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Abstract
Mutations in the intraflagellar transport-A (IFT-A) gene, THM1, have been identified in skeletal ciliopathies. Here, we report 
a genetic interaction between Thm1, and its paralog, Thm2, in postnatal skeletogenesis. THM2 localizes to primary cilia, 
but Thm2 deficiency does not affect ciliogenesis and Thm2-null mice survive into adulthood. However, by postnatal day 14, 
Thm2−/−; Thm1aln/+ mice exhibit small stature and small mandible. Radiography and microcomputed tomography reveal 
Thm2−/−; Thm1aln/+ tibia are less opaque and have reduced cortical and trabecular bone mineral density. In the mutant tibial 
growth plate, the proliferation zone is expanded and the hypertrophic zone is diminished, indicating impaired chondrocyte 
differentiation. Additionally, mutant growth plate chondrocytes show increased Hedgehog signaling. Yet deletion of one allele 
of Gli2, a major transcriptional activator of the Hedgehog pathway, exacerbated the Thm2−/−; Thm1aln/+ small phenotype, 
and further revealed that Thm2−/−; Gli2+/- mice have small stature. In Thm2−/−; Thm1aln/+ primary osteoblasts, a Hedgehog 
signaling defect was not detected, but bone nodule formation was markedly impaired. This indicates a signaling pathway is 
altered, and we propose that this pathway may potentially interact with Gli2. Together, our data reveal that loss of Thm2 with 
one allele of Thm1, Gli2, or both, present new IFT mouse models of osteochondrodysplasia. Our data also suggest Thm2 as 
a modifier of Hedgehog signaling in postnatal skeletal development.
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Introduction

Skeletal dysplasias affect 1:5000 births and range in severity 
from perinatal lethality to craniofacial dysmorphogenesis 
and short stature. These disorders are often heritable, and 
identifying the causative mutations has been instrumental in 
improving diagnosis, understanding the mode of inheritance, 
and identifying therapeutic targets.

Conversely, genetic disorders that cause skeletal dyspla-
sias provide valuable insight into underlying molecular and 
cellular mechanisms. One such class of genetic disorders 
are ciliopathies, which result from mutation and dysfunction 
of primary cilia. The primary cilium is a solitary, sensory 
organelle that protrudes from the surface of most mamma-
lian cells, including bone and cartilage cells [1, 2]. As such, 
ciliopathies affect multiple organ systems, and a propor-
tion of ciliopathies manifest osteochondrodysplasias [3, 4]. 
These skeletal ciliopathies include Short-Rib Polydactyly 
Syndromes (I–IV), Jeune Syndrome, Oro-facial-digital syn-
drome type 1, Ellis van Creveld syndrome, and cranioecto-
dermal dysplasia (also known as Sensenbrenner Syndrome), 
which manifest to varying degrees, shortened long bones, 
narrow rib cage, polydactyly and craniofacial defects. Fibro-
cystic diseases of the kidney, liver and pancreas can also 
arise. These ciliopathies reveal that primary cilia are potent 
modifiers of skeletal growth.

Primary cilia detect and transduce extracellular mechani-
cal and chemical cues into signaling cascades to ultimately 
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affect cellular behavior [5, 6]. These antenna-like organelles 
are dynamic structures, formed and maintained by intrafla-
gellar transport (IFT), which is the bi-directional transport 
of cargo (structural and signaling proteins) by multiprotein 
complexes along a microtubular axoneme. IFT-B proteins, 
together with the kinesin motor, transport cargo from the 
base to the tip of the cilium in anterograde IFT, while 
IFT-A proteins and the dynein motor are required to return 
proteins from the ciliary tip to the base in retrograde IFT. 
IFT-A proteins also mediate ciliary entry of membrane-
associated and signaling proteins [7–10]. Primary cilia 
transduce the Hedgehog (Hh) signal [11]. The presence of 
Hh ligand induces ciliary enrichment of the Smoothened 
signal transducer and culminates in activation of the Gli 
transcription factors, of which GLI2 is the primary tran-
scriptional activator [12, 13]. The differing roles of IFT-B 
versus -A can result in contrasting ciliary and Hh signaling 
phenotypes in Ift mutant mouse embryos. Loss of IFT-B or 
kinesin, generally results in loss of cilia and Hh activity, and 
mid-gestational lethality [14–16], while deletion of IFT-A 
causes shortened primary cilia with protein accumulation 
in a bulbous distal tip. Further, two IFT-A mouse embry-
onic mutants show overactivation of the Hh pathway, and 
perinatal lethality [17, 18]. Yet in contrast to these earlier 
reports, deletion of kinesin subunit, Kif3a, in neural crest 
cells increased GLI activity in the frontonasal prominence 
of the developing face [19], while deletion of IFT-A gene, 
Thm1, in glial cells decreased Hh signaling in the developing 
cerebellum [20]. Thus, whether an IFT protein positively or 
negatively regulates Hh or GLI activity is cell-specific and/
or context-dependent.

In patients with skeletal ciliopathies, mutations have been 
identified in all of the six characterized IFT-A components 
(IFT43 [21, 22], IFT121 [22], IFT122 [23, 24], WDR19/
IFT144 [25], IFT140 [26], and THM1 [27]) and in 4 of the 
14 IFT-B components (IFT80 [28], IFT52 [29, 30], IFT172 
[4] and IFT56 [31]. In accordance with the human genet-
ics studies, many of the reported IFT-A mouse mutants 
have exhibited polydactyly and abnormal development of 
the thoracic ribs during embryogenesis [32–34]. Addition-
ally, Ift80-hypomorphic mice that survive past birth, and 
mice with conditional deletion of IFT-B gene, Ift88, in the 
limb bud and craniofacial mesenchyme, exhibit polydactyly, 
shortened long bones, and disorganization of the growth 
plate [35, 36]. Thus, both IFT-B and -A are essential for 
mammalian skeletal growth, although the human genetics 
studies may suggest that IFT-A mutations are more compat-
ible with life.

Previously, we identified THM1 (TPR-containing Hh 
modulator 1; also known as TTC21B) as an IFT-A compo-
nent and regulator of Hh signaling [17]. A germ-line muta-
tion resulting in THM1 loss in mouse causes shortened 
long bones, split and fused ribs, and polydacytyly. THM1 

mutations have also been identified in patients with Jeune 
Syndrome (JATD) [18], which is characterized by shortened 
long bones, craniofacial defects, and a narrow rib cage that 
often inhibits lung development and causes 60–80% mor-
tality among infants and children [37]. We also identified 
a paralog of THM1, which we call THM2 (also known as 
TTC21A) [17]. THM1 and THM2 are orthologues of the 
IFT-A protein, IFT139, in Chlamydomonas reinhardtii, and 
have similar levels of homology to IFT139/FLA16. Thm1 
and Thm2 have similar predicted protein structures with 
multiple TPR domains and similar RNA expression pat-
terns during mouse development. A recent report revealed 
that THM2 is required for male fertility [38]. However, a 
role for Thm2 in early postnatal development has not been 
elucidated. Here by generating in vitro and in vivo models 
of Thm2 deficiency and implementing genetic crosses, we 
reveal a role for THM2 in postnatal skeletogenesis.

Methods

Generation of THM2 knockdown cell line

Lentiviral transfection was used to generate a human embry-
onic kidney (293T) THM2 knockdown cell line. Briefly, viral 
particles were created by transfecting three plasmids, 4.2 
µg vector (Thm2 shRNA sequence GAC TTT GAT TAA TTA 
CTA T), 7.4 µg delta 8.2 and 0.4 µg VSVG into 293T pack-
aging cells using the Fugene transfection reagent (Promega, 
E2691) into 293T cells. After 48 h, media was collected 
and filtered to obtain viral particles. This media containing 
virus was placed onto 293T target cells for 6 h and then 
replaced by fresh media. Infected cells were selected using 
1 µg/ml puromycin. After reaching confluence, cells were 
trysinized, resuspended, then seeded sparsely onto 25 cm 
dishes to allow individual clones to grow. Clones were 
selected using cloning disks immersed in Trypsin. Clones 
were then expanded.

Western blot

293T cells and mouse tissues were collected. Protein was 
extracted by resuspending cells or homogenizing tissue in 
passive lysis buffer (Promega, E1941) containing protease 
inhibitors (Thermo Scientific, 88669), and rocking samples 
for 15 min at room temperature. Lysed cells and tissues were 
pelleted and supernatants were collected. Protein concentra-
tion of lysates was determined using the Pierce BCA Pro-
tein Assay Kit (ThermoFisher, 23227). Lysates with loading 
dye were boiled for 5 min, cooled on ice, and loaded onto 
a 4–20% SDS-gel (BioRad, 456-8094). Gels were run for 
approximately 3.5 h at 90 V to adequately separate protein. 
Membranes were incubated with THM2 antibody using 
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Western blot as described [17]. THM2 antibody was targeted 
to N′ Cys-RRQNYETAINLYHQVLEK, 963-980aa, in exon 
22. (Proteintech S4132-2, 1:5000).

Immunofluorescence

Retinal pigment epithelial (RPE) cells, 293T cells, and pri-
mary chondrocytes and osteoblasts were seeded onto poly-
l-lysine coated coverslips in 24-well plates. Confluent RPE 
and 293 T cells were serum-starved overnight to increase 
cilia lengths. All post-confluent cells were fixed in 4% PFA 
in PBS containing 0.1% Triton x-100 for 10 min at room 
temperature, then blocked in 1% Bovine Serum Albumin 
(Sigma, A9647) for 1 h. Primary antibodies against Arl13b 
(Proteintech, 17711-1-AP, 1:300), acetylated α-tubulin 
(Sigma T6557, 1:4000), THM2 (Custom-made Antibody, 
Proteintech S4132-2, 1:50), IFT81 (Proteintech, 11744-1-
AP, 1:200), SMO (Santa Cruz, sc-166685, 1:50) were incu-
bated with cells in 1% BSA overnight at 4°C. Cells were 
washed three times in PBS, then incubated with secondary 
antibody conjugated to Alexa Fluor 594 or Alexa Fluor 488 
[Life Technologies, A-11005 (anti-mouse) and A-11008 
(anti-rabbit), 1:500] for 1 h at room temperature. Cells were 
washed three times in PBS. Coverslips were inverted and 
mounted onto slides using DAPI Fluoromount-G (Electron 
Microscopy Services, 17984-24). RPE cells were imaged 
using a Nikon Eclipse TiE attached to an A1R-SHR con-
focal with an A1-DU4 detector and LU4 laser launch. All 
other cells were imaged using a Nikon 80i or Nikon TiS 
attached to a Nikon DS-Fi1 or QICAM FAST1934 camera, 
respectively.

Generation of Thm2 knockout mouse

Thm2 knockout-first C57BL/6J embryonic stem cells were 
obtained from the NIH Knockout Mouse Project (KOMP) 
Repository (www.komp.org). Embryonic stem cells were 
confirmed to contain the correct Thm2 knockout construct 
showing evidence of homologous recombination and correct 
karyotype. Subsequently, cells were injected into C57BL/6J-
Tyrc−2 J (albino) blastocysts and implanted into female mice 
by Dr. Melissa Larson at the University of Kansas Medical 
Center Transgenic and Gene Targeting Facility. Resulting 
male chimeras were mated to multiple females. Genomic 
DNA from tails of resulting pups with black coat color was 
genotyped by polymerase chain reaction (PCR) and PCR 
amplicons were sequenced to confirm the presence of the 
construct in the DNA. The KOMP allele contains a LacZ 
neo construct flanked by flippase recombinase (FLP) recom-
binase target (FRT) sites. Mice containing the KOMP con-
struct were mated to a mouse carrying a FLP recombinase 
(Jackson Laboratories, 009086) to excise the LacZ-Neo cas-
sette. Resulting mice were then mated to mice expressing 

cytomegalovirus (CMV) Cre recombinase (Jackson Labora-
tories, 006064) to excise exon 6, which created a premature 
stop codon and a Thm2 null allele. All animal procedures 
were conducted in accordance with KUMC-IACUC and 
AAALAC rules and regulations.

Genotyping of Thm2 knockout mouse

Genotyping primers were designed flanking the loxP sites 
surrounding exon 6. Primers Thm2-KO-F—5′ CAG ATA 
TCT CCC CAC TTG TTA ACG 3′ and Thm2-KO-R—5′ 
GTG TCA GAT ACC CTG GAA CCA GAG 3′ amplify a 
WT band of 1086 bp and a knockout band of approximately 
400 bp. Since at times, this PCR reaction favors amplifica-
tion of the smaller knockout band, making the WT band 
difficult to see, additional PCR primers, Thm2-WT-F-5′AAC 
TTC CTG CCC GCT TTA GT 3′ and Thm2-WT-R-5′ GTG 
TCA GAT ACC CTG GAA CCA GAG 3′ are used to 
amplify only a WT band of 461 bp.

Generation of  Thm2−/−;Thm1aln/+ mice

Thm2−/−;Thm1aln/+ mice were generated by crossing Thm2+/- 
mice on a C57BL/6 background with Thm1aln/+ mice on an 
FVB background. Thm2+/-;Thm1aln/+ mice were then back-
crossed five generations onto a C57BL6/J background.

Weight and length measurements

Total mouse body weight was measured using a stand-
ard laboratory weighing scale. Crown-to-rump measure-
ments, from the tip of the nose to the end of the rump, were 
obtained using a standard ruler.

Skeletal preparations

Alizarin red and alcian blue staining of skeletons was per-
formed as described [32]. Briefly, P14 mice were eviscer-
ated and fixed in 95% ethanol for 1–2 days, then stained 
with alcian blue (Acros Organics 33864-99-2) for 14 days. 
Subsequently, skeletons were fixed in 95% ethanol for 1–2 
days and cleared with potassium hydroxide for 2–5 days, or 
until the tissue was cleared. Skeletons were stained with 1% 
alizarin red (Acros Organics 130-22-3) in potassium hydrox-
ide for 1–2 days or until staining was complete. Skeletons 
were then cleared in glycerol for imaging and long-term 
storage. Skeletal preparations were imaged using a dissect-
ing scope (Leica M165C) and bone lengths were quantified 
using Image J software.

http://www.komp.org
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Microcomputed tomography and Faxitron

Whole mice and tibias were radiographed at 1X and 3X 
magnifications, respectively, using a LX-60 DC12 Cabinet 
X-ray System (Faxitron) at 26kVP for 10 s. Images were 
analyzed using ImageJ to calculate the length of each min-
eralized caudal vertebrae.

Ethanol-fixed tibia from control and triple allele mutant 
mice were scanned in a Skyscan 1174 micro-computed 
tomography system (Bruker) at a resolution of 14 μm3 with 
a voltage of 50kVp using a 0.5 mm aluminum filter. Tib-
ias were wrapped in gauze soaked with 70% ethanol and 
placed in a low-density polyethylene tube for scanning. 
Camera pixel binning was not applied and the integration 
time was set to 3000 ms. The scan orbit was 180°/360° 
with a rotation step of 0.3°. Reconstruction was carried 
out with a modified Feldkamp algorithm using the SkyS-
canTM NRecon software accelerated by GPU3. Gaussian 
smoothing, ring artifact reduction, and beam hardening 
correction were applied. Reconstructed images were ana-
lyzed by CTAn software. Irregular, anatomic regions of 
interest (ROIs) were selected for both trabecular and corti-
cal bone analysis. For trabecular bone analysis, slices from 
the proximal tibia starting at the distal end of the growth 
plate to the end of the trabeculae were analyzed for bone 
mineral density (BMD), bone volume fraction (BV/TV), 
bone surface per BV (BS/BV), trabecular thickness (Tb.
Th), separation (Tb.Sp), and number (Tb.N). For cortical 
bone analysis, two sets of ROIs were analyzed for BMD, 
total cross-sectional bone area (Tt.Ar), cortical bone area 
(Ct.Ar), fraction (Ct.Ar/Tt.Ar), perimeter (Ct.Pm), and 
thickness (Ct.Th). The first was from mid-diaphysis and 
the second started at the end of the trabeculae at the proxi-
mal end of the tibia. To control for length differences, the 
same percentage of slices were analyzed in mutants as 
relative length for both trabecular and cortical analysis. 
The minimum and maximum thresholds were set to 45 and 
95 for trabecular bone analysis and 55 and 255 for cortical 
bone analysis.

Dissection, embedding and sectioning of tibias 
and soft organs

Tibias were dissected and placed in Cal-Ex, a decalcifying 
and fixing solution (Fisher C5511-1D), for 3 days. Kidney, 
heart and lung were dissected and weighed. Kidneys were 
fixed in Bouin’s fixative (Polysciences, Inc. 16045) over-
night. Following fixation, tibias and kidneys were placed 
into 70% ethanol. Tissues were processed and dehydrated 
through an ethanol series and embedded in paraffin wax. 
Paraffin blocks were sectioned at 10 μm and 7 μm for tibias 
and soft organs, respectively.

Hematoxylin and eosin and safarnin O and fast 
green staining

Tibia and kidney sections were de-paraffinized and rehy-
drated through an ethanol series. Sections were stained with 
Hematoxylin (Sigma HHS32) and Eosin (Sigma HT110216) 
or with Weigert’s Hematoxylin, 0.2% Fast Green, and Safra-
nin O. Sections were dehydrated through an ethanol series 
and mounted with Permanent Mounting Media (Fisher, 
SP15-500). Sections were imaged using a light microscope 
(Nikon 80i) attached to a Nikon DS-Fi1 camera.

Antigen retrieval

Prior to immunostaining, tissue sections were deparaffinized, 
rehydrated, and subjected to antigen retrieval. Tissue sec-
tions were steamed for 25 min in Sodium Citrate Buffer (10 
mM Sodium Citrate, 0.05% Tween 20, pH 6.0). Sections 
were cooled and rinsed in distilled water ten times.

LacZ staining

Gli1-LacZ reporter mice (Jackson Laboratories, stock 
008211) were crossed into the Thm2; Thm1 colonies. 
Tibias were dissected, fixed in acetone for 48 h at 4°C as 
described [39]. Fixed tissues were immersed in wash buffer 
(100 mM sodium phosphate buffer (pH 7.3), 2 mM mag-
nesium chloride, 0.02% Nonidet P-40, and 0.01% sodium 
deoxycholate) for 15 min, three times. Tibia were stained 
with X-gal solution (Teknova X1220; 1 mg/ml X-gal in N,N-
dimethylformamide) in wash buffer containing 5 mM potas-
sium ferrocyanide (Sigma P-9387) and 5 mM potassium 
ferricyanide (Sigma P-8131) protected from light overnight 
or until desired color intensity was obtained. Stained tibia 
were fixed and demineralized in CalEx, processed, embed-
ded in paraffin, and sectioned as described above. Sections 
were rehydrated through an ethanol series, counterstained 
with nuclear fast red, and mounted. Stained sections were 
imaged using a Nikon 80i attached to a Nikon DS-Fi1 cam-
era. Using ImageJ, colored images were converted to mono-
chrome images using RGB stack, thresholds were obtained, 
and growth plates were demarcated for measurements of 
area, mean and integrated density to quantify LacZ staining 
of litter-matched sections of control and triple allele mutant 
growth plates.

Generation of primary chondrocytes 
and osteoblasts

Primary chondrocytes were derived from P10 mouse tib-
ial growth plates, as described [40]. Briefly, tibial growth 
plates were dissected and digested in 10 cm plates con-
taining DMEM containing 3 mg/ml Collagenase Type 4 
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(Worthington Biochemical Corporation, CLS-4) for 90 min 
in the cell incubator at 37°C. Plates were swirled every 30 
min. Following the 90 min, media was replaced with DMEM 
containing 5 mg/ml Collagenase Type 4 for 3 h in the cell 
incubator at 37°C. Plates were swirled every 60 min. Media 
containing digested growth plates was filtered through a 70 
mm pore size cell strainer, then centrifuged to pellet the 
cells. Cells were resuspended in DMEM containing 10% 
FBS and penicillin/streptomycin and plated.

Primary osteoblasts were derived from P10 mouse cal-
varia, as described [41]. Briefly, calvaria was dissected in 
αMEM, rinsed in PBS, then digested in αMEM containing 
2 mM l-glutamine and 0.2% collagenase, Type I (Sigma, 
T1005)/0.05% trypsin (Sigma, C9891) for 20 min in the 
cell incubator at 37°C. Media from this first digestion was 
discarded and the calvaria were subjected to an additional 
four rounds of digestion in αMEM containing 2 mM l-glu-
tamine and 0.2% collagenase, Type I/0.05% trypsin each for 
20 min in the cell incubator at 37°C. Following each diges-
tion, media was collected and fetal bovine serum (FBS) was 
added to obtain 10% final concentration and kept at 4°C. 
Following the 5th digestion, all media containing digested 
growth calvaria with 10% FBS was filtered through a 70 mm 
pore size cell strainer, then centrifuged to pellet the cells. 
Cells were resuspended in αMEM containing 10% FBS, 2 
mM l-glutamine and penicillin/streptomycin, and plated.

Phase-contrast images of primary chondrocytes and 
osteoblasts were obtained using an  EVOS® FL Auto system 
(ThermoFisher) with an integrated environmental control 
system (air-CO2 premix) and CCD monochrome camera.

SAG treatment and qPCR

Confluent cells were treated with 0.1% DMSO or 500 nM 
SAG for 24 h prior to immunostaining for SMO or for 48 
h prior to immersing in Trizol (ThermoFisher) for RNA 
extraction. Cells were stored in Trizol at − 80 °C until RNA 
extraction. RNA was extracted according to the manufac-
turer’s protocol. One microgram of RNA was converted 
into cDNA using Quanta Biosciences qScript cDNA mix 
(VWR International). qPCR was performed in duplicate 
using Quanta Biosciences Perfecta qPCR Supermix (VWR 
International) and a BioRad CFX Connect Real-Time PCR 
Detection System. Primers used were Thm2 (Forward: 5′‐
CCC CAC AAT CCA AAC CTA CA‐3′; reverse: 5′‐GCT 
CAC AAG CCG ATG GAC‐3′); Gli1 (forward: 5′‐CTG 
ACT GTG CCC GAG AGT G‐3′; Reverse: 5′‐CGC TGC 
TGC AAG AGG ACT‐3′); mGli2 (Forward: 5′ GCA GAC 
TGC ACC AAG GAG TA 3′; reverse: CGT GGA TGT 
GTT CAT TGT TGA 3′); mGli3 (forward: 5′ CAC CAA 
AAC AGA ACA CAT TCC A 3′; Reverse: 5′ GGG GTC 
TGT GTA ACG CTT G 3′) and housekeeping gene mOaz1 

(forward: 5′—GCC TGA GGG CAG TAA GGA C-3′; 
reverse: 5′-GGA GTA GGG CGG CTC TGT-3′).

Osteoblast differentiation assay

Osteoblasts were plated in duplicate into 24-well plates in 
αMEM containing 10% FBS, 2 mM l-glutamine and peni-
cillin/streptomycin. Upon confluency, cells were cultured 
in differentiation media, consisting of αMEM, 10% FBS, 
2 mM l-glutamine, penicillin/streptomycin and 50 mg/ml 
ascorbic acid and 5 mM b-glycerophosphate, which was 
refreshed every 3 days over 2–4 weeks. Cells were fixed 
with 4% paraformaldehyde for 15 min, then stained with 
2% alizarin red solution for 10–15 min in the dark. Once 
cells reached desired color intensity, cells were washed 4 
times with distilled water, then immersed in PBS. Cells 
were imaged immediately using an  EVOS® FL Auto sys-
tem (ThermoFisher Scientific) with CMOS color camera. 
Bone nodule formation was quantified as the percentage of 
the area of redbone nodules/total image area, which were 
measured using Image J.

Statistics

Unpaired, two-tailed t tests for comparison of two groups 
and one-way ANOVA followed by Tukey’s test for com-
parison of multiple groups were used to evaluate statistical 
significance (p < 0.05) using Graphpad Prism 9.0 software.

Results

THM2 localizes to primary cilia

To characterize the subcellular localization of THM2, an 
antibody recognizing a unique amino acid sequence encoded 
within exon 22 was generated (Proteintech). To determine 
the specificity of the antibody, we generated human embry-
onic kidney (293 T) THM2 knock-down (kd) clonal cell lines 
using lentiviruses expressing THM2 shRNA. Western blot 
analysis revealed THM2 kd, clone 2–1, showed the most 
effective knockdown (Fig. 1a). We analyzed cilia length in 
EV 2–5 (empty vector control) and Thm2 kd 2–1 clonal cell 
lines by immunostaining for ARL13B, a ciliary membrane 
marker (Fig. 1b). Quantification of ciliary lengths demon-
strated similar lengths between EV and THM2 kd cell lines 
(Fig. 1c), indicating THM2 is not required for ciliogenesis. 
Immunostaining of retinal pigment epithelial (RPE) cells for 
THM2 showed co-localization with acetylated α-tubulin, a 
marker of the ciliary axoneme (Fig. 1d), revealing THM2 
localizes to primary cilia.
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Generation of Thm2 knockout mouse model

Using a Thm2 knock-out construct from the Knockout 
Mouse Project (KOMP) repository, we generated a Thm2 
null allele, in which exon 6 was excised, creating a premature 
stop codon (Fig. 2a). Primers flanking exon 6 were designed 
to amplify a WT band of 1086 bp and a recombined band 
at approximately 400 bp (Fig. 2b). Additionally, since this 
PCR reaction favors amplification of the smaller recom-
bined (Thm2-null) allele, we designed additional primers 
to amplify only the WT allele, generating a 461 bp product. 
In accordance with the amplification of the mutant band, 
Western blot analysis confirmed the loss of THM2 protein 
in testis protein extracts of a Thm2-null mouse (Fig. 2c).

Thm2−/−;  Thm1aln/+ mice are smaller than control 
littermates

Unlike most ciliary gene knock-out mice, which are embry-
onic lethal [17, 33, 34, 42], Thm2-null mice are born, phe-
notypically indistinguishable from their littermates, and 
reach adulthood with seemingly normal health. Since para-
logs can have redundant functions [43, 44], we introduced a 
mutant allele of Thm1 (aln) onto the Thm2-null background. 
The aln allele harbors a missense mutation that results in 
absence of THM1 protein [17]. We backcrossed the col-
ony five generations onto a C57BL6/J background. At P14, 
Thm2−/−; Thm1aln/+ mice were noticeably smaller than their 
control littermates with reduced body weight and shorter 

Fig. 1  THM2 is dispensable for 
ciliogenesis but localizes to the 
primary cilium. a Western blot 
for THM2 on cellular extracts of 
293T EV (control) and THM2 
kd clonal lines. b Immunostain-
ing for Arl13B (green) in 
293T EV and THM2 kd (clone 
2–1) cells. Scale bar—5 μm. c 
Quantification of cilia lengths. 
Each data point represents 
an individual cilium. Graphs 
represent mean ± SD. d Immu-
nostaining for THM2 (green) 
and acetylated α-tubulin (red) in 
RPE cells. Scale bar—10 μm

a

b
c

d
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crown-to-rump length (Fig. 3a, b). This phenotype was also 
observed at P21 (Fig. 3c), and we noted that a proportion 
of triple allele mutant mice (7/25 = 28%) do not survive to 
weaning age.

Thm2−/−;  Thm1aln/+ lung weight/body weight ratio 
is increased

Since renal cysts are among the most common clinical mani-
festations of ciliopathies [3], we analyzed the kidneys of 
P14 Thm2−/−; Thm1aln/+ mice. Histological analysis revealed 
normal kidney morphology of Thm2−/−; Thm1aln/+ mice 
(Fig. 4a). Total kidney weights were smaller in Thm2−/−; 
Thm1aln/+ mice, but this was proportional to body size since 
kidney weight/body weight ratios of Thm2−/−; Thm1aln/+ 
mice were similar to those of control littermates. Similarly, 
heart weight was lower in triple allele mutant mice, but heart 

weight/body weight ratios were comparable between control 
and Thm2−/−; Thm1aln/+ mice (Fig. 4b). In contrast, although 
lung weight was lower in triple allele mutant mice, lung 
weight/body weight ratio was elevated in triple allele mutant 
mice relative to control mice (Fig. 4c).

Thm2−/−;Thm1aln/+ mice exhibit shortened 
and less dense bone

We next performed skeletal preparations to examine the 
skeletal phenotype of Thm2−/−; Thm1aln/+ mice (Fig. 5a). 
At P14, Thm2−/−; Thm1aln/+ mice exhibited shorter long 
bones, including tibia, femur, humerus, radius and ulna 
(Fig. 5b). The sternum and ribcage diameter of Thm2−/−; 
Thm1aln/+ mice were also smaller than those of control lit-
termates. Additionally, cranial length, as measured from 
the tip of the nose to back of the head, was shorter in 

Fig. 2  Thm2 knock-out mouse 
was generated using a KOMP 
construct. a Schematic diagram 
of the KOMP constructs in 
genomic DNA of Thm2. Exons 
are represented by black boxes 
and introns by the black line. 
Lox P sites surrounding exon 
6 are depicted as red triangles. 
Genomic primers are indicated 
in blue (WT and recombination 
band) and purple (WT band). 
Splicing of exon 6 creates a 
premature stop codon. b PCR 
analysis of WT, Thm2+/-, and 
Thm2−/− genotypes using prim-
ers indicated in the blue and 
additional confirmation of the 
WT allele in WT and Thm2+/- 
mice using primers indicated in 
purple. c Western blot analysis 
of P14 testis extracts confirms 
the loss of THM2 in Thm2 ko 
mice

a

b

c
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Thm2−/−; Thm1aln/+ mice. To determine if these reduced 
bone lengths reflect the overall dwarfing of the tripe 
allele mutants, we examined bone length/crown-to-rump 
length ratios. Long bone, sternum and ribcage/crown-to-
rump ratios were similar between control and triple allele 
mutants, but the skull/crown-to-rump ratio was slightly 

increased in triple allele mutants (Fig.  5c). Moreover, 
triple allele mutants showed small mandible/skull ratios, 
indicative of craniofacial defects (Fig. 5d).

We further analyzed the Thm2−/−; Thm1aln/+ skeleton 
using radiography (Fig. 6a and b). Individual caudal ver-
tebra length was decreased in Thm2−/−; Thm1aln/+ mice 

Fig. 3  Thm2−/−; Thm1aln/+ mice 
exhibit a runted phenotype. 
Following five generations of 
backcrossing onto a C57BL6/J 
background, triple allele 
mutants showed a runted pheno-
type. a Images of mice at P14. 
b Body weights and crown-
to-rump lengths at P14 and c 
at P21. Error bars represent 
mean ± SD. Statistical sig-
nificance was determined using 
one-way ANOVA and Tukey’s 
test. ****p < 0.0001

a

b

c
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(Fig.  6c), but in proportion to crown-to-rump length 
(Fig. 6d). We also noted that the hindlimb and tibia of 
Thm2−/−; Thm1aln/+ mice were less opaque than those of 
control mice using both radiography and micro-computed 
topography (Fig. 6e and f). This was particularly notice-
able when tibias were rotated (Movies S1 and S2). Con-
sistent with this, Thm2−/−; Thm1aln/+ tibia showed reduced 
cortical bone mineral density (BMD), cortical thickness, 
and cortical bone area at mid-diaphysis and proximal end 
of the tibia (Figs. 6g-6h). Additionally, cortical area frac-
tion (cortical bone area/total area) at the proximal end of 
the tibia, as well as trabecular BMD were reduced (Fig. 6i, 
j). Other cortical and trabecular bone properties of con-
trol and Thm2−/−; Thm1aln/+ tibia were similar (Fig. S1). 

These data demonstrate that Thm2, together with Thm1, is 
required for postnatal skeletal growth.

Growth plates of  Thm2−/−;Thm1aln/+ show aberrant 
architecture

To determine the cause of the tibial skeletal defects, we 
next examined chondrocyte organization in the tibial 
growth plate. Broadly, the growth plate can be divided into 
two major regions: the proliferative zone and the hyper-
trophic zone [45]. As part of endochondral ossification, 
chondrocyte differentiation occurs. In this process, early 
chondroblasts are stimulated to proliferate, then become 
pre-hypertrophic, hypertrophic, and finally undergo 
cell death and calcification of cartilage. Capillaries and 

Fig. 4  Thm2−/−; Thm1aln/+ 
mice have increased lung/body-
weight ratios. a Haematoxylin 
and eosin staining of kidney 
sections from P14 mice. Scale 
bars—1 mm and 500 μm, upper 
and lower panels. Two kidney 
weights and % kidney weight/
body weight ratios. b Heart 
weights and % heart weight/
body weight ratios. c Lung 
weights and % heart weight/
body weight ratios. Graphs 
represent mean ± SD. Statisti-
cal significance was deter-
mined using one-way ANOVA 
and Tukey’s test. *p < 0.05; 
**p < 0.005

a

b

c
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osteoblasts invade the cartilage matrix and form new 
bone which replaces cartilage. H&E staining, as well as 
Safranin O and fast green staining, which marks cartilage 
and bone, respectively, of P14 Thm2−/−; Thm1aln/+ tibial 
growth plates revealed an expanded proliferation zone and 
a reduced hypertrophic zone (Fig. 7). We also observed a 
more basophilic H&E staining and more intense safranin-
O staining in the Thm2−/−; Thm1aln/+growth plate carti-
lage proliferation zone. This may indicate a change in the 

proteoglycan content of the extracellular matrix. Together, 
these defects suggest impaired chondrocyte hypertrophy 
and endochondral ossification, which could contribute to 
the shortened long bones seen in Thm2−/−;Thm1aln/+ mice.

a b

c

d

Fig. 5  Thm2−/−; Thm1aln/+ mice have shorter bones. a Skeletal prepa-
rations at P14 using alizarin red (bone) and alcian blue staining (carti-
lage). b Bone lengths. c Bone/Crown-to-Rump (C-to-R) length ratios. 
d Mandibular height/cranial length. Graphs represent mean ± SD 

of n = 4 ctrl and n = 4 triple allele mutant mice. Statistical signifi-
cance was determined using two-tailed, unpaired t test. *p < 0.05; 
**p < 0.005
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Thm2−/−;  Thm1aln/+chondrocytes show increased Hh 
response

Chondrocyte differentiation in the growth plate is regulated 
by ciliary-mediated canonical Hedgehog (Hh) signaling 
[46]. We, therefore, examined primary cilia and Hh sign-
aling in triple allele mutant chondrocytes. Immunostain-
ing for the ciliary marker, Arl13B, on chondrocytes of the 
growth plate suggested similar ciliary lengths between con-
trol and Thm2−/−; Thm1aln/+ tissue (Fig. 8a). Incorporation 
of a Gli1-lacZ allele, which acts as a reporter of the Hh 
pathway, revealed increased Gli1 expression in chondro-
cytes of the triple allele mutant growth plate (Figs. 8b and 
c). To further examine Hh signaling, we generated primary 
chondrocytes from P10 tibial growth plates (Fig. 8d). Cilia 
lengths were similar between control and triple allele mutant 
primary cells (Fig. 8e, f). In response to Hh stimulation, 
the Smoothened (SMO) signal transducer translocates to the 
primary cilium [12]. Accordingly, treatment of cells with 
Smoothened Agonist (SAG) caused the enrichment of SMO 
in cilia (Fig. 8g). SAG-induced increase in ciliary SMO was 
similar between control and triple allele mutant chondro-
cytes (Fig. 8h). qPCR revealed reduced Thm2 transcripts 
in triple allele mutant cells (Fig. 8i). In both control and 
triple allele mutant chondrocytes, SAG treatment caused an 
increase in Gli1 and Gli2 transcripts and did not affect Gli3 
(Fig. 8j–l). However, SAG induced a greater increase in Gli1 
transcription in triple allele mutant chondrocytes relative to 
control cells, suggesting the triple allele mutation causes an 
increased Hh response in chondrocytes.

Reducing Gli2 dosage in Thm2‑null mice results 
in a small phenotype

To determine whether Hh signaling contributes to the skel-
etal phenotype, we introduced a null allele of Gli2, the main 
transcriptional activator of the Hh pathway, into the Thm2; 
Thm1 colony. Since chondrocytes show an elevated Hh 
response, we anticipated that reducing Hh signaling would 
correct the runted phenotype. While Gli2−/− mice show skel-
etal defects and perinatal lethality, the Gli2 ± genotype does 
not result in a phenotype [47]. Yet the loss of one allele of 
Gli2 in Thm2−/−; Thm1aln/+; Gli2+/-mice further decreased 
body weight and crown-to-rump length relative to triple 
allele mutant mice (Fig. 9a–c). Additionally, loss of one 
allele of Gli2 in Thm2−/−; Gli2 +/- mice resulted in a small 
phenotype, with reduced body weight and crown-to-rump 
length relative to control and Thm2−/− mice. Thus, reducing 
Hh signaling uncovers a role for Thm2 in postnatal skeletal 
growth. Further, the exacerbated runted phenotype of triple 
allele mutants by Gli2 deficiency could suggest that Thm2, 

together with Thm1, positively regulates the Hh pathway in 
cells that are not chondrocytes.

Thm2−/−;  Thm1aln/+osteoblasts show defective 
differentiation

We, therefore, derived primary osteoblasts from calvaria 
of P10 mice (Fig. 10a). We immunostained osteoblasts 
for primary cilia (Fig. 10b), which revealed similar cilia 
lengths between control and mutant osteoblasts (Fig. 10c). 
SAG treatment resulted in normal ciliary localization of 
SMO in mutant osteoblasts (Fig. 10d, e). qPCR showed 
reduced Thm2 transcripts in triple allele mutant osteoblasts 
(Fig. 10f). SAG treatment-induced increases in Gli1 tran-
scripts that were similar between control and mutant osteo-
blasts (Fig. 10g), while Gli2 and Gli3 transcripts were not 
altered (Fig. 10h, i). However, the formation of bone nod-
ules by the triple allele mutant osteoblasts was markedly 
impaired (Fig. 10j, k), indicating the triple allele mutation 
impairs differentiation of osteoblasts.

Discussion

This study establishes THM2 as a ciliary protein. Thm2 
depletion results in normal cilia length, but the loss of Thm2, 
together with loss of one allele of either Thm1 or Gli2, 
impairs postnatal skeletal growth, resulting in a small phe-
notype. The small phenotype in Thm2−/−; Thm1aln/+ mouse 
mutants is accompanied by small mandible and architec-
tural defects of the long bone (tibia), including decreased 
bone mineral density. Additionally, the Thm2−/−; Thm1aln/+ 
genetic interaction is important for both chondrocyte and 
osteoblast differentiation, and for negative regulation of Hh 
signaling downstream of SMO ciliary localization in chon-
drocytes. Our findings expand the IFT genes and genetic 
network that regulate skeletal development. The Thm2−/−; 
Thm1aln/+ mouse is also the first global Ift-null mouse model 
surviving embryogenesis and exhibiting postnatal skeletal 
abnormalities.

Although Thm2 and Thm1 genetically interact in skel-
etal development, notably, the skeletal and ciliary pheno-
types differ between Thm1aln/aln and Thm2−/−; Thm1aln/+ 
mouse mutants. The Thm1aln/aln mouse mutant exhibits 
shortened long bones and ribs, with normal crown-to-
rump length [32]. Additionally, mutations in THM1 have 
been identified in patients with Jeune Syndrome, a skel-
etal ciliopathy characterized by shortened long bones and 
ribs relative to body trunk length [18]. In contrast to this 
disproportionate dwarfism, the Thm2−/−; Thm1aln/+ mice 
are small in stature overall. There are other IFT mouse 
mutants that also display an overall runted phenotype. 
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This includes the Ift140 conditional knock-out mouse, in 
which Ift140 is deleted in osteoblasts using the Osx-Cre 
[48]. Additionally, Ift80gt/gt hypomorphic mutant mice are 
also small in stature [35]. Proportionately small mice may 
reflect that the mutation affects the growth of most or all 
bones, instead of primarily affecting the long bones and 
ribs. In the human population, proportionate dwarfism 
causes small stature. In patients with proportionate dwarf-
ism, mutations have been identified in centriole-related 
genes, such as pericentrin [49], CEP152 [50], and CENPJ4 
[51]. Interestingly, defects in centriolar satellites have been 
observed in cells depleted of certain IFT-A subunits [52], 
raising the possibility that a centriole-related component 
might also be defective in the small IFT mouse mutants 
and thus may warrant investigation.

Further contrasting with Thm1aln/aln mouse embryos [17, 
32], Thm2−/−; Thm1aln/+ mice are not polydyactylous. Preax-
ial polydactyly is caused by disrupted GLI3A:GLI3R ratios 
along the anterior–posterior axis of the developing limb bud 
[53]. Since Thm2 and Thm1 show very similar expression 
patterns in E10.5 whole-mount mouse embryos [17], the 
absence of polydactyly in Thm2−/−; Thm1aln/+ mice indi-
cates divergent mechanisms of Hh regulation between the 
Thm2;Thm1 genetic interaction and Thm1 alone. Thm1 loss 
disrupts GLI3 processing [17], while the Thm2−/−; Thm1aln/+ 
mutation likely does not. Finally, while Thm2−/−; Thm1aln/+ 
cilia lengths and kidneys appear normal, loss of Thm1 causes 
shortened primary cilia with a bulbous distal tip and cystic 
kidneys [54]. Together, these differences reflect the unique 
and redundant roles of the Thm1 and Thm2 paralogs.

In the growth plate, Parathyroid hormone-related protein 
(PTHrP) is expressed by perichondral cells and chondrocytes 
to promote chondrocyte proliferation [45]. When PTHrP lev-
els reach below a certain threshold, pre-hypertrophic and 
early hypertrophic cells produce Indian Hedgehog (Ihh), 
which effects various skeletal processes, including increased 

chondrocyte proliferation, stimulation of PTHrP production, 
and differentiation of perichondral cells to osteoblasts of 
the bone collar [45]. In E14.5 Ihh-null mice, Hh signaling 
is decreased in growth plates and the proliferation zone 
is reduced [55]. Conversely, in mice harboring a Col2a1-
specific knock-out of Suppressor of Fused (Sufu), a nega-
tive regulator of Hh signaling, Hh signaling is increased in 
growth plates, causing an increased proliferation zone and 
a reduced hypertrophic zone [56]. Similarly, in triple allele 
mutant growth plates, Hh signaling is increased in chon-
drocytes, and the proliferation zone is increased while the 
hypertrophic zone is reduced. Thus, deficiency of Hh sign-
aling causes chondrocytes to undergo premature hypertro-
phy, while inappropriate activation of Hh signaling causes 
chondrocytes to remain in the proliferation zone[57]. Both 
alterations impair endochondral bone formation.

In triple allele mutant osteoblasts, a defect in Hh response 
to (500 nM) SAG was not observed. The differential Hh 
response in chondrocytes and osteoblasts indicates cell-spe-
cific regulation of Hh signaling by the triple allele mutation. 
Cell-specific Hh regulation by Thm1 and other ciliary genes 
has been reported [17, 20, 58]. In other experiments, we 
have observed that SAG-treated Thm2−/− mouse embryonic 
fibroblasts (MEF) have normal SMO ciliary localization and 
Gli1 transcription, while SAG-treated triple allele mutant 
MEF shows normal SMO ciliary localization but reduced 
Gli1 transcription [59]. Collectively, our data suggest that 
the triple allele mutation alters Hh signaling in a cell-spe-
cific manner, downstream of SMO ciliary localization, pos-
sibly at the level of SMO or GLI activation.

Although a defect in Hh signaling was not detected in 
triple allele mutant primary osteoblasts, in vitro differen-
tiation was impaired. This could indicate two possibilities: 
(1) that the in vitro Hh assays were not sensitive enough 
to detect a more subtle Hh signaling defect and/or (2) that 
another signaling pathway is perturbed. Misregulation of 
several pathways, including TGF-β, Notch and Wnt, ham-
pers in vitro bone nodule formation, and knockout mice of 
components of these pathways exhibit skeletal defects [41, 
60–63]. Thus, future experiments will examine these two 
possibilities. Since Gli2 deficiency in the triple allele mutant 
exacerbated the runted phenotype, rather than rescuing it, 
we propose that the chondrocyte defect may be superseded 
by the osteoblast defect in this global knock-out. In endo-
chondral ossification, osteoblasts act downstream of chon-
drocytes, replacing the extracellular matrix laid down by 
the chondrocytes with bone. Additionally, deletion of IFT-A 
gene, Ift140, in osteoblasts causes a small phenotype [48], 
demonstrating that loss of an IFT gene in osteoblasts can 

Fig. 6  Thm2−/−; Thm1aln/+ tibia have less dense bone. a Radio-
graphs of P14 skeleton and b vertebra. Scale bars—1 cm and 500 
μm, respectively. c Caudal vertebrae lengths by number. d Caudal 
vertebrae/Crown-to-Rump (C-to-R) length ratios. Graphs represent 
mean ± SD of n = 3 ctrl and n = 3 triple allele mutant mice. Statisti-
cal significance was determined using two-tailed, unpaired t-test. 
*p < 0.05; **p < 0.01 e Radiographs of hindlimbs and f microCT 
imaging of tibias. Scale bars—5 mm and 1 mm, respectively. g Corti-
cal bone mineral density (BMD), thickness and area at mid-diaphysis 
and h at the proximal end of tibia. i Cortical bone area/total bone area 
(fraction) at the proximal end of tibia. j Trabecular BMD at proximal 
end of tibia. Graphs represent mean ± SD of n = 3 ctrl and n = 3 tri-
ple allele mutant mice. Statistical significance was determined using a 
two-tailed, unpaired t test. *p < 0.05; **p < 0.005

◂
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result in small stature. Since the loss of just one allele of 
Gli2 is sufficient to worsen the triple allele mutant small 
phenotype, we propose that the altered pathway in osteo-
blasts may potentially interact with Gli2.

Skeletal ciliopathies manifest varying degrees of sever-
ity, and this characteristic is present in triple allele mutant 
mice, in which almost a third of triple allele mutants do not 
survive to weaning. In addition to levels of Gli2, genetic 
background modifies the triple allele mutant small pheno-
type, since the phenotype was apparent only once the colony 
was backcrossed from a mixed FVB/C57BL6/J strain back-
ground to C57BL6/J over five generations. Taken together, 
cell type, genetic interaction, and strain background are 
important determinants of cilia dysfunction and ciliopathy 
phenotypes. Additionally, the mechanisms by which cili-
ary defects cause developmental defects can differ due to 
variations in the function of individual ciliary proteins. For 
example, germline deletion of almost all reported Ift genes 
causes misregulation of the Hh pathway, but not all Ift gene 
deletions affect ciliary structure [11, 64].

Direct evidence of a ciliopathy in Thm2−/−; Thm1aln/+ 
mice is still lacking. Finding a ciliary defect (structural and/
or ciliary mislocalization of proteins) may require high-res-
olution imaging. For instance, Ift25−/− cilia appear normal 
using conventional fluorescence microscopy [64] but show 
abnormal structure using super-resolution microscopy [65]. 
Additionally, Ift56hop/hop cilia also appear grossly normal 
but have defects of the axonemal microtubules revealed by 
transmission electron microscopy [66]. Alternatively, Thm2 
together with Thm1 may play a role outside the cilium. 
Future experiments will explore both possibilities.

Thm2 is the least explored IFT gene, but roles for 
THM2 are emerging. Mutations in THM2 have been identi-
fied in male patients with infertility [38]. In contrast, our 
Thm2−/− mice do not show evidence of fertility defects, 
which could suggest there is redundancy in the mouse or 
that Thm2 functions as part of a genetic network to regu-
late fertility. Other studies also suggest that THM2 expres-
sion may be misregulated in certain cancers and in neuronal 
degeneration [67–69]. For the first time, our study shows that 
THM2 can localize to primary cilia and that Thm2 regulates 
postnatal skeletal development. Thus, THM2 could be an 
additional locus to query in patients with skeletal dyspla-
sia. This work generates the first global IFT gene knock-out 
mouse that allows the study of skeletal development postna-
tally. This model will enable future biomechanical studies, 
including identification of mechanical or chemical stimuli 
that are received and transduced by primary cilia to regulate 
bone development and homeostasis.

a

b

c

Fig. 7  Thm2−/−; Thm1aln/+ mice have altered tibial growth plates. 
a Haematoxylin and eosin (H&E) and b Safranin O and fast green 
staining of growth plates at P14. Scale bars—500 μm and 200 μm, 
upper and lower panels. PZ -  proliferation zone, HZ -  hypertropic 
zone c Quantification of % PZ/growth plate and % HZ/growth plate 
from H&E images. Error bars represent SD of n = 3 ctrl and n = 3 
triple allele mutant growth plates. Statistical significance was deter-
mined using two-tailed, unpaired t test. **p ≤ 0.005
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Fig. 8  Hedgehog signaling is increased in Thm2−/−; Thm1aln/+ chon-
drocytes. a Immunostaining of P14 tibial growth plates for ciliary 
membrane marker, Arl13B (green). Scale bar—10 µm. b Gli-lacZ 
staining of growth plates. Scale bar—100 µm. c Quantification of 
Gli1-lacZ staining. Error bars represent mean ± SEM from n = 4 ctrl 
and n = 5 triple allele mutant mice. d Phase contrast images of tib-
ial growth plate-derived primary chondrocytes. Scale bar—100 µm. 
e Immunostaining for ciliary markers, acetylated α-tubulin (red) and 
IFT81 (green). Scale bar—10 µm. f Quantification of ciliary lengths. 

Error bars represent mean ± SD from n = 3 ctrl and n = 3 triple allele 
mutant mice. g Ciliary localization of SMO (red) and ARL13B 
(green) in response to vehicle (DMSO) or SAG. Scale bar—10 µm. 
h Quantification of percentage of cells with ciliary SMO i qPCR for 
Thm2; j Gli1; k Gli2; and l Gli3 relative to Oaz1. Bar graphs repre-
sent mean ± SEM from cell cultures of n = 4 ctrl and n = 4 triple allele 
mutant mice. Statistical significance was determined using unpaired 
t test for c and i and one-way ANOVA and Tukey’s test for h–l. 
*p < 0.05; **p < 0.01, ****p < 0.001
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Fig. 9  Gli2 deficiency causes 
small phenotype in Thm2 ko 
mice and exacerbates small phe-
notype in Thm2−/−; Thm1aln/+ 
mice. a Images of P14 lit-
termates. b Body weight and 
crown-to-rump lengths at P14 
and c at P21. Graphs represent 
mean ± SD. Statistical sig-
nificance was determined using 
one-way ANOVA and Tukey’s 
test. #p < 0.05; ##p < 0.01; 
###p < 0.005; ####p < 0.0001 rela-
tive to Ctrl. *p < 0.05
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Fig. 10  Thm2−/−; Thm1aln/+ osteoblasts show defective differen-
tiation. a Phase contrast images of calvarial-derived primary osteo-
blasts. Scale bar—100 µm. b Immunostaining for acetylated α-tubulin 
(red) and IFT81 (green). Scale bar—10 µm. c Quantification of cili-
ary lengths. Error bars represent mean ± SD from n = 3 ctrl and n = 3 
triple allele mutant mice. d Ciliary localization of SMO (red) and 
ARL13B (green) in response to vehicle (DMSO) or SAG. Scale bar—
10 µm. e Quantification of proportion of cells with ciliary SMO. Bar 
graphs represent mean ± SEM from cell cultures of n = 3 ctrl and n = 3 

triple allele mutant mice. f qPCR for Thm2; g Gli1; h Gli2; i Gli3 
relative to Oaz1. Bar graphs represent mean ± SEM from cell cultures 
of n = 4 ctrl and n = 4 triple allele mutant mice. j Alizarin red staining 
following bone nodule formation assay. Scale bar—500 µm. k Quan-
tification of bone nodule formation of cell cultures from n = 4 ctrl and 
n = 4 triple allele mutant mice. Statistical significance was determined 
using one-way ANOVA and Tukey’s test for e, g–i, and using two-
tailed, unpaired t test for f and k. *p < 0.05; **p < 0.01
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