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Although the sialyltransferases ST3GAL1 and ST3GAL2 are known to transfer sialic acid to the

galactose residue of type III disaccharides (Galb1,3GalNAc) in vitro, sialylation of O-linked

glycosylated proteins in living cells has been largely attributed to ST3GAL1. To examine the

role of ST3GAL2 in O-sialylation, we examined its expression during differentiation of

human-induced pluripotent stem cells (iPSCs) into hematopoietic progenitor cells (HPCs) and

megakaryocytes (MKs). ST3GAL1 and ST3GAL2 each became highly expressed during the

differentiation of iPSCs to HPCs but decreased markedly in their expression upon differentiation

into MKs, suggesting coordination of expression during megakaryopoiesis. To further delineate

their role in these processes, we generated ST3GAL1-, ST3GAL2-, and doubly deficient human

iPSC lines. Binding of the peanut agglutinin lectin, which reports the presence of unsialylated

Galb1,3GalNAc glycan chains, was strongly increased in HPCs and MKs derived from

double-knockout iPSCs and remained moderately increased in cells lacking either one of

these sialyltransferases, demonstrating that both can serve as functional cellular O-glycan

sialyltransferases. Interestingly, the HPC markers CD34 and CD43, as well as MK membrane

glycoprotein (GP) GPIba, were identified as major GP substrates for ST3GAL1 and ST3GAL2.

In contrast, O-sialylation of GPIIb relied predominantly on the expression of ST3GAL2. Finally,

although disruption of ST3GAL1 and ST3GAL2 had little impact on MK production, their

absence resulted in dramatically impaired MK proplatelet formation. Taken together, these

data establish heretofore unknown physiological roles for ST3GAL1 and ST3GAL2 in O-linked

glycan sialylation in hemato- and megakaryocytopoiesis.

Introduction

Mucin type O-glycosylation is a ubiquitous posttranslational modification, with an estimated 80% of
proteins that traffic through the endoplasmic reticulum-Golgi secretory pathway becoming O-glycosy-
lated.1 The process starts with the addition of N-acetylgalactosamine (GalNAc) to either a serine or
threonine residue of the protein backbone to form the so-called Tn antigen (GalNAca-O-Ser/Thr). The
Tn antigen is normally extended by addition of galactose (Gal) by core1 b1,3-galactosyltransferase-1
(C1GALT1) and its molecular chaperone COSMC to form the core 1 structure (Galb1,3GalNAc), also
known as the T antigen. The T antigen is often then sialylated to form Sialyl-T or further converted to a
core 2 structure by addition of N-acetylglucosamine (GlcNAc) by b1,6-N-acetylglucosaminyltransfer-
ases (C2GNT).2

Submitted 7 January 2022; accepted 21 April 2022; prepublished online on Blood
Advances First Edition 4 May 2022; final version published online 6 July 2022. DOI
10.1182/bloodadvances.2022007001.

Requests for data sharing may be submitted to Nanyan Zhang (nzhang@versiti.org).

The full-text version of this article contains a data supplement.

© 2022 by The American Society of Hematology. Licensed under Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-
ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other
rights reserved.

Key Points

� ST3GAL1 and
ST3GAL2 have
both overlapping
and unique
substrate specificities
in O-glycan
sialylation during
megakaryopoiesis.

� O-glycan sialylation is
dispensable for MK
production but
indispensable for MK
proplatelet formation.
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Recent high-resolution mass spectrometry has identified with great
precision a number of O-linked glycosylation sites in human platelet
membrane glycoproteins3; however, the importance of protein
O-glycosylation to platelet biology remains largely unstudied. Multi-
ple knockout (KO) mouse models targeting either C1GALT14,5 or
COSMC6 to abolish core 1 synthesis all exhibit severe thrombocy-
topenia in conjunction with a variety of platelet abnormalities, includ-
ing reduced platelet surface glycoprotein receptor expression,
impaired glycoprotein Ib-IX-V and aIIbb3 activation, impaired propla-
telet formation, and increased platelet clearance, strongly suggest-
ing that proper protein O-glycosylation is required for platelet
biogenesis and function, as well as platelet lifespan and clearance.

Among the 6 members of the a2,3-sialyltransferase (ST3GAL) fam-
ily in mammalians, ST3GAL1 and ST3GAL2 are known to catalyze
the addition of sialic acid to the terminal galactose of type III lactos-
amine (Galb1,3GalNAc), which is found on O-glycosylated proteins
and glycolipids. Despite seemingly close substrate specificity, in vitro
studies have shown that ST3GAL1 prefers glycoprotein acceptors,
whereas glycolipids serve as the predominant substrates for
ST3GAL2.7-9 Whether this represents their differential physiological
functions in cells remains unresolved.

To date, only a handful of substrates for ST3GAL1 and ST3GAL2
have been identified in living cells. CD8, CD43, and CD45 were
identified as glycoprotein substrates for ST3GAL1 in mouse T cells
that regulate T-cell homeostasis.10 ST3GAL1, responsible for sialy-
lation of the core 1 structure on CD45 in human B cells, was
reported to be required for regulating B-cell differentiation.11 In addi-
tion, several protein substrates for ST3GAL1 (eg, CD55, vasorin,
GFRA1, and AXL) have been identified in human tumor cells that pro-
mote tumor growth and invasion.12-14 These findings support the con-
cept that glycoproteins are common substrates for ST3GAL1 in cells.
In contrast, ST3GAL2 has been shown to be responsible for adding
terminal sialic acid residues to 2 gangliosides, GM1 and GD1b, to
synthesize GD1a and GT1b, respectively, in mouse brain and adipose
tissue.15,16 ST3GAL2 KO mice show a 50% reduction in ganglioside
terminal sialylation but normal protein sialylation in brain, supporting
the notion that ST3GAL2 acts primarily or exclusively on glycosphin-
golipid acceptors.17 Stage-specific embryonic antigen-4 (SSEA4), a
well-known surface marker for pluripotent stem cells, belongs to the
globo-series of glycosphingolipids and is also frequently overex-
pressed in cancer cells. The synthesis of SSEA4 from its precursor
SSEA3, through addition of a2,3-linked sialic acid, has been found to
be catalyzed by ST3GAL2 in several human tumor cells.18-21 Cur-
rently, however, no protein substrates for ST3GAL2 have been
reported in either mouse or human cells.

Much of our understanding about the in vivo function of ST3GAL1
and 2 has been derived from genetic manipulation of their genes in
mice. ST3GAL1-deficient but not ST3GAL2-deficient mice have
thrombocytopenia, suggesting a unique role of ST3GAL1 in platelet
biogenesis and/or clearance.22 The function of genes in mouse
models, however, sometimes does not fully recapitulate their biologi-
cal function in human cells. For example, humans and mice show
different tissue distributions of ST3GAL1 and ST3GAL2; notably,
ST3GAL2 is present in human, but undetectable in mouse,
bone marrow.23,24 The distribution of these 2 enzymes in the
hematopoietic lineage has not been well investigated. Both
human and mouse platelets express ST3GAL1, but whether they
also express ST3GAL2 is not known.25,26 Second, although

glycoproteins do not seem to be suitable substrates for mouse
ST3GAL2, they have been shown to be good substrates for
human ST3GAL2 in in vitro assays, suggesting the potential for
human ST3GAL2 to be involved in protein O-linked glycan sialylation
in vivo.23

The development of human-induced pluripotent stem cell (iPSC)-
based systems, combined with the availability of efficient genome-
editing technologies, has provided new opportunities for examining
the function of genes in human cells. In this study, we generated
ST3GAL1, ST3GAL2, and doubly deficient KO iPSC lines and per-
formed comparative analysis of hematopoietic and megakaryocytic
differentiation starting from iPSCs. We found that synthesis of the
glycolipid marker SSEA4 is exclusively reliant on ST3GAL2 in
iPSCs. In contrast, ST3GAL1 and ST3GAL2 exhibit partially over-
lapping substrate specificities in hematopoietic progenitor cells
(HPCs) and megakaryocytes (MKs). Surprisingly, ST3GAL2, but not
ST3GAL1, appears to play a dominant role in sialylating GPIIb.
Finally, although disrupting ST3GAL1 and ST3GAL2 has no signifi-
cant impact on MK production, their absence results in dramatically
impaired MK proplatelet formation. Taken together, these data
establish heretofore unknown physiological roles for ST3GAL2 in
O-linked glycan sialylation in hemato- and megakaryocytopoiesis
and highlight a previously unappreciated role for O-linked glycan
sialylation in the process of terminal platelet generation.

Materials and methods

gRNA plasmid constructs

Guide RNAs (gRNAs) were designed using the CRISPR Design Tool
(https://benchling.com/crispr) to minimize off-target effects and
selected to precede a 59-NGG protospacer-adjacent motif. gRNAs
used in this study were: ST3GAL1-gRNA1: 59-GAACTACTCCCAC
ACCATGG-39, ST3GAL1-gRNA2: 59-GGGGTCTGGTAATGAGAGT
G-39, ST3GAL2-gRNA1: 59-CGGAG-AGGAACCACACCCGC-39,
ST3GAL2-gRNA2: 59-GTGAGGAGTACAGCCATGGG-39. Oligos
were annealed and cloned into the BbsI site of the clustered regularly
interspaced short palindromic repeats (CRISPR)-associated protein 9
(Cas9) expression plasmids PX459 V2.0 (Addgene, Cambridge, MA).

Flow cytometric analysis

Cultured cells were incubated with fluorescein isothiocyanate–conju-
gated peanut agglutinin (PNA), Ricinus communis agglutinin (RCA-I),
Sambucus nigra agglutinin, or biotin-conjugated Maackia amurensis
agglutinin (MAL-II) (Vector Laboratories Inc., Burlingame, CA) or fluo-
rescently labeled antibodies for 20 minutes at room temperature.
The antibodies used were Alexa Fluor 488-conjugated anti-SSEA3,
Alexa Fluor 647-conjugated anti-SSEA4, PE-conjugated anti-TRA-1-
60-R, PE-conjugated anti-CD43 (10G7), APC-conjugated anti-CD34
(581), APC-conjugated anti-CD42b, PE-conjugated anti-CD71, APC-
conjugated anti-CD235ab (Biolegend, San Diego, CA), and
PE-conjugated anti-CD41a (BD Biosciences, San Jose, CA). Flow
cytometry was performed using a BD LSRII flow cytometer. Flow
cytometry data were analyzed using FlowJo software (Tree Star Inc.,
Ashland, OR).

Immunoprecipitation

iPSCs, HPCs, MKs, and erythroblasts (EBs) were lysed in 20 mM
tris(hydroxymethyl)aminomethane (pH7.4), 150 mM NaCl, 1% Triton
X-100, 0.1 mM CaCl2, and protease inhibitor cocktail (Thermo
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Fisher Scientific, Waltham, MA). Whole-cell lysates were obtained
after centrifugation at 17000g for 15 minutes at 4�C. PNA-agarose
beads (Vector Laboratories Inc.) were preblocked with 3% bovine
serum albumin in phosphate-buffered saline, washed, and mixed
with HPC lysates generated as described above. After overnight
incubation at 4�C, PNA-reactive glycoproteins were eluted with
reducing sodium dodecyl sulfate (SDS) sample buffer. For immuno-
precipitation, whole-cell lysates were precleared with protein G
Sepharose and then incubated with the anti-GPIIIa monoclonal anti-
body (mAb) AP3 or anti-GPIba mAb AP1 overnight at 4�C. Immune
complexes were collected on protein G Sepharose beads, then
treated with neuraminidase (New England Biolabs Inc., Ipswich,
MA) for 1 hour at 37�C and eluted with reducing SDS sample
buffer.

Proplatelet formation assay

Eight-well chamber slides were coated with 100 mg/mL fibrinogen
overnight at 4�C. Enriched iPSC-derived MKs were cultured in
8-well chamber slides for 14 hours at 37�C and 5% CO2, then
fixed with 2% paraformaldehyde for 20 minutes and permeabilized
with Triton X-100 (0.5%) for 5 minutes. Cells were first stained with
rabbit anti-GPIba antibody (LifeSpan BioSciences, Inc., Seattle,
WA). After wash, the cells were further stained with AF488-
conjugated mouse anti-rabbit immunoglobulin G (Jackson ImmunoR-
esearch Laboratories, West Grove, PA), TRITC-phalloidin (Sigma,
Waltham, MA), and 49,6-diamidino-2-phenylindole. The cell images
were observed by using Nikon Eclipse Ti2 inverted microscope with
a 603 objective lens. Cells with cytoplasmic processes longer than
the diameter of the cytoplasm were defined as proplatelet-forming
MKs.

Statistical analysis

One-way analysis of variance (ANOVA) with Dunnett’s test compar-
ing with wild-type (WT) cells was performed with GraphPad Prism 9.
All bar graphs with error bars represent means plus or minus stan-
dard error of the mean (SEM). A P value ,.05 was assumed to rep-
resent statistical significance.

Additional methodology

See supplemental Methods for iPSC culture, differentiation, and
western blot analysis.

Results

Expression levels of ST3GAL1 and ST3GAL2 are

coordinately regulated during hematopoiesis

To examine the expression and function of ST3GAL1 and ST3GAL2
during human hematopoiesis, we sequentially differentiated SSEA31/
SSEA41 iPSCs into CD341/CD431 HPCs, CD411/CD42b1 MKs,
and CD711/CD2351 EBs using previously published protocols27,28

(depicted in Figure 1A-B). Western blot analysis (Figure 1C) revealed
modest initial expression levels for both ST3GAL1 and ST3GAL2 in
human iPSCs that, upon differentiation into HPCs, became markedly
increased, followed by a dramatic decrease in expression as the cells
further differentiated into MKs and EBs. Consistently, analysis of the
published RNA sequencing data set from iPSC-derived HPCs and
MKs (GSE119828) showed decreased mRNA expression of
ST3GAL1 and ST3GAL2, as well as C1GALT1 and its chaperon
COSMC that catalyze core 1 synthesis, in MKs compared with

HPCs (supplemental Figure 1A). This interesting pattern suggests
ST3GAL1 and ST3GAL2 are coordinately regulated to carry out
O-glycan sialylation during different stages of hematopoiesis from
iPSCs. We further analyzed the published single-cell RNA sequenc-
ing data isolated from human bone marrow (GSE120221). Surpris-
ingly, bone marrow hematopoietic stem cells mainly express
ST3GAL1 but not ST3GAL2, whereas bone marrow MKs mainly
express ST3GAL2 but not ST3GAL1 (supplemental Figure 1B-E).
This may represent the difference between in vitro and in vivo hema-
topoiesis and further emphasizes an important role of ST3GAL2 for
O-glycan sialylation in MKs.

Genotypic and phenotypic characterization of iPSC

lines lacking ST3GAL1, ST3GAL2, or both

sialyltransferases

To characterize the actions of ST3GAL1 and ST3GAL2 during
stem cell differentiation, we generated KO iPSC lines lacking
ST3GAL1, ST3GAL2, or both, using standard CRISPR/Cas9 gene-
editing technology. The gRNAs used to target specific exons within
the ST3GAL1 and ST3GAL2 genes to achieve predictable dele-
tions from the genome are shown in Figure 2A. Individual colonies
were analyzed by polymerase chain reaction to verify biallelic dele-
tion of the targeted gene in the genome (supplemental Figure 2).
Western blot further confirmed the loss of ST3GAL1 and/or
ST3GAL2 expression in the corresponding iPSCs (Figure 2B).
Disruption of ST3GAL1 and/or ST3GAL2 did not affect the
morphology or proliferation of iPSCs (data not shown).

Pluripotency markers on the stem cell surface are often carbohy-
drate antigens. Interestingly, disruption of ST3GAL2, but not
ST3GAL1, abolished the expression of the pluripotency marker
SSEA4 and accordingly increased the expression of its precursor
SSEA3, indicating ST3GAL2 is responsible for the synthesis of
SSEA4 in iPSCs (Figure 2C). Despite their common use as pluripo-
tency markers, SSEA3 and SSEA4 are not essential for maintaining
pluripotency of human embryonic stem cell.29 Therefore, the loss of
SSEA4 expression in ST3GAL2 KO and ST3GAL112 KO iPSCs
does not represent impaired pluripotency of the cells. Indeed, abla-
tion of ST3GAL1 and ST3GAL2 had no effect on the expression of
another carbohydrate pluripotency marker, TRA 1-60 (Figure 2C).
PNA, a lectin that specifically binds to unsialylated Galb1,3GalNAc
structure, and RCA-I, a b-Gal-binding lectin, showed increased
binding to ST3GAL112 KO iPSCs (supplemental Figure 3A).
Accordingly, the binding to MAL-II, which recognizes a2,3 sialic
acid linkages, was decreased in ST3GAL112 KO iPSCs
(supplemental Figure 3A). As expected, the a2,6 sialic acid linkages
were not significantly affected by disruption of ST3GAL1 and 2, as
indicated by similar binding of Sambucus nigra agglutitin between
WT and double-KO cells (supplemental Figure 3A).

ST3GAL1 and ST3GAL2 are each able to modify

multiple glycoprotein substrates in HPCs

Hematopoietic differentiation from ST3GAL1 and ST3GAL2 single-
and double-KO cell lines all showed normal expression of the diag-
nostic mesodermal makers KDR and CD31 on Day 6 (supplemental
Figure 4) and gave rise to CD341 HPCs (Figure 3A-B), demon-
strating that disruption of ST3GAL1 and ST3GAL2 does not signifi-
cantly impair hematopoietic differentiation. Moreover, western blot
showed that disruption of ST3GAL1 or ST3GAL2 did not cause
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dramatic compensatory upregulation of the other enzyme in HPCs
(supplemental Figure 5A).

PNA binds to nonsialylated core 1 and core 1–derived glycans
(depicted schematically in Figure 3E). Flow cytometric analysis
showed negligible surface PNA binding to WT HPCs, reporting
the absence of an exposed core 1 structure on the cell surface
(Figure 3C). Both ST3GAL1 KO and ST3GAL2 KO HPCs, however,
showed significant surface PNA binding compared with WT HPCs,
whereas ST3GAL112 KO HPCs exhibited dramatically increased
levels of PNA binding compared with single-KO cells (Figure 3C; sup-
plemental Figure 5B), demonstrating the absence of terminal O-linked
sialic acid residues. To rule out the possibility that the phenotype is
caused by an off-target effect of CRISPR, we established additional
clones of each cell type and confirmed consistent phenotype in
these clones (supplemental Figure 5C). Consistently, disruption of
ST3GAL1 and 2 caused increased RCA-I binding and decreased
MAL-II binding in HPCs (supplemental Figure 3B), further supporting
the loss of a2,3-linked sialic acids on the cell surface. Because surface
PNA can also bind to unsialylated glycosphingolipids in the plasma
membrane, we next analyzed PNA binding specifically to glycoprotein
substrates. As shown in Figure 3D, PNA western blot analysis
revealed numerous glycoprotein targets in ST3GAL1 and ST3GAL2

single-KO cells and an even larger number of unsialylated glycopro-
teins in the double-KO cells (Figure 3D; supplemental Figure 5D).
These data, therefore, demonstrate that ST3GAL1 and ST3GAL2 are
each able to perform sialylation of O-linked glycans in HPCs, with
many, but not completely, overlapping glycoprotein targets.

CD34 and CD43 are overlapping glycoprotein

substrates for ST3GAL1 and ST3GAL2

To identify specific glycoprotein substrates for ST3GAL1 and
ST3GAL2, PNA-agarose beads were used to pull-down glycoproteins
with exposed core 1 or core 2 O-linked glycans from HPC detergent
lysates. As shown in Figure 3F, PNA immunoblots revealed several
candidate bands, including a prominent �160 kDa band present
exclusively in ST3GAL112 KO cells. Because the HPC markers
CD34 and CD43 have been reported to be extensively O-glycosy-
lated and sialylated,30,31 we postulated that they might serve as glyco-
protein substrates for ST3GAL1 and/or ST3GAL2. Indeed, blotting
with CD34 or CD43 polyclonal antibodies positively identified these 2
glycoproteins as targets for these 2 sialyltransferases (Figure 3F).
Interestingly, neither CD34 nor CD43 became PNA1 unless both sia-
lyltransferases were missing, demonstrating that both ST3GAL1 and
ST3GAL2 are each capable of independently sialylating these
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glycoproteins and therefore exhibit overlapping glycoprotein substrate
specificities. Interestingly, the electrophoretic mobility of CD34 and
CD43 in ST3GAL112 KO cells was noticeably decreased
(Figure 3G), consistent with the absence of core 1 sialylation. As
shown schematically in Figure 3E, ST3GAL1 and C2GNT normally
compete for the same core 1 substrate. In the absence of ST3GAL1
and ST3GAL2, therefore, one might expect an increase in core 2
production catalyzed by C2GNT.10 To examine whether these slower
mobility species might be due to their carrying extended, unsialylated
core 2 glycan, we probed the blots of the PNA pull-downs with Sola-
num tuberosum lectin (STL), a lectin that reacts with poly-LacNAc
structure present on extended core 2 O-glycans (and also on N-gly-
cans). As shown in the rightmost panel of Figure 3F, STL reacted
with the 160 kDa band pulled down by PNA. This finding, together
with the decreased mobility of CD34 and CD43 in double-KO cells,
suggest the presence of core 2 glycans on CD34 and CD43 in
double-KO cells. Taken together, these data demonstrate that
ST3GAL1 and ST3GAL2 work redundantly for O-glycan sialylation
on CD34 and CD43 in HPCs and that when present, their activity
normally outcompetes C2GNT for core 1 substrates.

ST3GAL1 and 2 have both overlapping and unique

glycoprotein substrate specificities sialylating

membrane glycoproteins of the megakaryocyte lineage

As shown in Figure 4A-B, ST3GAL1 KO, ST3GAL2 KO, and
double-KO cell lines were fully capable of differentiating into
CD411/CD42b1 MKs, demonstrating that disruption of these 2

O-sialyltransferases has little impact on megakaryopoiesis. Moreover,
the overall expression of MK surface glycoprotein GPIIb (CD41)
and GPIba (CD42b) were not affected by the absence of
ST3GAL1 and ST3GAL2 (Figure 4A). In addition, DNA ploidy level
of MKs from all the cell lines remained comparable (supplemental
Figure 6A-B), indicating disruption of ST3GAL1 and ST3GAL2
does not affect MK maturation.

To further explore the function of ST3GAL1 and ST3GAL2 in
MKs, we examined the binding of PNA to each of these MK cell
lines. Like that observed in HPCs, both ST3GAL1 KO and
ST3GAL2 KO MKs showed increased surface PNA binding
compared with WT MKs, with PNA binding exceptionally strong
on ST3GAL112 KO MKs (Figure 4C; supplemental Figure 6C-
D). Consistent with these observations, western blot analysis
revealed markedly increased PNA binding in ST3GAL112
double-KO cells (Figure 4D; supplemental Figure 6E). In addi-
tion, increased RCA-I binding and decreased MAL-II binding
were found in ST3GAL112 KO MKs (supplemental Figure
3C), further supporting the loss of a2,3-linked sialic acids
in these cells. Altogether, these data demonstrate that both
ST3GAL1 and ST3GAL2 are able to sialylate O-linked glycans
on a number of yet-to-be-identified proteins of the megakar-
yocyte lineage.

In this regard, GPIba is known to contain a mucin-like region con-
taining a large number of potential O-linked glycosylation sites. To
determine whether any of these might be substrates for ST3GAL1
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lysates from HPCs. (E) Schematic of O-glycan biosynthesis and plant lectin binding epitopes. (F) Pull-down experiment using PNA-agarose beads from lysates of

iPSC-derived HPCs, followed by SDS-PAGE and immunoblot with either PNA, STL lectins or sheep anti-CD34 or goat anti-CD43 polyclonal antibodies. (G) Western blot

analysis of CD34 and CD43 expression in whole-cell lysates from iPSC-derived HPCs. SDS-PAGE, SDS-polyacrylamide gel electrophoresis.
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and/or ST3GAL2, we immunoprecipitated GPIba from MK lysates
and subjected it to western blot analysis using PNA to probe its sia-
lylation status. As shown in Figure 4E, GPIba from WT, ST3GAL1
KO, or ST3GAL2 KO MKs reacted weakly or not at all with PNA,
indicating that the O-linked glycans of GPIba are normally
completely sialylated. In contrast, GPIba derived from ST3GAL112
KO cells reacted strongly with PNA even without pretreatment with

neuraminidase, demonstrating that both ST3GAL1 or ST3GAL2 are
able by themselves to transfer sialic acid to the T antigens of GPIba
during biosynthesis.

Previous studies have shown that GPIIb, one of the most abundant
glycoproteins on the platelet surface, is modified with core 1
O-linked glycans attached to serine residues 845 and 847 near the
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C-terminus of its extracellular domain.3 To identify the enzyme(s)
responsible for transferring sialic acids to these T antigens on GPIIb,
we coimmunoprecipitated GPIIb-IIIa complexes from MK lysates
and subjected them to PNA western blot analysis. As shown in
Figure 4F and supplemental Figure 6F, GPIIb from WT and
ST3GAL1 KO cells supported PNA binding only after neuramini-
dase treatment, indicating that GPIIb from these 2 cell lines is fully
sialylated. In contrast, GPIIb from ST3GAL2 KO cells showed
strong PNA binding even without neuraminidase treatment, demon-
strating that ST3GAL2, and not ST3GAL1, is the major enzyme
responsible for T antigen sialylation on GPIIb and providing one of
the first examples of a unique glycoprotein substrate for this sialyl-
transferase. Interestingly, loss of sialic acids on O-glycan of GPIIb
does not significantly affect GPIIb-IIIa activation upon thrombin
stimulation, as indicated by similar Pac-I binding (supplemental
Figure 7A-B) and fibrinogen binding (supplemental Figure 7C-D) of
ST3GAL1/2-deficient MKs to that of WT MKs.

Disruption of ST3GAL1 and ST3GAL2 impairs

proplatelet formation

The gene Slc35a1 encodes the cytidine 59-monophosphate (CMP)-
sialic acid transporter that transports CMP-sialic acid from the cyto-
plasm into the Golgi apparatus, and Slc35a1-deficient mice show
significantly reduced sialylation in MKs and impaired proplatelet for-
mation, suggesting sialic acids on the MK surface play a role in pro-
platelet formation.32 Similarly, disruption of the gene encoding
C1GALT1 in mouse bone marrow blocks core 1 O-glycan synthe-
sis and also impairs proplatelet formation.4 To further examine
whether ST3GAL1 or 2 might play a role in this process, we plated
MKs on a fibrinogen-coated surface under conditions that promote
proplatelet formation. As shown in Figure 4G and quantified in
Figure 4H, whereas both WT, ST3GAL1 KO, and ST3GAL2 KO
cells displayed long, extended, fragmented protrusions typical of
proplatelet formation, ST3GAL112 KO cells exhibited severe
impairment of proplatelet formation, demonstrating that each of
these 2 sialyltransferases are able to add terminal sialic acid resi-
dues to O-linked glycans that play a critical role in the terminal
stages of MK differentiation.

Overlapping substrate specificity of ST3GAL1 and

ST3GAL2 in erythroblasts

To examine whether ST3GAL1 or ST3GAL2 might be required
for differentiation down the erythroid lineage, iPSC lines lacking 1
or both sialyltransferases were differentiated into HPCs similar to
those shown in Figure 3A and then further differentiated into
transferrin receptor (CD71)-positive EBs. As shown in supple-
mental Figure 8A-B, deficiency of either or both ST3GAL1 and
ST3GAL2 had no effect on erythropoiesis. Flow cytometric analy-
sis of surface PNA binding revealed partial functional redundancy
of ST3GAL1 and ST3GAL2 as loss of both sialyltransferases
resulting in stronger PNA binding compared with loss of either
one alone (supplemental Figure 8C). ST3GAL2, however,
appears to play a more dominant role in sialylating O-glycans in
mature EBs as its loss results in �3 times the level of PNA bind-
ing compared with cells lacking ST3GAL1.

Discussion

Though ST3GAL1 and ST3GAL2 are well-studied type III oligosac-
charide (Galb1,3GalNAc) sialyltransferases, their glycoprotein
targets in cells, especially human cells, remain largely undefined.
Based on in vitro analyses, ST3GAL2 has been thought to have
a strong preference for glycolipid acceptors, whereas sialylation of
O-linked glycoprotein targets has been largely attributed to
ST3GAL1.33,34 One of the major findings of the present study, how-
ever, is that these 2 enzymes actually share a number of glycopro-
tein substrates, including CD34, CD43, and platelet GPIba
(Figures 3F and 4E). Redundancy in the substrate specificity of
ST3GAL1 and 2 for GPIba might be of particular interest as desia-
lylation of the O-glycans on mouse GPIba has recently been shown
to drive platelet clearance.35 At least in human MKs, and presum-
ably human platelets, our data would suggest that both ST3GAL1
and ST3GAL2 are each able to sialylate GPIba (Figure 4E;
also see discussion below). In contrast, ST3GAL2 appears to be
primarily responsible for O-sialylating platelet membrane GPIIb
(Figure 4F), thus establishing that ST3GAL2 can function not only
to catalyze the addition of sialic acid to the terminal galactose of
type III lactosamine on glycolipids but also act as a glycoprotein
sialyltransferase. The functional diversification of these 2 enzymes
suggests that the substrate specificity of O-sialyltransferases not
only depends on the acceptor glycans but is also, at least partially,
affected by the protein substrate scaffold.

Recent studies have elucidated several complex mechanisms that
regulate platelet clearance, such as phosphatidylserine upregulation
and proapoptotic events, antibody-mediated platelet clearance, and
glycan-mediated platelet clearance.36 Several lines of evidence sug-
gest that sialylation of GPIba is critically important for protecting pla-
telets from clearance by the Ashwell-Morell receptor on hepatocytes
and integrin aMb2 on macrophages, respectively.37 The specific
sialyltransferases involved, and their glycan substrates on GPIba,
however, are incompletely defined and remain the subject of intense
investigation. There are 6 members of the ST3GAL family, each hav-
ing different substrate specificities. ST3GAL1 and 2 use the
Galb1,3GalNAc structure (type III lactosamine) as their acceptor
substrate, which corresponds to the core 1 structure on O-glycans,
whereas ST3GAL3 and ST3GAL4 use both Galb1,3GlcNAc (type
I) and Galb1,4GlcNAc (type II) structures as acceptor substrates.
ST3GAL5 functions as a GM3 ganglioside synthase, whereas
ST3GAL6 utilizes the Galb1,4GlcNAc (type II) structure as an
acceptor substrate.38 This study focused on ST3GAL1 and
ST3GAL2 because these are the major sialyltransferases for the
core 1 structures on O-glycosylated glycoproteins. The complex
nature of the O-linked glycans attached to GPIba was first exam-
ined nearly 40 years ago (shown schematically in supplemental
Figure 9).39,40 More recently, King et al, using sophisticated mass
spectrometry analysis, were able to identify 7 O-linked glycosylation
sites within the mucin-like macroglycopeptide stem region of
GPIba.3 Due to technical limitations, it was not possible to simulta-
neously identify both the glycan structure and the precise sites to
which they are attached for complex O-glycans; however, the
authors were able to predict the presence of branched core 2 struc-
ture on GPIba within the so-called mechanosensory domain (MSD),
a juxtamembrane portion of the receptor that responds to tensile
forces.41 Desialylation of all of the sialic acid residues within the
mucin-rich core by an a2,3-neuraminidase has been shown to
render the MSD susceptible to cleavage by ADAM17, which is
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reported by increased binding to the monoclonal antibody 5G6,42,43

leading to shedding of a large portion of the extracellular domain of
the receptor and rapid platelet clearance.35 Similarly, ST3GAL4-
deficient mouse platelets also become rapidly removed from circula-
tion of WT recipient mice,44 suggesting that this sialyltransferase is
one of those that plays a role in maintaining the sialylation state of
GPIba, a notion supported by the observation that removal of the
extracellular domain of GPIba rescues the clearance of ST3GAL4-
deficient platelets from circulation. Interestingly, mAb 5G6 does not
show increased binding to ST3GAL112-deficient megakaryocytes
compared with WT cells, nor did we observe a decrease in the
binding of mAb HIP1, an antibody that targets the N terminus of
GPIba (data not shown) in these cells, suggesting that exposure of
the desialylated Galb1,3GalNAc branch of core 2, though rendering
GPIba PNA1 (Figure 4E), is insufficient to disrupt the MSD and
expose the ADAM17 cleavage site, perhaps because the
Galb1,4GlcNAc branch remains sialylated by ST3GAL4 and limits
exposure of the terminal galactose of core 2 (supplemental Figure 9).
Taken together, these data are consistent with the notion that the
core 1 branch of the core 2 glycan becomes sialylated by
ST3GAL1 or 2, whereas the longer Galb1,4GlcNAcb1,6GalNAc
branch is a substrate for ST3GAL4 (or potentially ST3GAL3 and
ST3GAL6).

Due to their anionic charge and their peripheral position in glycans
at the cell surface, sialic acids are crucial players modulating cell
function and regulating cell communications. Both mouse and
human platelets contain high levels of O-glycans, with more sialic
acids estimated on platelet O-glycans than on N-glycans.5 Genetic
disruption of CMP-sialic acid transporter, which broadly impairs sia-
lylation of both N-glycan and O-glycan, causes impaired proplatelet
formation and thrombocytopenia.32 Consistent with those observa-
tions, we found that although ablation of ST3GAL112 does not
significantly affect MK production, it disrupts MK proplatelet forma-
tion, consistent with the notion that sialic acids on O-glycans play
an important role in terminal megakaryocyte differentiation and plate-
let production. The mechanism by which O-glycan sialylation

contributes to proplatelet formation is unclear but is likely related to
the function of still-to-be-identified receptors present on the surface
of megakaryocytes.

In conclusion, we have discovered a number of novel and physi-
ologically important roles for human ST3GAL2 for sialylation of
O-glycosylated proteins that have been overlooked in the past.
Illustration of the functional redundancy and diversification of
ST3GAL1 and ST3GAL2 provides important new elements in
the glycobiology of hematopoietic cells. Further characterization
should help to identify the sialylglycoconjugates produced by
them to fully understand their biological significance in the blood
and vascular cells in which they are expressed.
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