemical standards.8,15 Further, ~1% of available compounds in the 

U.S. Environmental Protection Agency (EPA) Distributed Structure-Searchable Toxicity 

(DSSTox) Database, PubChem, ChemSpider, and the American Chemical Society’s CAS 

databases, which in aggregate contain millions of chemicals,16,17 have known chemical 

structures. Even the most powerful analytical technologies such as nuclear magnetic 

resonance spectroscopy (NMR)18–21 and mass spectrometry (MS)22–24 can have difficulties 

in confidently identifying unknown compounds for a number of technical reasons. 

Therefore, it is tremendously challenging to build a complete experimental map of any 

given metabolome, considering the large gaps in our knowledge of metabolite structures.

Ion mobility coupled to mass spectrometry (IM-MS) has emerged as an effective tool 

to study the structures of unknown compounds while providing high selectivity and fast 

multidimensional separations.25–27 Ion mobility spectrometry (IMS) separates gas-phase 

ions based on differences in their rotationally averaged collisional cross-section (CCS) 

values. The advantage of calculating the molecular surface area or CCS as compared to other 

properties such as MS/MS spectra or chromatographic retention time is that CCS can be 

measured to a relative standard deviation (RSD) ranging from 0.25 to 6.0% depending 

on the instrument employed, thereby providing a unique physiochemical property for 

structure elucidation of target metabolites.28,29 Isomeric metabolites that commonly exist 

in biological samples can, in many cases, be accurately distinguished by CCS values. More 

importantly, CCS values are reproducible and relatively insensitive toward instrumental 

resources and laboratory environments. McLean and co-workers30,31 and Baker and co-

workers32 have used standard chemicals to construct experimental CCS databases with 

>1000 CCS values.
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Data curation efforts of the MS community have contributed positively to the sharing 

of mass spectra, an approach that could be mimicked for IM data. One example is the 

MassBank database, with a wide user base and contributors from many different countries.33 

The MassBank of North America and the European MassBank34 have further accelerated 

the sharing of mass spectral data for annotated metabolites. These data servers include 

autocuration of spectra and chemical structure information (InChI keys). On the other hand, 

the GNPS35 spectral database utilizes a crowd-sourcing approach to annotate unknown 

compounds. However, these resources are still reported in different formats, and at present, 

there are no standardized procedures for data collection, collation, standardization, and 

sharing.30,32

Over the past decade, IM-MS36 has emerged as an advanced technique for the analysis 

of metabolites.37–40 IM-MS experiments enable measurement of both mass and structural 

features within milliseconds. Four main types of IM-MS technologies are used widely: 

traveling wave (TWIMS),41,42 drift tube (DTIM),38,43 trapped IM (TIMS),44 and differential 

mobility MS (DMS).45 IM-MS uses different types of ionization techniques which 

include matrix assisted laser desorption ionization (MALDI), electrospray ionization (ESI), 

and atmospheric pressure chemical ionization (APCI). Liquid-phase separations such as 

capillary electrophoresis, gas chromatography, and supercritical fluid chromatography can 

also be integrated into IM-MS systems. Although different experimental methods are used 

to measure CCS, the typical experimental uncertainty and differences between platforms 

amount to ~3%, which is the accepted threshold for comparing predicted and experimental 

CCS values.

In silico technologies have shown promise for the comprehensive identification of 

compounds and as a way by which to expand database content through the introduction 

of accurate theoretical information.46–49 High throughput and comprehensive identification 

of metabolites can afford a deeper understanding of the role that small molecules play 

in a given biological system. Importantly, in silico approaches are "standard free" and, in 

principle, can provide high quality predictions for a range of properties. Many advances in in 
silico approaches for structure determination have been reported, including NMR chemical 

shifts50,51 and spin coupling, chromatographic retention times,52,53 ion mobility CCS,49,54 

and tandem mass spectra.55,56 Renslow et al. have developed a quantum chemistry-based 

pipeline (ISiCLE) for CCS calculations that produces CCS predictions in good agreement 

with experimental values.49 To identify the protonated and deprotonated state of a molecule, 

ISiCLE considers the lowest energy conformation of the molecule. More recently, Grimme 

et al. have shown that the lowest energy protonated state does not necessarily give the best 

agreement with experimental CCS values.57 Other high energy states were found to also be 

important in order to obtain accurate CCS predictions. This finding suggests that in order 

to obtain the most accurate CCS predictions all of the protonated and deprotonated states 

should be correctly modeled. Furthermore, ISiCLE uses simulated annealing molecular 

dynamics (MD) methods to generate a number of temporally correlated structures, which are 

then subjected to QM optimization, making this a computationally expensive approach.58 

MD trajectories use molecular mechanics for the Hamiltonian. Moreover, because of 

errors in small-molecule force fields there is no guarantee that the global minimum 

conformation will be identified.59 Investing computational resources on the DFT refinement 
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of MD-generated initial geometries is not necessarily optimal. Hopkins et al. performed 

CCS calculation using Mobcal-MPI with 25 different computational methods, showing an 

accuracy of CCS predictions of ~3.0% relative to experimental values.60 However, this 

approach does not extensively map the conformational space of a given molecule, which is 

known to be important for CCS prediction.

Two basic approaches currently exist for predicting IM CCS values. Appropriately 

constructed machine learning approaches greatly accelerate CCS calculation and have 

modest CPU needs. However, training set dependencies limit the application of this 

approach and the quality of results. On the other hand, standard quantum mechanics (QM) 

methods are very reliable but computationally intensive. In this work, we have developed 

a CCS calculation workflow that combines the best features of both machine learning and 

standard QM methods. We have compared our calculated CCS values computed using our 

in silico workflow with the available database results to confirm their accuracy. Twenty 

metabolites and their possible molecular states (protonated/deprotonated/neutral) were 

explored in this benchmark. Furthermore, we performed our own set of TWIMS experiments 

to measure CCS values for the 20 metabolites considered in this study. The CCS values 

calculated using our workflow were in good agreement with available experimental values 

in the literature (±3%), with the values determined herein (±3%), and with the average 

or consensus values between the two experimental values (±3%). This high-throughput 

workflow was automated via a series of Python scripts and has the potential to compute CCS 

values for large numbers of metabolites to enhance structural analysis in metabolomics.

METHODS

The developed workflow consists of several distinct steps (see Figure 1). Initially, we 

determine the molecular protonation state of the corresponding gas-phase ions (typically 

[M + H]+ or [M − H]−) and then generate the conformations for these using the RDKit 

toolkit.61–63 All generated conformations undergo geometry optimization using a QM-

based ML model called ASE_ANI64–66 followed by an unsupervised clustering step using 

in-house unsupervised clustering code (viz. AutoGraph)67 to obtain structurally distinct 

conformations. Standard DFT geometry optimization and atomic charge calculation are then 

performed on a representative conformation from each cluster at the B3LYP/6–31+G(d,p) 

and B3LYP/6–311++G(d,p) level of theory, respectively, using the Gaussian 16 software 

package.68–71 The input file for CCS calculation is prepared by extracting the geometry 

and atomic charges from the DFT computations. Finally, the roomtemperature N2-based 

trajectory method is used to calculate the average collisional cross-sectional areas using 

the HPCCS code developed by Zanotto et al.72,73 and predict the structure of the target 

metabolites by comparing the computed results using a Boltzmann-weighted average over 

multiple conformers with experimental CCS values. We describe details of each step of the 

workflow in the Supporting Information. The TWIMS CCS experimental values are also 

reported in the Supporting Information, together with instrumental parameters (Tables S1 

and S2). The workflow is integrated in our freely available Web server, www.pomics.org.
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RESULTS AND DISCUSSION

The goal of this study was to develop an in silico workflow to accurately calculate the 

IM CCS value of an unknown metabolite in order to assign its 3D structure and filter 

out false positives more easily. This workflow involves an eightstep process starting from 

protonation-state determination to Boltzmann-weighted structure assignment, as illustrated 

in Figure 1. To validate the proposed workflow, we computed the CCS values for 20 

metabolites (see Figure S1) with atom counts ranging from 10 to 40 and compared the 

computed results to literature CCS values and to CCS values measured in this work. 

Comparisons against literature values and the TWIMS experimental data are summarized 

in Table S3.

The number of molecular states for each metabolite are given in Table 1. As an example, 

for carnosine we have generated five states including one neutral, three monoprotonated 

ions, and one doubly protonated ion. As our aim was structure elucidation, we performed 

a rigorous study covering a range of likely molecular states. Apart from the pKa 

determination, chemical intuition can also play an important role in predicting likely 

protonation states of a particular metabolite. Each of the molecular states was then converted 

into a 1D SMILES string and subjected to conformation generation using the RDKit 

conformation generation tool. We only requested 1000 conformers, but this number could 

be increased or decreased depending on the application or on the desired coverage of the 

conformational space. The total number of conformations generated for each metabolite 

are depicted in Table 1, and it can be seen that for conformationally rigid species few 

conformers are generated, while for more flexible molecules many more conformations are 

produced. The AutoGraph clustering method greatly reduces the conformational complexity 

by lumping related conformations into distinct clusters. The five predicted molecular 

states for carnosine (viz. models 1–5) generated 990, 994, 994, 994, and 996 conformers, 

respectively, which after ANI-1ccx minimization and clustering represent 16, 13, 15, 12, and 

14 unique conformations, respectively. A representative cluster of the carnosine molecule is 

depicted in Figure 2. The results for the remaining 19 metabolites are summarized in Table 

1. Optimization of large number of generated conformation using a ML model followed 

by structural similarity based clustering helps to identify relevant conformations in a large 

conformational space and greatly reduces the number of QM geometry optimization yielding 

a computationally efficient workflow without compromising accuracy.

To assign the structure correctly and to understand the dependency of the CCS values on 

the molecular state, we compared the calculated CCS values with literature value, and the 

CCS values measured in this work and report the quality of the results in the form of the 

percent error. The results are tabulated in Table 2 for the 20 molecules in each of their 

molecular states (neutral and charged). For carnosine, the consensus CCS value for the [M 

+ H]+ ionic species is 150.1 Å2. Therefore, it is expected from the in silico modeling that 

one of the three singly protonated species should best match experiment as this is the species 

being detected experimentally. For carnosine model 4, where the terminal amine group 

is protonated (Figure 3), a computed CCS value of 150.21 Å2 was calculated using our 

workflow. The CCS error was 0.11% relative to the consensus experimental value indicating 

that the prediction in this case is well within the experimental error estimated as ±3% in 
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Table 2.29 The other two singly protonated species (models 2 and 3, 166.54 and 163.57 Å2, 

respectively) have 9.9% and 8.2% errors relative to experiment. We were further interested 

in calculating the CCS values of the neutral species (model 1) and the doubly protonated 

species (model 5) to gain more insight into the effect structure plays in the predicted CCS 

values, despite these not being experimentally detectable. When compared to the CCS value 

of monoprotonated carnosine the neutral and doubly protonated models exhibited percent 

errors of 9.4% and 31.0%, respectively. From this analysis we concluded that the [M + 

H]+ ion corresponds to model 4. For the remaining systems we only investigated the singly 

charged protonated or deprotonated species (be it positive or negative) and the neutral 

species. In the absence of experimental electrospray data indicating multiple charges, we did 

not explore other higher charge states for the remaining 19 metabolites.

TWIMS-MS experiments exhibit excellent between-lab and between-run reproducibility but 

require calibration to a set of compounds of known CCS values in order to calculate CCS 

experimental values.74 These known values are most typically obtained using drift tube ion 

mobility (DTIM) and the Mason–Schamp equation,25 though DTIM measured CCS values 

can vary largely between laboratories and instruments. For example, Hines et al. measured 

the CCS of the polyalanine hexamer to be 190.8 Å2, while Picache et al. measured 194.0 

Å2, a 1.6% difference.75,76 Much of the error calculated for our experimental TWIMS CCS 

values may be attributed to di?erences between the DTIM system used to measure CCS 

values for our polyalanine calibration75 and the DTIM system used to generate the database 

used for our comparison with select metabolites.32 For this reason, it is essential to calibrate 

TWIMS measurements using CCS values from a single DTIM database if the goal is to 

match unknown compounds to CCS measurements against that same database.

To further validate the results obtained from this workflow, we performed the CCS 

computation for additional metabolites with different molecular states. Depending on the 

electrospray ionization mode used for IM-MS experiments with each analyte, either the [M 

+ H]+ or [M − H]− molecular states were generated. The neutral state was always considered 

for each metabolite essentially as an internal reference in that the neutral molecule should 

not match experiment well at all. A total of 52 states were generated for the 19 metabolites 

(excluding the five for carnosine), and we executed the workflow to obtain the computed 

CCS values. The final step of this workflow is to Boltzmann average the CCS values of the 

multiple conformers.

The Boltzmann weighting step takes the total energies and uses them to weight each 

individual conformer to determine how much it contributes to the observed CCS value. 

To illustrate this, we use model 4 of carnosine as an exemplar (see Table 3). A similar 

analysis for the other molecular states of carnosine and the 19 other metabolites is reported 

in the Supporting Information (see Tables S4–S57). It is observed from Table 3 that 

the most stable conformation of model 4 is conformation number 3, which contributes 

99% to the Boltzmann-weighted CCS value. Conformation number 11 is 2.55 kcal mol−1 

higher in energy than conformation 3, and this high energy conformer contributes only 

1% to the Boltzmann-weighted CCS value of 150.21 Å2. The remaining high energy 

conformers negligibly contribute to the computed CCS value. We observe that, in many 

cases, molecules can exist in multiple conformations having an effect in CCS calculations. 
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Therefore, in our experience, it is always better to consider Boltzmann average properties 

rather than the lowest energy state. For example, model 3 of L-tryptophan (see Table 

S43) has two conformations (4 and 9) with relative populations of 54% and 45% in the 

gas phase, respectively. Conformations 4 and 9 have CCS values of 166.44 and 156.03 

Å2, and the experimentally reported value is 154.22 Å2. The Boltzmann average CCS 

value is 159.69 Å2. Therefore, the Boltzmann average value gives a significantly better 

prediction of the CCS value relative to the global minimum. In our previous work on NMR 

chemical shift calculation50 for metabolites, we observed that high-energy conformations 

had a subtle impact on the computed NMR chemical shifts, and in order to obtain high-

resolution predictions, the entire ensemble was essential. Beyond giving accurate CCS 

values, the ensembles themselves give molecularlevel insights into the conformational space 

of molecules, which in many cases can be quite informative in their own right.

To further understand the conformational energy surface, we have further investigated 

the AutoGraph clustering of the ANI-1ccx optimized conformations. Figure 4 shows the 

clustering of carnosine (model 4) based on weighted degree and energy values. This figure 

confirms that both conformations 3 and 11 are in the low energy basin. Cluster regions with 

the QM energies are shown in Figure S3, which further confirms that conformations 3 and 

11 are low energy conformations and, hence, the most probable structures of carnosine. 

From this analysis we predict that conformation 3 is the most likely structure of the 

carnosine as it traverses the IM device along with a small fraction of conformation 11. 

This suggests that our protocol not only can return a CCS value but can provide molecular 

level insights into the metabolite under study.

Using the best matching CCS value with experiment for all 20 metabolites yields an average 

error of 2.2% (within experimental uncertainties), suggesting that our computed CCS values 

are highly reliable and will lead to highly accurate CCS and structure predictions for 

unknown metabolites.

CONCLUSIONS

This article introduces a robust in silico workflow to accurately predict the CCS values of 

small molecules. Moreover, we also evaluated the experimental CCS values and compared 

them with available literature values to establish that the experimental variation between 

laboratories is ~±3%, which along with other analyses28,29 establishes the reproducibility of 

experimental values. The computational workflow is an eightstep process, and the pipeline 

utilizes the best aspects of force fields, machine learning QM and QM methods to achieve 

highly accurate and reliable results. Accurate CCS prediction primarily depends on the 

molecular state (protonated/deprotonated) of a metabolite. Hence, thorough characterization 

of relevant molecular states yields CCS predictions within 3% of experimental values. 

The unsupervised clustering method included in this workflow reduces the possibility of 

human bias and error in cluster selection. The QM-ML model and clustering technique 

makes this protocol more computationally efficient. All of the steps can be processed in 

an automated way using series of Python-based scripts, making this protocol even more 

useful in building an in silico library of predicted CCS values and can be used to assign the 

structure of an unknown metabolite. Our newly developed workflow maintains an excellent 
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balance between accuracy and computational cost, and we anticipate that this advanced 

protocol will be a useful tool for structure prediction for the metabolomics community 

and other communities studying small molecular species. It should be mentioned here that 

structure elucidation of any unknown compound, including metabolites, is challenging and 

only one data point is very unlikely to identify an unknown. CCS prediction is only one 

part of a larger workflow using multiple techniques that include retention time matching, 

MS/MS databases, isotopic cluster assignments, NMR, and even MSn. Hence, accurate 

structure elucidation involves determining a range of properties both experimentally and 

computationally. CCS calculations, however, can reduce the molecular space and can be 

used as a filter to remove false positives. When coupled with other techniques, it can lead to 

the more reliable annotation of unknown metabolites.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
In silico collisional cross section calculation workflow.
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Figure 2. 
Structure clusters for carnosine (Model 4) as an example. A total of 994 ANI optimized 

conformers yielded 12 clusters.

Das et al. Page 15

J Am Soc Mass Spectrom. Author manuscript; available in PMC 2022 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Protonation state is modeled by pKa prediction and chemical intuition. Only cationic species 

were generated to match the electrospray ionization mode. The pKa is calculated using the 

EPIK module implemented in the Schrödinger software suite.
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Figure 4. 
Unsupervised clustering of carnosine (model 4) by AutoGraph. Twelve different colors 

represent the 12 cluster regions (Left). Low to high energies (ANI-1ccx potential) are 

represented by blue to red, respectively, and the relative energy value is in kcal mol−1 (right). 

Figure generated with the Gephi software.
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Table 3.

Conformation Number, Relative Energy, Mole Fraction, and the CCS Value for Carnosine (Model 4, 

Protonated Species)

conformation no. relative energy (kcal/mol) mol fraction CCS value (Å2)

1 25.25 0.00 169.05

2 28.35 0.00 172.56

3 0.00 0.99 150.21

4 28.76 0.00 170.15

5 25.05 0.00 170.87

6 22.69 0.00 169.19

7 8.86 0.00 160.17

8 14.49 0.00 160.97

9 12.31 0.00 160.86

10 22.97 0.00 167.64

11 2.55 0.01 150.15

12 13.56 0.00 163.02

J Am Soc Mass Spectrom. Author manuscript; available in PMC 2022 July 13.


	Abstract
	Graphical Abstract
	INTRODUCTION
	METHODS
	RESULTS AND DISCUSSION
	CONCLUSIONS
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Table 1.
	Table 2.
	Table 3.

