Skip to main content
. 2022 Jul 8;3(7):100520. doi: 10.1016/j.patter.2022.100520

Table 4.

Image classification results of MLP-like models on ImageNet-1K benchmark without extra data

Model Date Structure Top 1 (%) Params (M) FLOPs (G) Open source code
Small models

Sparse-MLP(MoE)-S88 2021.09 single stage 71.3 21 false
RepMLPNet-T22492 2021.12 pyramid 76.4 15.2 2.8 true
ResMLP-1260 2021.05 single stage 76.6 15 3.0 true
Hire-MLP-Ti86 2021.08 pyramid 78.9 17 2.1 falseb
gMLP-S67 2021.05 single stage 79.4 20 4.5 true
AS-MLP-T80 2021.07 pyramid 81.3 28 4.4 true
ViP-small/771 2021.06 two stage 81.5 25 6.9 true
CycleMLP-B283 2021.07 pyramid 81.6 27 3.9 true
MorphMLP-T77 2021.11 pyramid 81.6 23 3.9 false
Sparse MLP-T73 2021.09 pyramid 81.9 24.1 5.0 false
ActiveMLP-T85 2022.03 pyramid 82.0 27 4.0 false
S2-MLPv2-small/779 2021.08 two stage 82.0 25 6.9 false
MS-MLP-T87 2022.02 pyramid 82.1 28 4.9 true
WaveMLP-S76 2021.11 pyramid 82.6 30.0 4.5 falseb
DynaMixer-S75 2022.01 two stage 82.7 26 7.3 false

Medium models

FeedForward61 2021.05 single stage 74.9 62 11.4 true
Mixer-B/1615 2021.05 single stage 76.4 59 11.7 true
Sparse-MLP(MoE)-B88 2021.09 single stage 77.9 69 false
RaftMLP-1274 2021.08 single stage 78.0 58 12.0 false
ResMLP-3660 2021.05 single stage 79.7 45 8.9 true
Mixer-B/16 + CCS91 2021.06 single stage 79.8 57 11 false
RepMLPNet-B224 92 2021.12 pyramid 80.1 68.2 6.7 true
S2-MLP-deep 78 2021.06 single stage 80.7 51 9.7 false
ViP-medium/7 71 2021.06 two stage 82.7 55 16.3 true
CycleMLP-B4 83 2021.07 pyramid 83.0 52 10.1 true
AS-MLP-S 80 2021.07 pyramid 83.1 50 8.5 true
Hire-MLP-B 86 2021.08 pyramid 83.1 58 8.1 falseb
MorphMLP-B 77 2021.11 pyramid 83.2 58 10.2 false
Sparse MLP-B 73 2021.09 pyramid 83.4 65.9 14.0 false
MS-MLP-S 87 2022.02 pyramid 83.4 50 9.0 true
ActiveMLP-B 85 2022.03 pyramid 83.5 52 10.1 false
S2-MLPv2-medium/7 79 2021.08 two stage 83.6 55 16.3 false
WaveMLP-B 76 2021.11 pyramid 83.6 63.0 10.2 falseb
DynaMixer-M 75 2022.01 two stage 83.7 57 17.0 false

Large Models

Sparse-MLP(MoE)-L 88 2021.09 single stage 79.2 130 false
S2-MLP-wide 78 2021.06 single stage 80.0 71 14.0 false
gMLP-B 67 2021.05 single stage 81.6 73 15.8 true
RepMLPNet-L256a92 2021.12 pyramid 81.8 117.7 11.5 true
ViP-large/771 2021.06 two stage 83.2 88 24.3 true
CycleMLP-B583 2021.07 pyramid 83.2 76 12.3 true
AS-MLP-B80 2021.07 pyramid 83.3 88 15.2 true
Hire-MLP-L86 2021.08 pyramid 83.4 96 13.5 falseb
MorphMLP-L77 2021.11 pyramid 83.4 76 12.5 false
ActiveMLP-L85 2022.03 pyramid 83.6 76 12.3 false
MS-MLP-B87 2022.02 pyramid 83.8 88 16.1 true
DynaMixer-L75 2022.01 two stage 84.3 97 27.4 false

The training and testing size is 224×224. “Date” means the initial release date on arXiv, where 2021.05 denotes May, 2021. “Open source code” refers to whether there is officially open source code.

a

The training and testing size is 256×256.

b

Unofficial code and weights are open sourced at https://github.com/sithu31296/image-classification.

The best performance.