Skip to main content
. 2022 Jul 8;3(7):100520. doi: 10.1016/j.patter.2022.100520

Table 7.

Semantic segmentation results of different backbones on the ADE20K validation set

Backbone Semantic FPN125
UperNet123
Params FLOPs mIoU (%) Params FLOPs mIoU (%)
CNN based

ResNet10197 47.5M 260G 38.8 86M 1029G 44.9
ResNeXt101126 86.4M 40.2
VAN-large105 49.0M 48.1 75M 50.1
ConvNeXt-XL104 391M 3335G 54.0
RepLKNet-XL108 374M 3431G 56.0

Transformer based

PVT-medium112 48.0M 219G 41.6
Swin-B49 53.2M 274G 45.2 121M 1188G 49.7
CSWin-B115 81.2M 464G 49.9 109.2M 1222G 52.2
BEiT-L127 57.0
SwinV2-G117 59.9

MLP based

MorphMLP-B77 59.3M 45.9
CycleMLP-B583 79.4M 343G 45.6
Wave-MLP-M76 43.3M 231G 46.8
AS-MLP-B80 121M 1166G 49.5
HireMLP-L86 127M 1125G 49.9
MS-MLP-B87 122M 1172G 49.9
ActiveMLP-L85 79.8M 48.1 108M 1106G 51.1

Semantic FPN125 and UperNet123 frameworks are employed.

The best performance.