
OPEN ACCESS

ll
Preview

Artificial intelligence for antibody
reading comprehension: AntiBERTa
Yoonjoo Choi1,*
1Combinatorial Tumor Immunotherapy MRC, ChonnamNational University Medical School, Hwasun-gun, Jeollanam-do 58128, South Korea
*Correspondence: kalicuta@gmail.com
https://doi.org/10.1016/j.patter.2022.100535

Utilizing publicly available antibody big data resources, Leem et al. (2022) developed an antibody-specific
language model, AntiBERTa, to understand the ‘‘language’’ of antibodies. Case studies reveal that Anti-
BERTa can be an extremely useful tool for antibody engineering.
There are a large number of players in the

immune system to protect biological indi-

viduals from harmful foreign substances.

Among those, the B cell is a main player

in the adaptive immune system. B cells

are equipped with receptor molecules (B

cell receptor) that can be secreted upon

activation. The secreted molecules, anti-

body, are known to be astronomically

diverse (estimated 1013–1015).

The high diversity of the antibody is a

two-faced Janus. The immune system

can respond to nearly any type of antigen,

mainly due to the large diversity of anti-

bodies. According to Antibodypedia,1

4.6 million monoclonal antibodies are

currently available for 19,000 genes. The

diversity also enables antibodies to be

highly successful as biotherapeutics. In

2021, FDA approved the 100th therapeu-

tic antibody.2 The coronavirus pandemic

has been currently boosting the develop-

ment of therapeutic antibodies for

COVID-19, and several new antibodies

are waiting to treat SARS-CoV-2-infected

patients.

On the other hand, such rich diversity

may not be always advantageous.

Despite the fact that antibodies have

been (perhaps themost) extensively stud-

ied and the antibody-related biopharma-

ceutical industry continues to mature,

there seem to be a lot of things to learn

about antibodies, as evidenced in the

increasing growth of papers with the pub-

lication keyword, ‘‘antibody.’’ It is simply

practically impossible to experimentally

explore the entire antibody repertoire.

Thus, computational approaches using

artificial intelligence (AI) techniques have

become essential for antibody research.

The advancement of AI and big data are

not separable. Recent advances in next-
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generation sequencing technology now

enable the construction of a large volume

of antibody repertoires. The observed

antibody space (OAS) database3,4 is a

compilation of known repertoire studies

and databases. Since the release of

OAS, many practical applications have

been developed including computational

antibody humanization using AI.5,6

The antibody repertoire big data re-

sources also provide an in-depth view

and biological insights into antibodies.7

Here, Leem et al. present an antibody-

specific language model in a timely

manner. AntiBERTa (antibody-specific

bidirectional encoder representation

from transformers) is a 12-layer trans-

former model pre-trained using the OAS

database.8 In fact, there has been a

language model for general proteins9

(ProtBERT), and there have been other

antibody-specific language models,

such as DeepAb10 and Sapiens.6

Comparing with those existing methods,

however, AntiBERTa is more versatile

and specific with deeper layers.

It is remarkable that AntiBERTa nicely

partitions memory and naive B cells,

whereas other models showed relatively

less distinct results; i.e. the antibody-spe-

cific deep-layered model indeed learns

the language of antibodies and finds the

origin of B cell. One of the direct applica-

tions can be the estimation of antibody

humanness and immunogenicity for the

development of safer therapeutic anti-

bodies. It is well known that antibodies

with high human content tend to be less

immunogenic. As demonstrated in the

separation of memory and naive B cells,

AntiBERTa is shown to be successful in

classifying their species origin (murine,

chimeric, humanized, and human).
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The antibody-specific model generally

provides better descriptions of antibodies

than the general protein model. The au-

thors found that residue pairs with high

self-attention scores give structural in-

sights into long-range interactions, which

were not identified by the general protein

model. The insight naturally leads to the

prediction of paratopes, antigen binding

sites. From several case studies, the au-

thors showed that AntiBERTa success-

fully identifies paratope residues that are

not in complementarity determining re-

gions (CDR).

While the authors demonstrated that

AntiBERTa outperforms other methods

and provided convincing rationales, they

also leave something to be desired. As

the authors stated in themainmanuscript,

AntiBERTa can be directly applicable to

antibody-structure prediction and hu-

manization (or both at the same time),

but the authors left it as potential applica-

tions. In the near future, we hope to meet

practical application tools based on the

AntiBERTa model.
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