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THEBIGGERPICTURE The last decade has been called the third spring of deep learning, when extraordinary
progress in both theory and applications has beenmade. This has attracted the enthusiasm of academia and
an investment of resources from the whole society. During this period, the scale of networks has grown
tremendously, and paradigms have emerged constantly. People wonder how long this trend will continue
and what the next network will be.
We point out that existing paradigms blossom in a riot of color on the tree rooted in weighted summation with
GPU computing. In terms of computation and power, its applications are still promising, but simply scaling
the network with more GPUs is not sustainable. We recognize that the brilliance of this generation of net-
works is based on the switch of computing hardware from CPU to GPU and, similarly, we expect that the
next paradigmwill be brought about by the emergence of a new physical system-based computing hardware
with a non-weighted summation network, such as the Boltzmann machine.
SUMMARY

Recently, the proposed deep multilayer perceptron (MLP) models have stirred up a lot of interest in the vision
community. Historically, the availability of larger datasets combined with increased computing capacity led to
paradigm shifts. This review provides detailed discussions on whether MLPs can be a new paradigm for com-
puter vision. We compare the intrinsic connections and differences between convolution, self-attentionmech-
anism, and token-mixing MLP in detail. Advantages and limitations of token-mixing MLP are provided, fol-
lowed by careful analysis of recent MLP-like variants, from module design to network architecture, and their
applications. In the graphics processing unit era, the locally and globally weighted summations are the current
mainstreams, represented by the convolution and self-attentionmechanism, as well asMLPs.We suggest the
further development of the paradigm to be considered alongside the next-generation computing devices.
INTRODUCTION

In computer vision, the ambition to create a system that imitates

how thebrainperceivesandunderstandsvisual information fueled

the initial development of neural networks.1,2 Subsequently, con-

volutional neural networks (CNNs),3–5 multilayer perceptrons

(MLPs),6 andBoltzmannmachine7,8wereproposed, andachieved

fruitful results in theoretical research9–14 in the last century. CNNs

stood out due to their computational efficiency over MLPs and

deep Boltzmann machines in the contest to replace hand-crafted

features, and topped the list for vast visual tasks in the 2010s.

From 2020, the Transformer-based models introduced from the

natural language processing field to the visual field have once

again reached a new peak. With the introduction of MLP-Mixer15

in 2021, the hot topic in the vision community comes: Will MLP
This is an open access article under the CC BY-N
become a new paradigm and push computer vision to a new

height? This survey aims to provide opinions on this issue.

From a historical perspective, the availability of larger datasets

combinedwith the transition fromCPU-based training to graphics

processing unit (GPU)-based training leads to paradigmshifts and

a gradual reduction in human intervention. The locally weighted

summation represented by convolution and globally weighted

summation represented by self-attention are the current main-

streams. The token-mixingMLP15 inMLP-Mixer further abandons

the artificially designed self-attention mechanism and allows the

model learn the global weights matrix autonomously from the

rawdata, seemingly in linewith the lawsof historical development.

We reviewMLP-Mixer in detail, and compare the intrinsic con-

nections and differences between convolution, self-attention

mechanism, and token-mixing MLP. We observe that the
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token-mixing MLP is an enlarged and weights-shared-between-

channel version of depthwise convolution,16 which faces chal-

lenges, such as high computational complexity and resolution

sensitivity. Exhaustive analysis reveals that, not only the recent

MLP-like variant designs are gradually approaching the direction

of CNN, but the performance of these variants in visual tasks still

lags behind CNN- and Transformer-based designs. At this

moment, MLP is not a new paradigm that can push computer

vision to new heights. In fact, computing paradigm and

computing hardware are cooperative. The current weighted-

sum paradigms have driven the booming of GPU-based

computing and deep learning itself, while we believe the next

paradigm or Boltzmann-like will also grow up with a new gener-

ation of computing hardware.

The rest of the paper is organized as follows. Preliminary re-

viewsMLP,CNN, and Transformer, aswell as their corresponding

paradigms from a historical perspective. Pioneering model and

new paradigm reviews the design of the latest MLP pioneering

models, describes the differences and connections between to-

ken-mixing MLP, convolution, and self-attention mechanism,

and presents the bottlenecks and challenges faced by the seem-

ingly new paradigm. Block of MLP variants and architecture of

MLP variants discuss the block evolution and network architec-

ture ofMLP-like variants. Applications ofMLP variants sheds light

on applications of MLP-like variants. Summary and outlook gives

our summary and discusses potential future research directions.

PRELIMINARY

For completeness and to provide helpful insight into the visual

deep MLP presented in the subsequent sections, we briefly

introduce MLP, CNN, and Transformer, including their brief his-

tories and corresponding paradigms.

Multilayer perceptron and Boltzmann machine
The original ‘‘Perceptron’’ model was developed by Frank Rose-

nblatt in 1958,2 and can be viewed as a fully connected layer with

only one output element. In 1969, a famous book entitled Per-

ceptrons by Marvin Minsky and Seymour Papert17 critically

analyzed perceptron and pointed out several critical weak-

nesses of perceptron, including that perceptron was unable to

learn an XOR function. For a while, interest in perceptron waned.

Interest in perceptron revived in 1985 when Hinton and co-

workers6 recognized that a feedforward neural network with

two or more layers had a greater fitting ability than a single-

layered perceptron. Indeed Hinton and co-workers proposed

the MLP, a network composed of multiple layers of perceptrons

and activation function, to solve the XOR problem. And they

provided a reasonably effective training algorithm called back-

propagation for neural networks. As shown in 1989 by Cy-

benko,9 Hornik et al.,10 and Funahashi,11 MLPs are universal

function approximators and can be used to construct mathe-

matical models for classification and regression analysis.

In MLP, the fully connected layer can be viewed as a paradigm

for extracting features. As the name implies, the main feature lies

in the full connectivity, i.e., all the neurons from one layer are con-

nected to every neuron in the following layer (Figure 1D). One

problem with fully connected layers is the input resolution sensi-

tivity, where the number of neurons is related to the input size.
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Another significant problem with full connectivity is the enor-

mous parameter cardinality and computational cost, growing

quadratically with the image resolution.

TheBoltzmannmachine7proposed in1985 ismore theoretically

intriguing because of the analogy of its dynamics to simple phys-

ical processes; and a restricted Boltzmannmachine (RBM)8 com-

prises a layer of visible neurons and a layer of hidden neuronswith

only visible-hidden connections between the two layers. RBM is

stacked18 and driven by recovering to a minimum energy state

computed by a predetermined energy function. Contrarily

speaking, stacked RBM is more computationally expensive than

MLP, especially during inference. Computing power has been

the main factor limiting the development of both MLP and RBM.

Convolution neural network
CNN was first proposed by Fukushima3,19,20 in an architecture

called Neocognitron, which involvedmultiple pooling and convo-

lutional layers, and inspired later CNNs. In 1989, LeCun et al.4

proposed a multilayered CNN for handwritten zip code recogni-

tion, and the prototype of the architecture later called LeNet. Af-

ter years of research, LeCun5 proposed LeNet-5, which outper-

formed all other models on handwritten character recognition. In

the CPU era, it was widely accepted that the backpropagation

algorithm was ineffective, considering the limited computational

power of CPUs, in converging to the global minima of the error

surface, and hand-crafted features were generally better than

that of CNN-based extractors.21

In 2007, NVIDIA developed the CUDA programming plat-

form;22,23 and, in 2009, ImageNet,24 a large image dataset,

was proposed to provide the raw material for networks to learn

image features autonomously. Three years later, AlexNet25

won the ImageNet competition, a symbolically significant event

of the first paradigm shift. CNN-based architectures have grad-

ually been utilized to extract image features automatically

instead of hand-crafted features. In traditional computer vision

algorithms, features such as gradient, texture, and color are ex-

tracted locally. Hence, the inductive biases inherent to CNNs,

such as local connectivity and translation invariance, signifi-

cantly help image feature extraction. The development of self-

supervision26–29 and training strategies30–35 further assisted the

continuous improvement of CNNs. In addition to classification,

CNNs outperform traditional algorithms for almost all computer

vision tasks, such as object detection,36,37 segmentation,38,39

demosaicing,40 super-resolution,41–43 and deblurring.44 CNN is

the de facto standard for computer vision.

ACNNarchitecture typically comprises alternate convolutional

and pooling layers with several fully connected layers behind,

where the standard local-connected convolutional layer is the

paradigm (Figure 1A); and depthwise convolution is a variant of

convolution, where it applies different convolutional filters to

different single channel (Figure 1B). In the convolutional opera-

tion, sliding kernels with the same set of weights can extract full

sets of features within an image, making the convolutional layer

more parameter efficient than the fully connected layer.

Vision Transformer
Keeping pace with Moore’s law,45 the computing capability has

increased steadily with each new generation of chips. In 2020, vi-

sual researchers noted the application and success of the



Figure 1. Illustrative shift between different weighted-sum paradigms
Illustrative shift between different weighted-sum paradigms in CNN (A and B), Transformer (C), andMLP (D and E). The input feature map isH3 W3 C, whereH,
W, andC are the feature map’s height, width, and channel numbers, respectively. The light blue part highlights the input features, and the yellow part is the output
features. The dark blue dot represents the position of interest, the dark orange denotes other features used in the calculation process, and the green dot rep-
resents the corresponding output feature. The token-mixing MLP is reduced to one fully connected layer to facilitate understanding. Linear projection performs a
131 convolution along the channel dimension, and weighted sum means the elements are multiplied by the weights and then summed.
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Transformer46 in natural language processing and suggested

moving beyond the limits of local connectivity and toward global

connectivity. Vision Transformer (ViT47) is the first work promot-

ing research on Transformer in the field of vision. It uses stacked

transformer blocks of the same architecture to extract visual fea-

tures, where each transformer block comprises two parts: a

multi-head self-attention layer and a two-layer MLP, in which

layer normalization and residual path are also added. Since

then, the Transformer-based architecture has been widely

accepted in the vision community, outperforming CNN-based

architectures in tasks such as objection detection48,49 and seg-
mentation,49–51 and achieving state-of-the-art performance on

denoising,52 deraining,52 and super-resolution.52–55 Further-

more, several works56–59 demonstrate that the Transformer-

based architecture is more robust than CNN-based methods.

All the developments over the last two years indicate that Trans-

former has become another de facto standard for computer

vision.

The paradigm in Transformer can be boiled down to the self-

attention layer, where each input vector is linearly mapped into

three different vectors: called query q, key k and value v. Then

the query, key, and value vectors come from different input
Patterns 3, July 8, 2022 3



Figure 2. MLP-Mixer structure
We omit the layer normalization, non-linear activation function, and the residual path to improve readability. The token-mixing and channel-mixing MLP are
reduced to one fully connected layer to ease understanding. The expression in the dashed box is consistent with Figure 1.
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vectors are aggregated into three corresponding matrices, de-

noted, Q, K, and V (Figure 1C). The self-attention mainly com-

putes the cosine similarity between each query vector and all

key vectors, and the SoftMax is applied to normalize the similar-

ity and obtain the attention matrix. Output features then become

the weighted sum of all value vectors in the entire space, where

the attention matrix gives the weights. Compared with the con-

volutional layer, which focuses only on local characteristics,

the self-attention layer can capture long-distance characteristics

and easily derive global information.

PIONEERING MODEL AND NEW PARADIGM

The success of ViT marks the paradigm shift to the era of the

global receptive field in computer vision, placing the consecutive

question: Can we further abandon the artificially designed self-

attention mechanism and allow the model learn the global

weights matrix autonomously from the raw data? Thismotivation

reminds researchers of the long-dusted simplest structure, MLP.

After a long period of slumber, MLP finally reappears in May

2021, when the first deepMLP, calledMLP-Mixer,15 is launched.

This section reviews in detail the structure of the latest so-

called pioneering MLP model, MLP-Mixer,15 followed by a brief

review of the contemporaneous ResMLP60 as well as FeedFor-

ward.61 After that, we strip the new paradigm, token-mixing

MLP, from the network and elaborate its differences and con-

nections with convolution and self-attention mechanisms.

Finally, we explore the bottlenecks of token-mixing MLP and

lay the foundation for introducing subsequent variants.
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Structure of pioneering model
MLP-Mixer15 is the first proposed visual deep MLP network

identified by the vision community as the pioneering MLPmodel.

Compared with conventional MLP, it gets deeper and involves

several differences. In detail, the MLP-Mixer comprises three

modules, a per-patch fully connected layer for patch embed-

ding, a stack of L mixer layers for feature extraction, and a clas-

sification header for classification (Figure 2).

Patch embedding

The patch embedding is inherited from ViT,47 comprising three

steps: (1) cut an image into non-overlap patches, (2) flatten the

patches, and (3) linearly project these flattened patches. Specif-

ically, an input image of the sizeH3W33 is split into S non-over-

lapping p3p33 patches, where H and W are the image’s height

and width, respectively, S donates patch number, and p repre-

sents the patch size (typically 14 or 16). The patch is also called

a token. Each patch is then unfolded into a vector p˛R3p2

. In to-

tal, we obtain a set of flattened patches P = fp1;/;pSg, which

are input of the MLP-Mixer. For each pi ˛P, the per-patch fully

connected layermaps it into aC-dimensional embedding vector:

xi = WpT
i ; W ˛ RC3 3p2 ;pi ˛ R3p2 ; for i = 1.S;

(Equation 1)

where xi ˛ RC is the embedding vector of pi and W represents

weights of the per-patch fully connected layer. In practice, it is

possible to combine three steps presented above into a single

step using a 2D convolution operation, where the convolutional

kernel size and stride are equal to patch size.



Table 1. Comparison between convolution, self-attention, and token-mixing MLP

Operation

Information

aggregation

Receptive

field

Resolution

sensitive Spatial Channel Params FLOPs

Convolution static local false agnostic specific Oðk2C2Þ OðHWC2Þ
Depthwise convolution static local false agnostic specific Oðk2CÞ OðHWCÞ
Self-attention47 dynamic global false agnostic specific Oð3C2Þ OðH2W2CÞ
Token-mixing MLP15 static global True specific agnostic OðH2W2Þ OðH2W2CÞ
H,W, and C are the height, width, and channel numbers of the feature map, respectively. k is the convolutional kernel size. ‘‘Information aggregation’’

refers to whether theweights are fixed or dynamically generated based on the input during inference. ‘‘Resolution sensitive’’ refers to whether the oper-

ation is sensitive to input resolution. ‘‘Spatial’’ refers whether feature extraction is sensitive to the spatial location of objects, ‘‘specific’’ means true,

while ‘‘agnostic’’ means false. ‘‘Channel specific’’ means no weights are shared between channels, ‘‘Channel agnostic’’ means weights are shared

between channels.
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Mixer layers

The MLP-Mixer stacks L mixer layers of the same architecture,

where a single mixer layer essentially consists of a token-mix-

ing MLP and a channel-mixing MLP. Let the patch features at

the input of each mixer layer be X = ½x1;/;xS� ˛ RC3S, where

S is the number of patches, and C is the dimension of each

patch feature, i.e., the number of channels. The token-mixing

MLP works on each column of X, maps RS1RS, and the

weights are shared among all columns. The channel-mixing

MLP works on each row of X, maps RC1RC, and the weights

are shared among all rows. Both token-mixing and channel-

mixing MLPs comprise two fully connected layers, and there

is a non-linear activation function between the two layers.

Thus, a mixer layer can be written as follows (omitting layer

indices):

U�;i = X�;i +W2 s
�
W1 Layer NormðXÞ�;i

�
; for i = 1.C;

Yj;� = Uj;� +W4 s
�
W3 Layer NormðUÞj;�

�
; for j = 1.S;

(Equation 2)

where s is the GELU62 activation function, and LayerNormð ,Þ
denotes the layer normalization63 widely used in Transformer-

based models. W represents the weights of a fully connected

layer, where W1 ˛ RrS3S, W2 ˛ RS3rS, W3 ˛ RrC3C, and

W4 ˛ RC3rC, and r > 1 is the expansion ratio (commonly r =

4). It is worth mentioning that each mixer layer takes an input

of the same size, which is most similar to Transformers or

deep recurrent neural networks in other domains. However, it

opposes most CNNs, which have a pyramidal structure: deeper

layers have a lower resolution input but more channels.

Classification header

After processing with L stacking Mixer layers, S patch features

are generated. Then, a global vector is calculated from the fea-

tures through the average pooling scheme, which is forwarded

into a fully connected layer for classification.

Compared with MLP-Mixer, FeedForward61 and ResMLP60

were proposed a few days later. FeedForward61 adopts essen-

tially the same structure as the MLP-Mixer, but swaps the chan-

nel-mixing MLP and token-mixing MLP order. As another

contemporary work, ResMLP60 simplifies the token-mixing

MLP in the MLP-Mixer from two fully connected layers to one.

Meanwhile, ResMLP proposes an affine element-wise transfor-

mation to replace the layer normalization in the MLP-Mixer and

stabilize training.
Experimentally, these MLP pioneering models achieve com-

parable performance to CNN and ViT for image classification

(Image classification). These empirical results significantly break

past perceptions, challenge the necessity for the convolutional

layer and the self-attention layer, and prompt the community to

rethink whether the convolutional layer or the self-attention layer

is necessary. The latter induces us to explore whether a pure

MLP stack will become the new paradigm for computer vision.
Token-mixing MLP, a new paradigm?
To find out whether pure MLPs stacked into a mixer layer will

become a new paradigm, it is necessary first to reveal the differ-

ence between it, convolution, and self-attention mechanisms.

There is an indisputable fact that both the channel-mixing MLP

in MLP-Mixer and the MLP in ViT are just a 131 convolution

commonly used in CNNs, allowing communication between

different channels. The core points to compare come naturally

to token-mixing MLP, self-attention, and convolution, which

allow communication between different spatial locations. A

detailed comparison between the three is reported in Table 1.

Convolution usually performs the aggregation computation of

spatial information in a local region, but poorly models long-term

dependencies. The token-mixing MLP (Figure 1E) can be viewed

as an unusual convolution type whose convolutional kernel

covers the entire space. To enhance efficiency, it aggregates

spatial information from a single channel and shares weights

for all channels. This is very close to the depthwise convolution16

(Figure 1B) used in CNN, which independently applies convolu-

tions to each channel. However, the convolutional kernels in

depthwise convolution are usually small and not shared between

each channel. The self-attention mechanism considers all

patches as well, where the weights are dynamically generated

based on the input, while weights in token-mixing MLP and the

convolutional layer are fixed and input independent.

We now shift to another important metric, namely complexity.

Without loss of generality, we assume that the input feature map

size is HW3C (or H3W3C in CNNs), where H and W are the

spatial resolutions, and C is the number of channels. Intuitively,

local computation has minimal computational complexity, i.e.,

OðHWCÞ in depthwise convolution and OðHWC2Þ in dense

convolution. However, both self-attention and token-mixing

MLP involving a global receptive field have greater complexity,

OðH2W2CÞ. Fortunately, token-mixing MLP is less computation-

ally intensive than the self-attention layer due to the lack of
Patterns 3, July 8, 2022 5



Figure 3. Visualizing the weights of the fully connected layers in MLP-Mixer and ResMLP
Visualizing the weights of the fully connected layers in MLP-Mixer (A) and ResMLP (B). Each weight matrix is resized to 14314 pixel images. In MLP-Mixer, white
denotes that weight is 0, red means positive weights, blue means negative weights, and the brighter, the greater the weight. In ResMLP, black indicates that
weight is 0, and the brighter, the greater the weight’s absolute value. The results are from Tolstikhin et al.15 and Touvron et al.,60 respectively.
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calculations, such as the attention matrix. As for the parameter

cardinality, the parameter complexity is OðH2W2Þ in token-mix-

ing MLP, strongly correlated with the image resolution. So,

once the network is fixed, the corresponding image resolution

is also fixed. In comparison, other paradigms have more advan-

tages in parameters. The newly proposed MLP-like variants are

optimized in complexity, see Complexity analysis.

The above comparative analysis reveals that token-mixing

MLP is seemly a new paradigm. But what does the new para-

digm bring to the learning weights? Figure 3 visualizes the

weights of fully connected layers (FC kernels) of MLP-Mixer

and ResMLP trained on ImageNet24 or JFT-300M.64

ImageNet-1k contains 1.2 million labeled images, ImageNet-

21k involves 14 million images, and JFT-300M has 300 million
6 Patterns 3, July 8, 2022
images. As the amount of training data increases, the number

of FC kernels for locality computation in MLP-Mixer increases.

ResMLP’s shallow FC kernels also present some local connec-

tivity properties. These fully connected layers actually still

perform local computation, which convolutional layers can

replace. Thus, we conclude that: the shallow fully connected

layers of deep MLP implement a convolution-like scheme. As

the number of layers increases, i.e., the network becomes

deeper, the effective range of receptive field increases, and

the weights become disorganized. However, it is unclear if

this is due to a lack of training data or if it should be so.

Notably, while MLP-Mixer and ResMLP share a highly similar

structure (except for the normalization layer), their learning

weights are vastly different. This questions whether MLP is



Figure 4. Block comparison of MLP-Mixer variants
Sorted from left to right by model release month (‘‘arXiv 2021-05’’ denotes ‘‘May, 2021’’). Red-orange, token-mixing modules are resolution sensitive; green,
token-mixing modules are resolution insensitive.
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learning generic visual features. Moreover, MLP’s interpret-

ability stands far behind.

Bottlenecks
Based on the above analysis and comparison, it is evident that

the seemingly new paradigm still faces several bottlenecks:

1. Without the inductive biases of the local connectivity and

the self-attention, the token-mixing MLP is more flexible

and has a stronger fitting capability. However, it has a

greater risk of over-fitting than the convolutional and

self-attention layers. Thus, the large-scale dataset is

needed to shorten the classification accuracy gap be-

tween MLP-Mixer, ViT, and CNN.

2. The complexity of the token-mixing MLP is quadratic to

image size, which, for the current computing capability,

makes it intractable for existing MLP-like models on

high-resolution images.

3. The token-mixing MLP is resolution sensitive, and the

network cannot deal with a flexible input resolution once

the number of neurons in the fully connected layer is set.

However, some tasks adopt a multi-scale training strat-

egy48 and have different input resolutions between training

and evaluation stages.65,66 In these cases, MLP models

are non-transferable and impractical.

After several explorations and practices to address these chal-

lenges, the vision community has developedmanyMLP-like var-

iants. Their main contributions are modifications to the token-

mixing MLP, including reducing computational effort, removing

resolution sensitivity, and reintroducing local receptive fields.

These variants will be described in detail in the subsequent

sections.

BLOCK OF MLP VARIANTS

To overcome the challenges faced by the MLP-Mixer, the vision

community has made several attempts and proposed many

MLP-like variants. The improvements focus on redesigning the
network’s interior parts, i.e., the block module. The lower part

of Figure 4 illustrates the block designs of the latestMLP-like var-

iants, highlighting that they are primarily modified for token-mix-

ing MLP. Except for the gMLP,67 the remaining blocks retain the

tandem spatial MLP and the channelMLP.Moreover, most of the

improvements reduce the spatial MLP’s sensitivity to image res-

olution (green rectangle).

In this work, we reproducemost variants ofMLP-likemodels in

Jittor68,69 and Pytorch.70 Moreover, this section first details the

redesigned blocks of the latest MLP-like variants, then com-

pares their properties and receptive field, and finally discusses

the findings.
MLP block variants
We divide the MLP block variants into three categories: (1) map-

pings employing both the axial direction and channel dimen-

sions, (2) mappings considering only channel dimensions, and

(3) mappings utilizing the entire spatial and channel dimensions.

The upper part of Figure 4 categorizes the network variants.

Since the channel-mixing MLP is basically the same (except

for the gMLP), we review and describe the changes to the to-

ken-mixing MLP.

Axial and channel projection blocks

The global receptive field of the initial token-mixingMLP is heavi-

ly parameterized and computationally very complex. Some re-

searchers have proposed orthogonally decomposing the spatial

projections and maintaining long-range dependence while no

longer encoding spatial information along a flat spatial

dimension.

Hou et al.71 present the Vision Permutator (ViP), which sepa-

rately encodes the feature representations along the height

and width dimensions with linear projections. This design allows

ViP to capture long-range dependencies along one spatial direc-

tion while preserving precise positional information along the

other direction. As illustrated in Figure 5A, Permute-MLP com-

prises three branches responsible for encoding information

along the height, width, or channel dimension. Specifically, it first

splits the feature map into g segments along the channel
Patterns 3, July 8, 2022 7



Figure 5. Visualizing the module diagram of the MLP-like variants
Visualizing themodule diagram of theMLP-like variants, including ViP (A), SparseMLP (B), RaftMLP (C), DynaMixer (D), WaveMLP (E), andMorphMLP (F). Except
for RaftMLP, the remaining block designs adopt three-branch parallelism. Red-orange branch, image resolution sensitive; green branch, resolution insensitive.
The channel branch and linear projection both perform a linear projection along the channel dimension. Groupmeans that the channel is split into different groups.
The expression in the dashed box is consistent with Figure 1.
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dimension, where g = C=H and the segments are then concate-

nated along the height dimension. Thus, it maps RgH1RgH and

is shared across the width and part channels. After mapping, the

feature map is recovered to the original shape. The branch treat-

ment in the width direction is the same as in the height direction.

The third path is a simple mapping process along the channel

dimension, which can also be regarded as a 131 convolution.

Finally, the outputs from all three branches are fused by exploit-

ing the split attention.72

Tang et al.73 adopt a strategy consistent with ViP for spatial in-

formation extraction and build an attention-free network called

Sparse MLP. As illustrated in Figure 5B, the block contains three

parallel branches. The difference from ViP is no longer splitting

the feature map along the channel dimension, but directly map-

ping RH1RH and RW1RW along the height and width dimen-

sion. Without the split attention, SparseMLP’s fusion strategy in-

volves concatenating the three tributary outputs by channel and

then passing them through a fully connected layer for dimension-

ality reduction. There is also a minor modification where Sparse

MLP places a depthwise convolution in front of each block.
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RaftMLP74 employs serial mappings in high and wide dimen-

sions to form a raft-token-mixing block (Figure 5C), which is

different from the parallel branches of ViP and Sparse MLP. In

the specific implementation, the raft-token-mixing block also

splits the feature map along the channel dimension, consistent

with ViP.

DynaMixer75 generates mixing matrices dynamically for each

set of tokens to be mixed by considering their contents.

DynaMixer adopts the parallel strategy for a computational

speedup and mixes tokens in a row-wise and column-wise

way (Figure 5D). The proposed DynaMixer operation performs

dimensionality reduction and flattening first and then utilizes a

linear function to estimate a H3H or W3W mixing matrix.

SoftMax is performed on each row of the mixing matrix to obtain

the mixing weights. The output equals the product of the mix

weights and the input.

WaveMLP76 considers the dynamic aggregation tokens and

image resolution issues. It considers each token a wave with

both amplitude and phase information (Figure 5E). The tokens

are aggregated according to their varying contents from different
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input images with the dynamically produced phase. There are

two parallel paths to aggregate spatial information along the hor-

izontal and vertical directions, respectively. To address the issue

of sensitivity to image resolution, WaveMLP adopts a simple

strategy that restricts the fully connected layers only to connect

tokens within a local window.49 However, the local window limits

long-range dependencies.

MorphMLP77 considers long-range and short-range depen-

dencies while continuing the static aggregation strategy

(Figure 5F). It focuses on local details in the early stages of the

network and gradually changes to long-term modeling in the

later stages. The local window is used to solve the image resolu-

tion sensitivity problem, and the window size increases as the

number of layers increases. The authors find that such a feature

extraction model is beneficial for images and videos.

Discussion. ViP, Sparse MLP, RaftMLP, and DynaMixer

encode spatial information along the axial direction instead of

the entire plane, preserving the long-range dependence to a

certain extent and reducing the complexity of parameters and

the computational cost. However, they are still image resolution

sensitive. WaveMLP andMorphMLP adopt a local window strat-

egy but discard long-range dependencies. Furthermore, all

those variants cannot mix tokens both globally and locally.

Channel-only projection blocks

The mainstream method adopts Swin’s proposal49 and uses a

local window to achieve resolution insensitivity. Another

approach replaces all the spatial fully connected layers with

channel projection, i.e., 131 convolution. However, it causes

the tokens to no longer interact with each other, and the

concept of the receptive field disappears. To reintroduce the

receptive field, many works align features at different spatial lo-

cations to the same channel by shifting (or moving) the feature

maps and then interacting with spatial information through

channel projection. Such an operation enables an MLP-like ar-

chitecture to achieve the same local receptive field as a CNN-

like architecture.

Yu et al.78 propose a spatial-shift MLP-like architecture for

vision, called S2MLP. The actual practice is quite simple. As

shown in Figure 6A, the proposed spatial-shift module groups

C channels into several groups, shifting different channel groups

in different directions. The feature map after the shift aligns

different token features to the same channel, and then the inter-

action of the spatial information canbe realized after channel pro-

jection. Given the simplicity of this approach, Yu et al.79 exploit

the idea of ViP to extend the spatial-shift module into three paral-

lel branches and then fuse the branch features by a split attention

module to further improve the network’s performance

(Figure 6B). This newly proposed network is called S2MLPv2.

Unlike grouping and then performing the same shift operation

for each group, the Axial Shifted MLP (AS-MLP)80 performs

different operations within each group that contains a few chan-

nels, e.g., every three feature maps in the channel direction are

left-shifted, no-shifted, right-shifted, and so on (Figure 6C). In

addition, AS-MLP uses two parallel branches for horizontal and

vertical shifting, where the outputs are added element-wise

and projected along the channel dimension for information inte-

gration. It is worth mentioning that AS-MLP is also extended with

different shifting strategies, allowing the receptive field to be

similar to the dilated convolution (atrous convolution).81,82
CycleMLP83 was published three days after AS-MLP.

Although CycleMLP does not directly shift feature maps, it inte-

grates features at different spatial locations along the channel di-

rection by employing deformable convolution,84 an equivalent

approach to shifting the feature map. As illustrated in

Figure 6D, CycleMLP and AS-MLP slightly differ as CycleMLP

has three branches and AS-MLP has only two branches. Further-

more, CycleMLP relies on split attention to fuse the branched

features.

ActiveMLP85 dynamically estimates the offset, rather than

manually setting it like AS-MLP and CycleMLP do (Figure 6G).

It first predicts the spatial locations of helpful contextual features

along each direction at the channel level, and then finds and

fuses them. This is equivalent to a 131 deformable convo-

lution.84

HireMLP86 adopts inner-region and cross-region rearrange-

ments before channel projection to communicate spatial infor-

mation. The inner-region rearrangement expands the feature

map along the height or width direction, and the cross-region re-

arrangement moves the feature map cyclically along the width or

height direction. The HireMLP block still comprises three parallel

branches, and the output feature is obtained by adding the

branched features (Figure 6E).

The sixmodels mentioned above can communicate only local-

ized information through feature map movement. MS-MLP87

effectively expands the range of receptive fields bymixing neigh-

boring and distant tokens from fine- to coarse-grained levels and

then gathering them via a shifting operation. From the implemen-

tation aspect, MS-MLP performs depthwise convolution of

different sizes before channel alignment (Figure 6F). Compared

with the global receptive field or local window, there is still

some vacancy in the receptive field of MS-MLP.

Discussion. After shifting the feature maps, channel projection

is equivalent to sampling features at different locations in

different channels for aggregation. In other words, this strategy

is an artificially designed deformable convolution. Thus, it may

be far better to call these models CNN-like, as only local feature

extraction can be performed.

Spatial and channel projection blocks

Some variants still retain full space and channel projection.

Their module designs are not short of sparkle and enhance

performance. Nevertheless, these methods are resolution

sensitive, prohibiting them from being a general vision

backbone.

gMLP67 is the first proposed MLP-Mixer variant. gMLP was

developed by Liu et al., who experimented with several design

choices for token-mixing architecture and found that spatial pro-

jections work well when they are linear and paired with multipli-

cative gating. In detail, the spatial gating unit first linearly projects

the input X, fW;bðXÞ = WX +b. Then the output of the spatial

gating unit is X1fW;bðXÞ, where 1 denotes the element-wise

product. The authors found it effective to split X into two inde-

pendent parts ðX1;X2Þ along the channel dimension for the

gating function and the multiplicative bypass: Xout =

X11fW;bðX2Þ. Note that the gMLP block has a channel projection

before and after the spatial gating unit. However, there is no

longer a channel-mixing MLP. Pleasingly, gMLP achieves good

performance in both computer vision and natural language pro-

cessing tasks.
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Figure 6. Visualizing the module diagram of the MLP-like variants
Visualizing themodule diagramof theMLP-like variants, including S2MLP (A), S2MLPv2 (B), AS-MLP (C), CycleMLP (D), HireMLP (E),MS-MLP (F), and ActiveMLP
(G). Green branch, resolution insensitive. The channel branch and linear projection both perform a linear projection along the channel dimension. Group means
that the channel is split into different groups. The expression in the dashed box is consistent with Figure 1.
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Lou et al.88 consider how to scale the MLP-Mixer to more pa-

rameters with comparable computational cost, making the

model more computationally efficient and better performing.

Specifically, they introduce the mixture-of-experts (MoE)89

scheme into the MLP-Mixer and propose Sparse-MLP(MoE).

Carlos et al.90 had already applied MoE on the MLP of the Trans-

former block, i.e., channel-mixing MLP in MLP-Mixer, a few

months earlier. As a continuation of Carlos’ work, Lou et al.

expand MoE from a channel-mixing MLP to a token-mixing
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MLP and achieve some performance gains compared with the

primitive MLP-Mixer. More details about MoE can be found in

Shazeer and co-workers.89,90

Yu et al.91 impose a circulant-structure constraint on the to-

ken-mixingMLPweights, reducing the spatial projection’s sensi-

tivity to spatial translation while preserving the global receptive

field. It should be noted that themodel is still resolution sensitive.

The authors reduce the number of parameters from OðH2W2Þ to
OðHWÞ, but do not reduce the computation cost. Therefore, the



Table 2. Comparison of different spatial information fusion modules

Spatial operation Block Spatial Channel Resolution sensitive Params FLOPs

Spatial projection MLP-Mixer15 specific agnostic true OðH2W2Þ OðH2W2CÞ
ResMLP60 specific agnostic true OðH2W2Þ OðH2W2CÞ
FeedForward61 specific agnostic true OðH2W2Þ OðH2W2CÞ
gMLP67 specific agnostic true OðH2W2Þ OðH2W2CÞ
Sparse-MLP

(MoE)88
specific agnostic true OðH2W2Þ OðH2W2CÞ

CCS91 agnostic group

specific

true OðHWÞ OðHWlogðHWÞCÞ

RepMLPNet92 specific group

specific

true OðH2W2 +C2Þ OðH2W2CÞ

Axial projection RaftMLP74 specific agnostic true OðH2 +W2Þ OðHWCðH +WÞÞ
ViP71 specific specific true OðH2 +W2 +C2Þ OðHWCðH +W +CÞÞ
Sparse MLP73 specific specific true OðH2 +W2 +C2Þ OðHWCðH +W +CÞÞ
DynaMixer75 specific specific true OðH3 +W3 +C2Þ OðHWCðH2 +W2 +CÞÞ
WaveMLP76 specific specific false Oð2L2 +C2Þ OðHWCðL + L +CÞÞ
MorphMLP77 specific specific false Oð2L2 +C2Þ OðHWCðL + L +CÞÞ

Shifting & channel

projection

S2MLP78 agnostic specific false OðC2Þ OðHWC2Þ

S2MLPv279 agnostic specific false OðC2Þ OðHWC2Þ
AS-MLP80 agnostic specific false OðC2Þ OðHWC2Þ
CycleMLP83 agnostic specific false OðC2Þ OðHWC2Þ
HireMLP86 agnostic specific false OðC2Þ OðHWC2Þ
MS-MLP87 agnostic specific false OðC2Þ OðHWC2Þ
ActiveMLP85 agnostic specific false OðC2Þ OðHWC2Þ

H, W, and C are the feature map’s height, width, and channel numbers, respectively. L is the local window size. ‘‘Spatial’’ refers to whether feature

extraction is sensitive to the spatial location of objects, ‘‘specific’’ means true, while ‘‘agnostic’’ means false. ‘‘Channel’’ refers whether weights are

shared between channels, ‘‘agnostic’’ shares weights between all channels, ‘‘group specific’’ shares weights between groups, and ‘‘specific’’ does

not share. ‘‘Resolution sensitive’’ refers to whether the module is resolution sensitive.

ll
OPEN ACCESSReview
authors employ a fast Fourier transform to reduce the FLOPs and

enhance computational efficiency.

Finally, and the most ingeniously, Ding et al.92 propose a novel

structural re-parameterization technique to merge the convolu-

tional layers into the fully connected layers. Therefore, during

training, the proposed RepMLPNet can learn parallel fully con-

nected layers (global receptive field) and convolutional layers

(local receptive field) and combine the two via transforming the

parameters. Compared with the weight values of the fully con-

nected layers before merging, the re-parameterization resultant

weight has larger values around a specific position, suggesting

that the model focuses more on the neighborhood. Although

large images can be sliced and input to RepMLPNet for

feature extraction, the resolution sensitivity makes it not a gen-

eral vision backbone.

Others

ConvMLP93 is another special variant, which is lightweight,

stage-wise, and comprises a co-design of convolutional layers.

ConvMLP replaces the token-mixing MLPwith a 33 3 depthwise

convolution, and therefore we consider ConvMLP as a pure CNN

model rather than an MLP-like model.

In addition, LIT94 replaces the self-attention layers with MLP in

the first two stages of a pyramid ViT. UniNet95 jointly searches

the optimal combination of convolution, self-attention, and

MLP to build a series of all-operator network architectures with
high performances on visual tasks. However, these methods

are beyond the scope of Vision MLP.

Receptive field and complexity analysis
The main novelty of MLP is allowing the model to autonomously

learn the global receptive field from raw data. However, do these

so-calledMLP-like variants still hold to the original intent? Imme-

diately following the module design, we compare and analyze

the receptive field of these blocks to provide a more in-depth

presentation for those MLP-like variants. Following that, we

compare and analyze the complexity of different modules, with

the corresponding results reported in Table 2. A comparison of

the block’s spatial sensitivity, channel sensitivity, and resolution

sensitivity is also provided.

Receptive field

Receptive field was first used by Sherrington96 in 1906 to

describe the skin area that could trigger a scratch reflex in a

dog. Nowadays, the term receptive field is also used in

describing artificial neural networks, which is deemed as the

size of the region in the input that produces the output value.

It measures the relevance of an output feature to the input re-

gion. Different information aggregation methods will generate

different receptive fields, which we divide into three categories,

global, cruciform, and local. CNNs have local receptive fields,

while vision Transformers own global receptive fields. Swin
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Figure 7. Schematic diagram of different receptive fields, including global, cruciform, and local
The bright blue dot indicates the position of the encoded token, and the light blue dots are other locations involved in the calculation. The range of the blue dots
constitutes the receptive field. The orange rectangle is the local window, which covers a larger region than the commonly used convolutional kernels. The
transition between different receptive fields is marked next to the arrow. The corresponding networks are listed on the left and right sides. Although MS-MLP87

uses shifting and channel projection, its receptive field is most similar to the local window and spatial projection due to the depthwise convolution before shifting
feature maps. The local receptive fields formed by MLP-like variants can be realized by convolution, causing them to lack an essential difference from CNNs.
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Transformer49 introduces the concept of local window,

reducing the global receptive field to a fixed region indepen-

dent of the image resolution, which is still more extensive

than the standard convolutional layer. Figure 7 displays the

schematic diagrams of different receptive fields and the corre-

sponding MLP-like variants in detail.

Similar to MLP-Mixer,15 the full spatial projection in gMLP,67

Sparse-MLP(MoE),88 CCS,91 and RepMLPNet92 still retain the

global receptive field, i.e., the encoded features of each token

are the weighted sum of all input token features. It must be

acknowledged that this global receptive field is at the patch level,

not at the pixel level in the traditional sense. In other words, the

globalness is approximated by patch partition, similar to the

Transformer-basedmethods.Thesizeof thepatchaffects thefinal

result and the network’s computational complexity. Notably, the

patch partition is a strong artificial assumption that is always

ignored.

To balance long-distance dependence and computational

cost, axial projection decomposes the full spatial projection

orthogonally, i.e., along with horizontal and vertical directions.

The projection on both axes is made serially (RaftMLP74) or par-

allel (ViP,71 Sparse MLP,73 and DynaMixer75). Thus, the token

encoded only interacts with horizontal or vertical tokens in a sin-

gle projection and forms a cruciform receptive field, which re-

tains horizontal and vertical long-range dependence. However,

if the token of interest and the current token are not at the

same horizontal or vertical area, the two tokens cannot interact.

The global and cruciform receptive fields are required to cover

the entire height andwidth of the space, resulting in a one-to-one

correspondence between the neurons’ number in the fully con-
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nected layer and the image resolution, further restricting the

model to utilize images of a specific size. To eliminate resolution

sensitivity, many MLP-like variants (blue box in Figure 7) choose

to use local receptive fields. Mainly, two approaches are adop-

ted: local window and channel mapping after shifting feature

maps. However, these operations can be achieved by expand-

ing the convolutional kernel size and using deformable convolu-

tion, making these variants not fundamentally different from

CNNs. A concern is that these MLP-like variants abandon the

global receptive field, a significant MLP feature.

Virtually, the cruciform and local receptive field is a particular

case of the global receptive field, e.g., the weight value is

approximately 0 except for a specific area. Therefore, these

two receptive field types are equivalent to learning only a small

part of the weights of the global receptive field and setting the

other weights to be constantly 0. This is also an artificial inductive

bias, similar to the locality introduced by the convolutional layer.

Complexity analysis

Since all network blocks mentioned above contain the channel-

mixing MLP module, where the number of parameters is OðC2Þ,
and the FLOPs are OðHWC2Þ, we ignore this item in the later

analysis and focus mainly on the module used for spatial infor-

mation fusion, i.e., token-mixing MLP and its variants. Table 2

lists the comparison results of the attribute and complexity anal-

ysis of different spatial information fusion modules, where the

network names are used to name eachmodule for ease of under-

standing. The complexity is referenced from the analysis in the

original papers.

The full spatial projection in the MLP-Mixer15 and its variants

contains OðH2W2Þ parameters and has OðH2W2CÞ FLOPs,
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both quadratic with the image resolution. Theoretically, it is diffi-

cult to apply the network to large-resolution images with the cur-

rent computational power. Hence, a compromise to enhance

computational efficiency significantly increases the patch size,

e.g., 14314 or 163 16, and the information extracted is too

coarse to discriminate small objects. The only difference is that

CCS91 constructs an HW3HW weight matrix using weight vec-

tors of lengthHW and uses a fast Fourier transform to reduce the

computational cost.

In contrast and similar to RaftMLP,74 the axial projection, the

orthogonal decomposition of the full spatial projection, reduces

the parameter cardinality from OðH2W2Þ to OðH2 +W2Þ, and

the FLOPs from OðH2W2CÞ to OðHWCðH +WÞÞ. If three parallel

branches are used, the number of parameters and the FLOPs are

OðH2 +W2 +C2Þ andOðHWCðH +W +CÞÞ, respectively. Notice
that fusing information frommultiple branches does not increase

the computational complexity, such as splitting attention and

dimensionality reduction after channel concatenation. If there

is a local window, the number of parameters and FLOPs are

further reduced to Oð2L2 +C2Þ and OðHWCðL + L +CÞÞ, where

L is the window size, supposing a channel branch exists.

DynaMixer75 requires dynamic estimation of the weight matrix,

which leads to higher complexity.

The approach based on shifting the feature map and chan-

nel projection further reduce computational complexity, i.e.,

the number of parameters is OðC2Þ with OðHWC2Þ FLOPs.

MS-MLP87 adds some depthwise convolutions, ActiveMLP85

adds some channel projections, but both do not affect the

overall complexity. Moreover, the number of weights is de-

coupled from the image resolution to no longer constrain

these variants.

It is worth noting that computational complexity is only one of

the determinants of inference time, as reshaping and shifting

feature maps is also time-consuming. In addition, reducing

complexity does not mean that the proposed network has

fewer parameters. Conversely, the various networks retain a

comparable number of parameters (Table 4). This allows net-

works of lower complexity to have more layers and more

channels.

Discussion on block
The bottleneck of token-mixing MLP (Bottlenecks) induces re-

searchers to redesign the block. Recently releasedMLP-like var-

iants reduce the model’s computational complexity, dynamic

aggregation information, and resolve image resolution sensi-

tivity. Specifically, researchers decompose the full spatial pro-

jection orthogonally, restrict interaction within a local window,

perform channel projection after shifting feature maps, and

make other artificial designs. These careful and clever designs

demonstrate that researchers have noticed that the current

amount of data and computational power is insufficient for

pure MLPs. Comparing the computational complexity has a

theoretical significance, but it is not the only determinant of infer-

ence time and final model efficiency. Analysis of the receptive

field shows that the new paradigm is instead moving toward

the old paradigm. To put it more bluntly, the development of

MLP heads back to the way of CNNs. Hence, we still need to

make efforts to balance long-distance dependence and image

resolution sensitivity.
ARCHITECTURE OF MLP VARIANTS

Multiple blocks are stacked to form an architecture via selecting a

network structure. According to our investigation, the traditional

structures for classification models are also applicable to MLP-

like architectures that can be divided into three categories

(Figure 8): (1) a single-stage structure inherited from the ViT,47 (2)

a two-stage structure with smaller patches in the early stage and

larger patches in the later stage, and (3) a CNN-like pyramid struc-

ture; and, in each stage, there aremultiple identical blocks. Table 3

illustrates the stacking structures of MLP-Mixer and its variants.

From single stage to pyramid
MLP-Mixer15 inherits the ‘‘isotropic’’ design of ViT,47 i.e., after

the patch embedding each block does not change the size of

the feature map. This is called a single-stage structure. Models

of this design include FeedForward,61 ResMLP,60 gMLP,67

S2MLP,78 CCS,91 RaftMLP,74 and Sparse-MLP(MoE).88 Due to

the limited computing resources, the patch partition during

patch embedding of the single-stage model is usually large,

e.g., 16316 or 143 14, with the coarse-grained patch partition

limiting the subsequent feature fineness. Although the impact

is not significant for single-object classification, it impacts

many downstream tasks, such as object detection and instance

segmentation, especially for small targets.

Intuitively, smaller patches are beneficial in modeling fine-

grained details in the images and tend to achieve higher recog-

nition accuracy. ViP71 further proposes a two-staged configura-

tion. Specifically, the network considers 737 patch slices in the

initial patch embedding and performs a 232 patch merge after a

few layers. During patch merging, the height and width of the

feature map halve while the channels double. Compared with

the 14314 patch embedding, encoding fine-level patch repre-

sentations brings a slight top 1 accuracy improvement on

ImageNet-1k (from 80.6% to 81.5%). S2MLPv279 follows ViP

and achieves a similar top 1 accuracy improvement on

ImageNet-1k (from 80.9% to 82.0%), while DynaMixer75 also

adopts two-staged configurations.

If the initial patch size is further reduced, e.g., 43 4, more

patch merging is required subsequently to reduce the number

of patches (or tokens), promoting the network to adopt a pyramid

structure. Specifically, the entire structure contains four stages,

where the feature resolution reduces from H=43W=4 to H=323

W=32, and the output dimension increases accordingly. Almost

all the recently proposed MLP-like variants adopt the pyramid

structure (right side of Table 3). Worth mentioning, a convolu-

tional layer can equivalently achieve patch embedding if its

kernel size and stride are equal to the patch size. In the pyramid

structure, the researchers find that using an overlapping patch

embedding provides better results, that is, convolution of 737

with stride = 4 instead of 43 4, which is similar to ResNet (the

initial embedding layers of ResNet is a 737 convolutional layer

with stride = 2 followed by a 232 max-pooling layer).83,97

Discussion on architecture
The architecture of MLP-like variants gradually evolves from sin-

gle stage to pyramid, with smaller and smaller patch size and

higher feature fineness. We believe this development trend is

not only to cater to downstream task frameworks, such as
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Figure 8. Comparison of different hierarchical architectures for classification models
After patch embedding, the feature map size is h3 w3 c, where h, w, and c are the height, width, and channel numbers. There is a patch merging operation
between every two stages, usually 232 patches are merged, and the number of channels doubles. The resolutions of the feature maps are different, usually h =
H=16 in single stage, h = H=7 in two stage, and h = H=4 in pyramid, where H and W are the height and width of the input image.
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FPN,98 but also to balance the original intention and computing

power. When the patch size decreases, the number of tokens in-

creases accordingly, so token interactions are limited to a small

range to control the amount of computation. With a small range

of token interactions, the global receptive field can only be pre-

served by reducing the size of the feature map, and the pyramid

structure appears. This is consistent with the CNN concept,

where the alternating use of convolutional and pooling layers

has been around since 1979!3

We would like to point out that it is unfair to compare single-

stage and pyramid models directly based on current configura-
Table 3. Stacking structures for MLP-Mixer and its variants

Spatial operation Single stage

Spatial projection MLP-Mixer,15

ResMLP,60 gMLP,67 FeedForward,61

CCS,91 Sparse-MLP(MoE)88

Axial projection RaftMLP74

Shifting and

channel projection

S2MLP78
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tions (the bottom half of Figure 8). What if a 434 patch partition

is used in a single-stagemodel?Will it beworse than the pyramid

model? Currently, these are unknown. What is known is that the

cost of calculations will increase significantly and is constrained

by the current computing devices.

APPLICATIONS OF MLP VARIANTS

This section reviews the applications of MLP-like variants in

computer vision, including image classification, object detection

and semantic segmentation, low-level vision, video analysis, and
Two stage Pyramid

– RepMLPNet92

ViP,71 DynaMixer75 Sparse MLP,73 WaveMLP,76

MorphMLP77

S2MLPv279 CycleMLP,83 AS-MLP,80 HireMLP,86

MS-MLP,87 ActiveMLP85



Table 4. Image classification results of MLP-like models on ImageNet-1K benchmark without extra data

Model Date Structure Top 1 (%) Params (M) FLOPs (G) Open source code

Small models

Sparse-MLP(MoE)-S88 2021.09 single stage 71.3 21 – false

RepMLPNet-T22492 2021.12 pyramid 76.4 15.2 2.8 true

ResMLP-1260 2021.05 single stage 76.6 15 3.0 true

Hire-MLP-Ti86 2021.08 pyramid 78.9 17 2.1 falseb

gMLP-S67 2021.05 single stage 79.4 20 4.5 true

AS-MLP-T80 2021.07 pyramid 81.3 28 4.4 true

ViP-small/771 2021.06 two stage 81.5 25 6.9 true

CycleMLP-B283 2021.07 pyramid 81.6 27 3.9 true

MorphMLP-T77 2021.11 pyramid 81.6 23 3.9 false

Sparse MLP-T73 2021.09 pyramid 81.9 24.1 5.0 false

ActiveMLP-T85 2022.03 pyramid 82.0 27 4.0 false

S2-MLPv2-small/779 2021.08 two stage 82.0 25 6.9 false

MS-MLP-T87 2022.02 pyramid 82.1 28 4.9 true

WaveMLP-S76 2021.11 pyramid 82.6 30.0 4.5 falseb

DynaMixer-S75 2022.01 two stage 82.7* 26 7.3 false

Medium models

FeedForward61 2021.05 single stage 74.9 62 11.4 true

Mixer-B/1615 2021.05 single stage 76.4 59 11.7 true

Sparse-MLP(MoE)-B88 2021.09 single stage 77.9 69 – false

RaftMLP-1274 2021.08 single stage 78.0 58 12.0 false

ResMLP-3660 2021.05 single stage 79.7 45 8.9 true

Mixer-B/16 + CCS91 2021.06 single stage 79.8 57 11 false

RepMLPNet-B224 92 2021.12 pyramid 80.1 68.2 6.7 true

S2-MLP-deep 78 2021.06 single stage 80.7 51 9.7 false

ViP-medium/7 71 2021.06 two stage 82.7 55 16.3 true

CycleMLP-B4 83 2021.07 pyramid 83.0 52 10.1 true

AS-MLP-S 80 2021.07 pyramid 83.1 50 8.5 true

Hire-MLP-B 86 2021.08 pyramid 83.1 58 8.1 falseb

MorphMLP-B 77 2021.11 pyramid 83.2 58 10.2 false

Sparse MLP-B 73 2021.09 pyramid 83.4 65.9 14.0 false

MS-MLP-S 87 2022.02 pyramid 83.4 50 9.0 true

ActiveMLP-B 85 2022.03 pyramid 83.5 52 10.1 false

S2-MLPv2-medium/7 79 2021.08 two stage 83.6 55 16.3 false

WaveMLP-B 76 2021.11 pyramid 83.6 63.0 10.2 falseb

DynaMixer-M 75 2022.01 two stage 83.7* 57 17.0 false

Large Models

Sparse-MLP(MoE)-L 88 2021.09 single stage 79.2 130 – false

S2-MLP-wide 78 2021.06 single stage 80.0 71 14.0 false

gMLP-B 67 2021.05 single stage 81.6 73 15.8 true

RepMLPNet-L256a,92 2021.12 pyramid 81.8 117.7 11.5 true

ViP-large/771 2021.06 two stage 83.2 88 24.3 true

CycleMLP-B583 2021.07 pyramid 83.2 76 12.3 true

AS-MLP-B80 2021.07 pyramid 83.3 88 15.2 true

Hire-MLP-L86 2021.08 pyramid 83.4 96 13.5 falseb

MorphMLP-L77 2021.11 pyramid 83.4 76 12.5 false

ActiveMLP-L85 2022.03 pyramid 83.6 76 12.3 false

(Continued on next page)
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Table 4. Continued

Model Date Structure Top 1 (%) Params (M) FLOPs (G) Open source code

MS-MLP-B87 2022.02 pyramid 83.8 88 16.1 true

DynaMixer-L75 2022.01 two stage 84.3* 97 27.4 false

The training and testing size is 2243 224. ‘‘Date’’means the initial release date on arXiv, where 2021.05 denotesMay, 2021. ‘‘Open source code’’ refers

to whether there is officially open source code.
aThe training and testing size is 2563 256.
bUnofficial code and weights are open sourced at https://github.com/sithu31296/image-classification.

*The best performance.
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point cloud. Due to the short development time ofMLP, we focus

on the first two aspects and give an intuitive comparison of MLP,

CNN, and Transformer-based models. We are limited to some

brief introduction for the latter three aspects, as only a fewworks

are currently available.

Image classification
ImageNet24 is a large vision dataset designed for visual object

classification. Since its release, it has been used as a bench-

mark for evaluating models in computer vision. Classification

performance on ImageNet is often regarded as a reflection of

the network’s ability to extract visual features. After training

on ImageNet, the model can be well transferred to other data-

sets and downstream tasks, e.g., object detection and seg-

mentation, where the transferred part is usually called vision

backbone.

Table 4 compares the performance of current Vision MLP

models on ImageNet-1k, including top 1 accuracy, parameters,

and FLOPs, where all results are derived from the cited papers.

We further divide the MLP models into three configuration types

based on the number of parameters, and the rows are sorted by

top 1 accuracy. The results highlight that, under the same

training configuration, the recently proposed variants bring

good performance gains. Table 5 provides more detailed and

comprehensive information. Compared with the latest CNN

and Transformer models, MLP-like variants still pose a perfor-

mance gap. Without the support of extra training data, both

CNN and Transformer exceed 87% top 1 accuracy, while the

MLP-like variant currently achieves only 84.3%. High perfor-

mance may benefit from better architecture-specific training

strategies, e.g., PeCo,99 but we do not yet have a training

mode specific to MLP. The gap between MLP and other net-

works is further widened with additional data support.

From Tables 4 and 5, it is concluded that: (1) MLP-like models

can achieve competitive performance compared with CNN-

based and Transformer-based architectures with the same

training strategy and data volume, (2) the performance gains

brought by increasing data volume and architecture-specific

training strategies may be greater than the module redesign,

(3) the visual community is encouraged to build self-supervised

methods and appropriate training strategies for pure MLPs.

Object detection and semantic segmentation
Some MLP-like variants76,77,80,83,85–87 pre-trained on ImageNet

are transferred to downstream tasks, such as object detection

and semantic segmentation. Such tasks are more challenging

than classification due to involving multiple objects of interest
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in one input image. However, we currently do not have a pure

MLP framework for object detection and segmentation. These

MLP variants are used as backbone networks to traditional

CNN-based frameworks, such as Mask R-CNN38 and

UperNet,123 requiring the variant to have a pyramidal structure

and resolution insensitivity.

Table 6 reports object detection and semantic segmentation

results of different backbones on the COCO val2017 dataset.65

As we limit the training strategy to Mask R-CNN 1x,38 the results

are not state-of-the-art on theCOCOdataset. Table 7 reports se-

mantic segmentation results of different backbones on the

ADE20K124 validation set, employing the Semantic FPN125 and

UperNet123 frameworks. Empirical results show that the perfor-

mance of MLP-like variants on object detection and semantic

segmentation is still weaker than the most advanced CNN and

Transformer-based backbones.

Currently, an optimal backbone choice is Transformer

based, followed by CNN. Due to the resolution sensitivity,

pure MLPs have not been used for downstream tasks.

Recently, Transformer-based frameworks, e.g., DETR48 have

been proposed. Thus, we expect the proposal of a pure

MLP framework. To this end, MLPs still need to be further

explored in these fields.

Low-level vision
Research on applying MLPs to the low-level vision domains,

such as image generation and processing, is just beginning.

These tasks output images instead of labels or boxes, making

them more challenging than high-level vision tasks, such as im-

age classification, object detection, and semantic segmentation.

Cazenavette and Guevara128 propose MixerGAN for unpaired

image-to-image translation. Specially, MixerGAN adopts the

framework of CycleGAN,129 but replaces the convolution-based

residual block with the mixer layer of MLP-Mixer. Their experi-

mentsshowthat theMLP-Mixer succeedsatgenerativeobjectives

and, although being an initial exploration, it is promising in extend-

ing the MLP-based architecture to image composition tasks

further.

Tu et al.130 propose MAXIM, a UNet-shaped hierarchical

structure that supports long-range interactions enabled by

spatially gated MLPs. MAXIM contains two MLP-based building

blocks: a multi-axis-gated MLP and a cross-gating block, both

are variants of the gMLP block.67 By applying gMLP to low-level

vision tasks to gain global information, the MAXIM family has

achieved state-of-the-art performance in multiple image pro-

cessing tasks withmoderate complexity, including image dehaz-

ing, deblurring, denoising, deraining, and enhancement.

https://github.com/sithu31296/image-classification


Table 5. Image classification results of representative CNN, ViT, and MLP-like models on ImageNet-1K benchmark

Model Pre-trained dataset Top 1 (%) Params (M) FLOPs (G)

CNN based

VGG-16100 – 71.5 134 15.5

Xception16 – 79.0 22.9 –

Inception-ResNet-V2101 – 80.1 – –

ResNet-5097,102 – 80.4 25.6 4.1

ResNet-15297,102 – 82.0 60.2 11.5

RegNetY-8GF102,103 – 82.2 39 8.0

RegNetY-16GF103 – 82.9 84 15.9

ConvNeXt-B104 – 83.8 89.0 15.4

VAN-Huge105 – 84.2 60.3 12.2

EfficientNetV2-M106 – 85.1 54 24.0

EfficientNetV2-L106 – 85.7 120 53.0

PolyLoss(EfficientNetV2-L)107 – 87.21 – –

EfficientNetV2-XL106 ImageNet-21k 87.3 208 94.0

RepLKNet-XL108 ImageNet-21k 87.82 335 128.7

Meta pseudo labels

(EfficientNet-L2)109
JFT-300M 90.23 480 –

Transformer based

ViT-B/1647 – 77.9 86 55.5

DeiT-B/16110 – 81.8 86 17.6

T2T-ViT-24111 – 82.3 64.1 13.8

PVT-large112 – 82.3 61 9.8

Swin-B49 – 83.5 88 15.4

Nest-B113 – 83.8 68 17.9

PyramidTNT-B114 – 84.1 157 16.0

CSWin-B115 – 84.2 78 15.0

CaiT-M-48-448116 – 86.5 356 330

PeCo(ViT-H)99 – 88.31 635 –

ViT-L/1647 ImageNet-21k 85.3 307 –

SwinV1-L49 ImageNet-21k 87.3 197 103.9

SwinV2-G117 ImageNet-21k 90.22 3000 –

V-MoE90 JFT-300M 90.4 14,700 –

ViT-G/1447 JFT-300M 90.53 1843 –

CNN + Transformer

Twins-SVT-B118 – 83.2 56 8.6

Shuffle-B119 – 84.0 88 15.6

CMT-B120 – 84.5 45.7 9.3

CoAtNet-3121 – 84.5 168 34.7

VOLO-D3122 – 85.4 86 20.6

VOLO-D5122 – 87.11 296 69.0

CoAtNet-4121 ImageNet-21k 88.12 275 360.9

CoAtNet-7121 JFT-300M 90.93 2440 –

MLP based

DynaMixer-L75 – 84.31 97 27.4

ResMLP-B24/860 ImageNet-21k 84.42 129.1 100.2

Mixer-H/1415 JFT-300M 86.33 431 –

Pre-trained dataset column provides extra data information. PloyLoss, PeCo, and meta pseudo labels are different training strategies, where the used

model is in the bracket
1The best performance on ImageNet-1k without pre-trained dataset.
2The best performance on ImageNet-1k with ImageNet-21k pre-training.
3The best performance on ImageNet-1k with JFT-300M pre-training.
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Table 6. Object detection and instance segmentation results of different backbones on the COCO val2017 dataset

Backbone

Mask R-CNN 1 3 38

APb APb
50 APb

75 APm APm
50 APm

75 Params FLOPs

CNN based

ResNet10197 40.4 61.1 44.2 36.4 57.7 38.8 63.2M 336G

ResNeXt101126 42.8 63.8 47.3 38.4 60.6 41.3 101.9M 493G

VAN-large105 47.1 67.9 51.9 42.2 65.4 45.5 64.4M –

Transformer based

PVT-large112 42.9 65.0 46.6 39.5 61.9 42.5 81M 364G

Swin-B49 46.9 – – 42.3 – – 107M 496G

CSWin-B115 48.7* 70.4* 53.9* 43.9* 67.8* 47.3 97M 526G

MLP based

CycleMLP-B583 44.1 65.5 48.4 40.1 62.8 43.0 95.3M 421G

WaveMLP-B76 45.7 67.5 50.1 27.8 49.2 59.7* 75.1M 353G

HireMLP-L86 45.9 67.2 50.4 41.7 64.7 45.3 115.2M 443G

MS-MLP-B87 46.4 67.2 50.7 42.4 63.6 46.4 107.5M 557G

ActiveMLP-L85 47.4 69.9 52.0 43.2 67.3 46.5 96.0M –

Employing the Mask R-CNN,38 where ‘‘1x’’ means that a single-scale training schedule is used.

*The best performance.
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Video analysis
Several works extendMLPs to temporal modeling and video anal-

ysis. MorphMLP77 achieves competitive performance with recent

state-of-the-art methods on Kinetics-400131 dataset, demon-

strating that theMLP-likebackbone isalsosuitable forvideorecog-

nition. Skating-Mixer132 extends theMLP-Mixer-based framework

to learn fromvideo. Itwasused toscore figureskating at theBeijing

2022 Winter Olympic Games and demonstrated satisfactory per-

formance. However, compared with other methods, the number

of frames in a single input has not been increased. Therefore, their

advantage may be the larger spatial receptive field, instead of

capturing long-term temporal information.

Point cloud
Point cloud analysis can be considered a special vision task,

which is increasingly used in real-time by robots and self-driving

vehicles to understand their environment and navigate through

it. Unlike images, point clouds are inherently sparse, unordered,

and irregular. The unordered nature is one of the biggest chal-

lenges for CNNs based on local receptive fields, because input

adjacent does not imply spatial adjacent. In contrast, MLPs are

naturally invariant to permutation, which perfectly fits the charac-

teristic of point cloud,133 making classical frameworks, such as

MLP-based PointNet134 and PointNet++.135

Choe et al.136 design PointMixer, which embeds geometric

relations between point features into the MLP-Mixer’s frame-

work. The relative position vector is utilized for processing un-

structured 3D points, and token-mixing MLP is replaced with a

softmax function. Ma et al.133 construct a pure residual MLP

network, called PointMLP. It introduces a lightweight geometric

affine module to transform the local points to a normal distribu-

tion. It then employs simple residual MLPs to represent local

points, as they are permutation invariant and straightforward.

PointMLP achieves the new state-of-the-art performance on

multiple datasets. In addition, recently proposed Transformer-

based networks137,138 show competitive performance, where
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self-attention is permutation invariant for processing a

sequence of points, making it well suited for point cloud

learning.

From the above analysis, it is evident that Transformer and

MLP are appealing solutions for unordered data, where disorder

makes it challenging to design artificial inductive biases.

Discussion on application
MLP-like variants have been applied for diverse vision tasks,

such as image classification, image generation, object detec-

tion, semantic segmentation, and video analysis, achieving

outstanding performance due to the artificial redesigning of

the MLP block. Nevertheless, constructing MLP frameworks

and employing MLP-specific training strategies may improve

performance further. In addition, pure MLPs have already

demonstrated their advantages in point cloud analysis, encour-

aging the application of MLPs to visual tasks with unor-

dered data.

SUMMARY AND OUTLOOK

As the history of computer vision attests, the availability of larger

datasets along with the increase in computational power often

triggers a paradigm shift; and, within these paradigm shifts, there

is a gradual reduction in human intervention, i.e., removing hand-

crafted inductive biases and allowing the model to further freely

learn from the raw data.15 The MLP and Boltzmann machines

proposed in the last century exceeded the computational condi-

tions at the time and were not widely used. In contrast, compu-

tationally efficient CNNs are more popular and replace manual

feature extraction. From CNNs to Transformer, we have seen

the models’ receptive field expand step by step, and the spatial

range considered when encoding features is getting larger and

larger. From Transformer to deepMLP, we no longer use similar-

ity as the weight matrix, but allow the model to learn the weights

from the raw data. The latest MLPworks all seem to suggest that



Table 7. Semantic segmentation results of different backbones on the ADE20K validation set

Backbone

Semantic FPN125 UperNet123

Params FLOPs mIoU (%) Params FLOPs mIoU (%)

CNN based

ResNet10197 47.5M 260G 38.8 86M 1029G 44.9

ResNeXt101126 86.4M – 40.2 – – –

VAN-large105 49.0M – 48.1 75M – 50.1

ConvNeXt-XL104 – – – 391M 3335G 54.0

RepLKNet-XL108 – – – 374M 3431G 56.0

Transformer based

PVT-medium112 48.0M 219G 41.6 – – –

Swin-B49 53.2M 274G 45.2 121M 1188G 49.7

CSWin-B115 81.2M 464G 49.9* 109.2M 1222G 52.2

BEiT-L127 – – – – – 57.0

SwinV2-G117 – – – – – 59.9*

MLP based

MorphMLP-B77 59.3M – 45.9 – – –

CycleMLP-B583 79.4M 343G 45.6 – – –

Wave-MLP-M76 43.3M 231G 46.8 – – –

AS-MLP-B80 – – – 121M 1166G 49.5

HireMLP-L86 – – – 127M 1125G 49.9

MS-MLP-B87 – – – 122M 1172G 49.9

ActiveMLP-L85 79.8M – 48.1 108M 1106G 51.1

Semantic FPN125 and UperNet123 frameworks are employed.

*The best performance.
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deepMLPs are making a strong comeback as the new paradigm.

In the latest MLP development, we see compromises, such as:

1. The latest proposed deep MLP-based models use patch

partition instead of flattening the entire input to compro-

mise computational cost. This allows the full connectivity

and global receptive field to be approximated at the

patch level. The patch partition forms a two-dimensional

matrix hw3Cp2, instead of a one-dimensional vector 13

HWC as in the entire input flattening case, where H =

ph;W = pw are the input resolution, p is the patch size,

and C is the input channel. Subsequently, the fully con-

nected projections are performed alternately on space

and channels. This is an orthogonal decomposition of

traditional fully connected projections, just as the full

space projection is further orthogonalized into horizontal

and vertical directions.

2. At the module design level, there are two main improve-

ment routes. One MLP-like variant type focuses on

reducing computational complexity, which compromises

computational power, and this reduction comes at the

expense of decoupling the full spatial connectivity.

Another type of variant addresses the resolution sensitivity

problem, making it possible to transfer pre-trained models

to downstream tasks. These works adopt CNN-like im-

provements, but the full connectivity and global receptive

field as in MLPs are eroded. The receptive field evolves in

the opposite direction in these models, becoming smaller

and smaller and backing to the CNN ways.
3. At the architecture level, the traditional block-stacking

patterns are also applicable to MLPs, and it seems that

the pyramid structure is still the best choice, with the initial

smaller patch size helping to obtain finer features. Note

that this comparison is unfair because the initial patch of

the current single-stage model is larger (163 16), and

the initial patch of the pyramid model is smaller (43 4).

The pyramid structure compromises small patches and

low computational costs to some extent. What if a 434

patch partition is used in a single-stage model? Will it be

worse than the pyramid model? These are unknown.

What is known is that the cost of calculations will increase

significantly, and it strains the current computing devices.

The results of our research suggest that the current amount of

data and computational capability are still not enough to support

pure Vision MLP models to learn effectively. Moreover, human

intervention still occupies an important place. Based on this

conclusion, we elaborate on potential future research directions.

Vision-tailored designs
With the current amount of data and computation, human guid-

ance remains important, and it seems natural to combine the ad-

vantages of other architectures.95,139 Currently, most MLP-like

variants remain an either/or choice for short- and long-range de-

pendencies and need further intuitions to enhance their efficiency

on visual inputs. RepMLPNet92 has made a viable attempt.

We believe that, in the future, the community should focus on

how to combine short-range dependencies and long-range
Patterns 3, July 8, 2022 19
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dependencies rather than keeping only one or the other. This is

consistent with human intuition as local details are beneficial for

understanding individual objects and the interactions across the

entire visual field remain significant. Note that image resolution

insensitivity is important, ensuring the network to be a universal

vision backbone. To sum up, we encourage the community to

rethink tailored visual designs further, i.e., to integrate the global

receptive field (long-range dependencies) and local receptive field

(short-range dependencies) while maintaining resolution insensi-

tivity.

Scaling-up/down techniques
It has long been recognized that larger vision models generally

perform better on vision tasks,97,100 but the size of most vision

networks is only a few million to over a hundred million. Further-

more, various configurations of an MLP-like variant offer limited

gains despite the increased number of parameters. Recently,

the visual community has conducted some scaling-up research

on the vision Transformers with self-supervised pre-training,

including V-MoE,90 Swinv2,117 and ViTAEv2,140 which afford a

considerable performance boost. Nevertheless, scaling-up tech-

niques specific toMLPsneed further exploration.Moving from the

lab to life, MLPs can have intensive power and computation re-

quirements, hindering their deployment on edge devices and

resource-constrained environments, such as mobile phone plat-

forms. Such hardware efficient designs are currently lacking for

the vision MLPs to enable their seamless deployment in

resource-constrained devices. How do MLPs perform with low

precision training and inference? How do MLPs perform knowl-

edge distillation? How about using neural architecture search141

to design more efficient and lightweight MLP models? It will be

interesting to see how these questions are answered.

Dedicated pre-training and optimizing method
MLPs enjoy greater freedom and larger solution space with less

inductive biases than CNNs and Transformer. We currently have

difficulties finding optimal solutions for MLPs, which is

commonly attributed to computation power and data volume

constraints. Pre-training helps generalization, and the very

limited information in the labels is used only to slightly adjust

the weights found by pre-training. Many self-supervised frame-

works, such as MoCo,28,29,142 SimCLR,27,143 SimMIM,144

MAE,145 and MaskFeat,146 have already provided a big boost

to CNNs and Transformer. Are these self-supervised learning

methods still effective for MLPs? Can a better self-supervised

training method be designed for MLPs? What’s more, is this

related to the optimizer used? We know that SGD147 is a good

optimizer for CNNs and that AdamW148 performs well for Trans-

former. What is the best choice for MLPs? A recent work149 has

conducted a preliminary exploration and investigates the MLP-

Mixer from the lens of loss landscape geometry. GGA-MLP150

proposes a greedy genetic algorithm to optimize weights and

biases in MLP. We believe that dedicated pre-training and opti-

mizing methods will be an excellent boost to accelerate the

development of deep MLP models.

Interpretability
Another optional direction is toward a more in-depth analysis

and comparison of the filters learned by the network and the re-
20 Patterns 3, July 8, 2022
sulting feature maps. MLPs continue the long-term trend of

removing hand-crafted inductive biases and allowing models

to further freely learn from the raw data. What follows is that

the interpretability of the model is getting lower and lower.

Both mathematical explanations and visual analysis are possibly

helpful to understand what neural networks can freely learn from

massive amounts of raw data with fewer priors. This can assist in

proving whether some of the past artificial priors are correct or

incorrect and potentially guide the design choices of future net-

works. In addition, the theoretical understanding of why net-

works might be vulnerable is also a key topic.

Beyond MLP
With the further improvement of the data volume and computing

power, we should be beyond the horizon of present knowledge,

the weighted-sum paradigms, and reconsider more theoretical

paradigms frommathematic and physic systems, such as Boltz-

mann machines. The weighted-sum paradigms have driven the

booming of GPU-based computing and deep learning itself,

while we believe the Boltzmann-like paradigm will also grow up

with a new generation of computing hardware.

Data and code availability
We reproducemost variants of MLP-like models in Jittor and Py-

torch. Code is available at https://github.com/liuruiyang98/

Jittor-MLP. This review did not generate new data.
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