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ABSTRACT: Fluorescence lifetime imaging microscopy (FLIM)
may reveal subcellular spatial lifetime maps of key molecular
species. Yet, such a quantitative picture of life necessarily demands
high photon budgets at every pixel under the current analysis
paradigm, thereby increasing acquisition time and photodamage to
the sample. Motivated by recent developments in computational
statistics, we provide a direct means to update our knowledge of the
lifetime maps of species of different lifetimes from direct photon
arrivals, while accounting for experimental features such as arbitrary
forms of the instrument response function (IRF) and exploiting
information from empty laser pulses not resulting in photon
detection. Our ability to construct lifetime maps holds for arbitrary
lifetimes, from short lifetimes (comparable to the IRF) to lifetimes
exceeding interpulse times. As our method is highly data efficient, for the same amount of data normally used to determine lifetimes
and photon ratios, working within the Bayesian paradigm, we report direct blind unmixing of lifetimes with subnanosecond
resolution and subpixel spatial resolution using standard raster scan FLIM images. We demonstrate our method using a wide range
of simulated and experimental data.
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Fluorescence microscopy has significantly contributed to
our understanding of biological processes as they unfold

within their native cellular environment.1−7 One such
microscopy technique is fluorescence lifetime imaging
microscopy (FLIM), performed using pulsed or modulated
illumination.8 The sensitivity of fluorescent probe lifetimes in
FLIM has been exploited to spatially resolve the following: (1)
temperature variations across environments;9−12 (2) refractive
indices13 that may serve as proxies to local concentrations of
proteins;13−15 and (3) molecular concentrations of mixtures of
species across environments.16−19 For instance, molecular
concentrations deduced from FLIM data have been used to
quantify metabolic changes in cells17−21 tied to changes in free
versus bound states of reduced nicotinamide adenine
dinucleotide (NADH).
Of recent interest is the potential of quantitative lifetime

imaging using single-photon avalanche diode (SPAD) arrays in
the life sciences.22,23 Thanks to the popularization of such
novel detection modalities, it is now possible to achieve
widefield FLIM with picosecond time-stamping, a high photon
detection rate, and low dark noise. Such developments now
make SPAD arrays a promising venue for FLIM-guided
oncology research to help discriminate healthy versus cancer-
ous tissues.24,25

Yet, bringing quantitative lifetime image analysis to the next
level, whether through the simultaneous detection of various
regions of space through SPAD arrays or through spot
scanning, demands a novel mathematical framework in which
the key modeling challenges are addressed. For example,
currently, FLIM data collected in either pulsed or modulated
illumination result in a temporal emission profile from which
the fluorescence lifetimes26 can be deduced using phasor-based
methods8,27 and neural networks,28−30 model-based methods
that implement direct photon arrival analysis using like-
lihood,31,32 or Bayesian methods33−39 or by fitting photon
arrival histograms (often termed time correlated single photon
counting, TCSPC) through least-squares fitting40−42 and
deconvolution.43−46

Yet these analysis methods are generally limited in their
ability to (1) learn the number of species and, as such, often
assume one or two species for simplicity;28−37,40−42 (2) report
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full error bars over all unknown quantities propagated from
effects such as finiteness of the data or intrinsic breadth of the
instrumental response function (IRF);8,27−30 (3) treat a broad
range of lifetimes, including short lifetimes, lifetimes longer
than interpulse times, and lifetimes with subnanosecond
differences; (4) provide spatial resolutions below the pixel
size; and (5) take full advantage of all the available data using
direct photon arrivals with no data preprocessing,47 such as
deconvolving the IRF43−46 and empty pulses to facilitate blind
unmixing of lifetime maps.
In prior work, we focused on problems 1 and 2 above for a

single pixel (single confocal spot).48 That is, we proposed a
method to learn the number of chemical species and associated
lifetimes simultaneously and self-consistently report on the full
posterior distributions around species and lifetimes from direct
analysis of single photon arrivals.48 While traditional Bayesian
methods report full error bars, such methods are parametric
and, therefore, need a known number of lifetime species to be
specified a priori. For this reason, in our prior work, we

abandoned the parametric Bayesian paradigm and worked
within a Bayesian nonparametric (BNP) framework. Within
this framework, we placed a prior on all (formally an infinite
number) species that could be warranted by the data using a
device within BNPs, termed Dirichlet process priors.49−52

Here, we turn to resolving spatial lifetime maps, even below
the spatial dimension of a pixel (subpixel resolution) while
reporting full error bars over all the parameters, and in doing
so, we directly address problems 2−5. We do so while
analyzing photon arrivals that themselves report back on the
mixture of species present whose lifetimes are convolved with
IRFs. In particular, to address challenge 4 above, namely, to
resolve lifetime maps below the pixel size, we ask the following:
Of all lifetime maps possible for any mixture of species, can we
learn those maps warranted by the data, even if the data are
sparsely collected at distinct and well-separated spots? Can we
do this while simultaneously learning all other unknowns, such
as the lifetime for each species?

Figure 1. A cartoon representation illustrating how a specimen is scanned and the image is deconvolved. Here, we envision a sample stained with
two different fluorophores, and the data are collected using a scanning confocal microscope, where the grid represents pixels. (a) The sample is
scanned with fine separation between the scanning trajectories. This separation determines the pixel size. We use BNPs to determine the lifetimes
of individual species and reconstruct their underlying lifetime map (which may designate the location of cellular structures depending on the stain’s
affinity). (b) The sample is scanned using a larger distance between the scanning trajectories (larger pixel size). As an important control of our
method, we can ask to what degree BNPs may reconstruct the lifetime maps from such data that would have been obtained from the analysis of the
smaller pixel (higher resolution) data. (c) Each pixel is scanned by a train of equally temporally spaced excitation pulses. The pink spikes show laser
pulses, and the curly arrows represent detected photons. In the most general case, the pink spikes have a finite width, and it cannot be assumed that
photons are generated from an excitation caused by the pulse immediately preceding it.
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Again, this problem is naturally nonparametric, as we must
place priors on an infinite number of candidate (static) lifetime
maps that may not assume simple analytic forms. To do so, we
leverage the power of the Gaussian process (GP) priors within
the BNP paradigm.53−57 Within the GP prior paradigm, each
map is comprised of an infinite set of random variables (the
values of the concentration for each species at every
continuous point in space). As such, GP processes are key
toward allowing us to interpolate lifetime maps between spatial
observation points.
As BNPs are direct logical extensions of their traditional

(parametric) Bayesian counterparts,58,59 the quality of the
inferences drawn depend on the physics incorporated into the
likelihood. A cartoon example of the type of experiments we
wish to interpret is provided in Figure 1. Here, an illumination
laser scans a sample at constant speed over straight trajectories
separated by pixel size, Figure 1a. Each pixel is therefore
illuminated with a certain number of pulses, resulting in
excitation of fluorophores. The excited fluorophores, in turn,
emit photons that might be recorded by the detector. The
probability of detecting a photon is thereby given by a
combination of the illumination and detection profiles termed
the excitation−detection point spread function (PSF). In
principle, the number of detected photons is much smaller
than the number of pulses, where both pulses giving rise to
photons and “empty pulses” provide information on the
underlying lifetime maps.
In what follows, we use the type of data just described and

exploit the mathematics of GPs in order to construct lifetime
maps (strictly speaking, the product of the excitation
probability and concentration at each location) with a subpixel
resolution. We do so while rigorously propagating uncertainty
through a Bayesian procedure and with no assumption on
lifetime durations (whether shorter than the IRF or longer
than interpulse times).

■ RESULTS
Our method’s overarching objective is to learn the lifetime
maps, μmρm(x, y), of each chemical species, indexed m, where
μm is the average number of excited fluorophores of species m

per pulse and related to the quantum yield.60 We wish to learn
these lifetime maps with subpixel resolution alongside their
associated lifetimes, τm. As estimates of μm are often difficult to
obtain directly for in vivo applications and may spatially
vary,19,61−63 in practice, we learn the product μmρm(x, y) as
opposed to absolute concentrations, ρm. Here μm = μ̂mδt is a
unitless parameter; δt is the average width of the excitation
pulse and μ̂m is excitation rate of fluorophore species.
To be clear, determining the absolute ρm(x, y) demands the

independent calibration of μm for any analysis method, as these
quantities appear as products in any theory (whether ours or
others).
To make inferences on μmρm(x, y), designated μρ hereafter

for simplicity, over each point in space, as well as τm for each
species, we require the following: input data (including photon
arrival times and which pulses are empty otherwise); the
number of species; the IRF; and the excitation−detection PSF
of the confocal microscope. With these quantities at hand, we
can construct a likelihood of observing the data in the above
given model, as described in the Methods section and
expanded upon in Supporting Information, Note 1.
Within the Bayesian framework, we must also specify prior

distributions on the unknown parameters to arrive at full
posterior distributions (as well as derived quantities, such as
credible intervals) over all unknowns. Of particular importance
is the nonparametric GP prior on the smooth μρ profiles.
These profiles are continuous functions over space comprised
of infinite sets of parameters (the value of the profile at each
point in space). In practice, we learn values of μρ by placing a
GP prior over a finite mesh-grid of locations termed test
points. The set of test points can be as close as desired and
often smaller than the size of the confocal spot and pixel size,
as discussed in the Methods section and expanded upon in
Supporting Information, Note 2.1−2.
As the nonparametric posterior cannot be assumed to attain

an analytic form, we develop a computational scheme to
efficiently sample from this posterior. The results presented are
therefore in the form of histograms of samples drawn from
Markov chains further elaborated in Supporting Information,
Note 2.2.

Figure 2. Lifetime posteriors under uniform μρ profiles. (a, b) The resulting posterior over lifetime and μρ obtained from the data simulated with
spatially uniform profiles, as anticipated for any well-stirred solution (in vitro) experiments. (c, d) The resulting lifetime and μρ posteriors from in
vitro experiments using a mixture of two fluorophore species (Fluorescein and Coumarin6). The dashed black lines represent ground truths
(known for synthetic data and determined using phasor analysis for in vitro data). The blue and brown curves, respectively, correspond to the larger
and smaller lifetimes of Fluorescein and Coumarin6, respectively.
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In the following, we benchmark our method using a wide
range of realistic simulated and experimental data with μρ

profiles of differing levels of spatial heterogeneity (all
parameters used in data simulations and analyses are reported

Figure 3. Simulated μρ profiles meant to mimic more complex patterns observed in vivo. Underlying ground truth μρ profiles for species 1 in panel
(a) and for species 2 in panel (b). (c) FLIM data generated using the combination of the ground truth μρ profiles as we observe it in 42 × 42 pixels
scanned with a pixel size of 0.2 μm. (d, e) Learned μρ profiles with a subpixel resolution (1/3 of the pixel size). (f, g) Learned μρ profiles where
pixels with even columns and rows were ignored. This results in lower resolution data (by a factor of 4) that we subsequently used to obtain our μρ
profiles. All scale bars are 1 μm.

Figure 4. In vivo FLIM data sets acquired from lysosomes and mitochondria labeled with two fluorophore species within HeLa cells. (a, b)
Experimental FLIM data images of spectrally resolved lysosomes (green) and mitochondria (red) acquired simultaneously within the same cell. (c,
d) Zoomed-in regions inside the boxes in (a) and (b). (e, f) Learned μρ profiles of lysosomes and mitochondria using all the photons in (c) and
(d), respectively. (g, h) Learned μρ profiles obtained by ignoring photons from pixels with even rows and columns in (c) and (d), respectively. (i)
Shown in yellow is the raw FLIM image of a combination of lysosomes and mitochondria in (a) and (b). (j) Zoomed-in region inside the box in
(i). (k, l) Learned μρ profiles of lysosomes and mitochondria, respectively, with a subpixel resolution (1/3 of the pixel size), using all photons in (j).
(m, n) Learned μρ profiles of lysosomes and mitochondria, respectively, ignoring photons from pixels with even column and row indices in (j).
Scale bars are 4 μm.
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in Tables S1 and S2). That is, in the simplest case, we first
show that our method recapitulates lifetimes and μρ for the
case of spatially uniform μρ using both simulated and
experimental data; Figures 2 and S1.
As these constitute easier test cases, we relegate smoothly

spatially varying profiles to Figures S2−S8 and Supporting
Information, Note 3. These profiles are used to demonstrate
our method for (1) different photon counts and pixel sizes, see
Figures S2−S4 and Supporting Information, Note 3; (2)
subnanosecond lifetime resolution (mixture of two lifetimes
with 0.5 ns difference), see Figure S5 and Supporting
Information, Note 3; (3) learning lifetimes over a wide range
from below the IRF to larger than the interpulse time, see
Figures S6 and S7 and Supporting Information, Note 3; and
(4) data with more than two species, see Figure S8 and
Supporting Information, Note 3. Finally, in the main body we
present results for more complex μρ profiles (profiles that vary
dramatically over space) that recapitulate profiles anticipated in
vivo. These results are shown in Figures 3 and 4 for both
simulated and in vivo data.
Method Validation Using Uniform Profiles. To initially

demonstrate our method in learning simple (spatially uniform)
μρ profiles, we analyzed both simulated, Figure 2a,b, and in
vitro, Figure 2c,d, data sets with two lifetime components and
μρ of 1−4. The simple in vitro data sets were uniform (well-
stirred) solutions for both species.
We considered both simulated and experimental data sets

with mixtures of close, and thus challenging, lifetimes of 2.5
and 3.6 ns and considered how well we can discriminate
between these two lifetime values when analyzing traces
containing a different number of photons (500, 1K, 2K, and 5K
total photon counts).
Figure 2a,b and c,d show lifetime and μρ posteriors for

simulated and experimental data, respectively. Even with as few
as 500 total photon counts, the agreement of our lifetime
posterior, compared with ground truth (simulated data) and
phasor analysis (see Experimental Data Collection section), is
in good agreement with ∼7% and 6% differences for the larger
and smaller lifetimes in Figure 2a, respectively; the obtained
lifetimes are given in Table S3.
It is worth noting that for (spatially homogeneous, uniform

solution) in vitro data, the phasor distribution can learn both
lifetimes only when one lifetime is specified a priori8 (here
Coumarin6 with lifetime of 2.5 ns64). However, our method
learns both lifetimes and the associated μρ without any prior
information. In particular, without specifying one of the two
lifetimes a priori.
Naturally, as we increase the number of photons

incorporated into our analysis, the posterior sharpens; see
Figures 2 and S1. Additional analyses, for simpler cases with
greater differences in lifetimes, are relegated to Figure S1.
Method Validation Using More Complex Simulated

and In Vivo Profiles. We benchmarked our method’s ability
to learn more complex μρ profiles initially using simulated
data, Figure 3, which recapitulates in vivo data sets. We then
analyzed in vivo data sets; Figure 4.
The simulated data was generated with two lifetime

components of 1.5 and 5 ns, pixel sizes of 0.2 μm, by scanning
42 × 42 pixels. By contrast, for the in vivo data set, we used
two fluorescent labels with affinity for mitochondria and
lysosomes, see Figure 4.

Below, we first discuss the results from the simulated data
where the ground truth is available. Next, results obtained from
the experimental data are discussed.
Figure 3a,b show two simulated cellular structures in an

effort to mimic the structures encountered in the subsequent
experimental data. As these are synthetic data, we have ground
truth profiles for μρ independently for each species.
Figure 3c depicts the generated FLIM data from mixtures of

lifetimes in Figure 3a,b, where lifetime species are associated
with a larger-scale cellular structure. Figure 3d,e depict the
inferred μρ profiles, where μρ is assessed down to a resolution
of 1/3 of the pixel size. Here we find that the average of
absolute relative differences of our assessment as compared to
ground truth lies below 4%. The maps and histograms of
relative differences and learned lifetimes are, respectively,
depicted in Figures S9−S11. To show that our method is
capable of learning the underlying ground truth profiles (as
seen in Figures 3a,b), we calculated the relative differences of
the ground truths and the learned profiles, given by Δμρ

μρmax( )ture

,

where μρture represents ground truth, returning an average of
the absolute relative differences of 1.8% and 3.7% for the
structures shown in red and green, respectively; see Figure
S9a,b.
As we cannot determine from experiment whether our

subpixel assessments of profiles match the ground truth when
collecting the highest resolution data available, when analyzing
experiments, we must reduce the resolution of the data set by
eliminating data obtained from selected pixels. We can then
ask to what degree removing pixels deteriorates our assessment
of the profile in those regions where no data is collected.
As a first step along these lines, we performed this procedure

on synthetic data, where we ignored photons from pixels with
even rows and columns. This resulted in a quarter of as many
pixels with twice the pixel dimensions. Figure 3f,g shows the
resulting μρ profiles that we learned under these more difficult
conditions. Despite using a quarter of the data and naively
anticipating a deterioration in our assessment of the profiles by
∼75%, our method learns μρ profiles with average absolute
relative differences of 2.6% and 7% with respect to the ground
truth for structures shown in red and green, respectively; see
Figure S9c,d. This was achieved by virtue of rigorously
propagating uncertainty from fundamental sources of noise
informed by the physics of the process, for example, by
including empty pulses in the model.
Next, we evaluated the performance of our method using in

vivo data sets with fluorophores that preferentially bind to
lysosomes and mitochondria within the same cell. To serve as a
control to test our ability to determine where individual
lifetime species were located, band-pass filters were used to
spectrally discriminate species.65 Figure 4a,b shows data from
these spectrally resolved structures acquired simultaneously (in
green and red channels, respectively, primarily identifying
lysosomes and mitochondria); with zoomed-in regions, we
analyze shown in Figure 4c,d. The μρ profiles in the zoomed-in
regions were determined using our method from later Methods
section, and the results are shown in Figure 4e,f. These noise-
free profiles are what we use as our ground truth.
In order to obtain a challenging data set with two

fluorophore species, we mixed the two ground truth data
sets (Figure 4a,b) into one in which the cellular structures are
highly overlapping; shown in yellow in Figure 4i. We then
applied our method to the same region of this data (Figure 4j)
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to distinguish the two structures and learn their lifetimes. We
compare the result, Figure 4k,l, with the ground truth; Figure
4e,f. In an effort to further validate our method, we used the μρ
profiles obtained from the spectrally resolved structures
(Figure 4e,f) as ground truth. The average absolute relative
differences of the learned μρ profiles from the mixture of the
two structures (Figure 4k,l) and the obtained ground truth
(Figure 4e,f) are 2.3% and 3.4%, respectively; maps of the
relative differences are depicted in Figure S12.
Similar to the previously synthetic data, we also ignored

photons from pixels with even columns and rows to generate
artificially lower resolution data. We then compared our results
(Figure 4m,n) to the ground truth (Figure 4e,f) and found
average absolute relative differences of 3.5% and 11.2%,
respectively.
In order to validate our method against the established

phasor technique, we compared the resulting lifetimes from
our method and those obtained from the phasor technique; see
Figures S13 and S14. The resulting lifetimes from these
methods have a difference of ∼0.4 ns, because the phasor
method was applied on the entire data set and finds an average
lifetime over the field of view. By contrast, our method was
used to process a region of the image and finds local lifetimes;
see Figure 4i,j. This implies that the lifetimes vary over space
for the in vivo data set. To further validate this observation, we
applied our method to different regions of the data and found
slightly different lifetimes for each region; see Figure S15.

■ METHODS
Here, we briefly describe the mathematical formulation of our
method for the analysis of FLIM data acquired using a confocal
setup. Further details of the mathematical framework, not
provided herein, are otherwise provided in the Supporting
Information.
We begin by considering M fluorophore lifetime species,

indexed m = 1, ..., M, with the respective photon emission rate
λm. This rate is the inverse of the excited state lifetime τm. To
each fluorophore species is associated a concentration, ρm(x,
y), as well as a unitless excitation probability earlier defined as
μm. A complete list of all notation is provided in Table S4.
Model Formulation. The average number of detected

fluorescence photons from the lth molecule of type m located
at X⃗lm = (xlm, ylm, zlm) during an excitation pulse is given by

μmPSF(ξ, X⃗lm), where ξ = vt is the center of the confocal region
at time t, v is the speed at which the excitation laser is scanned,
and PSF stands for the excitation−detection point spread
function.39,60,66,67 Therefore, the probability of this molecule
leading to no photon detection during a pulse is given by

ξ μ ξ μ ξ= ⃗ = − ⃗p X X( ) Poisson(0; PSF( , )) exp( PSF( , ))m l m l m l0 , m m m (1)

In the above equation, every pulse corresponds to a different
confocal center. This leads to a complicated formulation and
high computational complexity. To simplify the model and
decrease the computational time, we assume that the confocal
spot moves in discrete steps to new locations, that is, the pixel
centers labeled ξi for the ith pixel, and stays there for a period
given by (pixel size)/v. Under this assumption, the above
equation takes the following form

μ μ= ⃗ = − ⃗ξ ξp X XPoisson(0; PSF ( )) exp( PSF ( ))m l
i

m l m l0 , m
i

m
i

m (2)

where ξ is demoted to being a subscript, as the PSF is no
longer a continuous function of this variable. This approx-

imation leads to errors that propagate into our estimated μρ
profiles. The error entailed by this approximation is assessed by
generating synthetic data (under the correct, continuous
evolution, model) and analyzed using the approximate discrete
time-step model. Our simulations showed that this approx-
imation leads to an acceptable ∼2% increase in the average
absolute relative differences of the estimated profiles and the
ground truth; see Figures S16 and S17. This percentage was
obtained by using parameter values for pixel size, PSF,
lifetimes, and a laser interpulse time derived from experiment,
shown in Figure 4.
Employing eq 2, the probability of no photon detection from

molecules of type m in the ith confocal region is given by the
product of the probability of every individual molecule giving
rise to no detected photon
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To generalize the above expression to the continuous spatial
case, we replace the sum with an integral assuming a
continuous distribution of molecules

∫∑ ρ⃗ = ⃗ ⃗ ⃗ξ ξ
−∞

+∞
X X X XPSF ( ) PSF ( ) ( ) d
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l m

m

i
m
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where

∑ρ δ δ δ⃗ = − − −X x x y y z z( ) ( ) ( ) ( )m
l

l l l
m

m m m
(5)

and hence
Ä

Ç
ÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑ∫μ ρ= − ⃗ ⃗ ⃗ξ

−∞

+∞
P X X Xexp PSF ( ) ( ) dm

i
m0 m i

(6)

Associated to each pulse are now three possibilities: an
empty pulse with no photons, a pulse resulting in photons
coming from one species, and a pulse resulting in photons
from multiple species. Each of these is designated with
probabilities π0

i , πm
i , and π*

i , respectively, where

∏π =
=

Pi

m

M

m
i

0
1

0
(7)

∏π = −
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P P(1 )m
i

m
i

q m
q

i
0 0

(8)

∑π π π= + + *
=

1 i

m

M

m
i i

0
1 (9)

We now make a few assumptions to help simplify our
problem: (1) We assume stationarity in time for all physical
properties. (2) μρ is a smooth and continuous function with
respect to location (X⃗). (3) The detector dead time is often on
the order of multiple pulses.68,69 As such, after a photon has
been detected typically no photon can then be detected for
multiple subsequent pulses. (4) Most importantly, as a result of
low excitation rates, there typically is at most one excited
molecule during a single excitation pulse. Thus, we can
immediately simplify the second and third terms of eq 9 as we
discuss below.
By assumptions 3 and 4, we immediately interpret πm

i as the
probability of a single photon emitted from the species m and
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furthermore assume π*
i (the probability of exciting more than

one species in a pulse) is zero. As a result, eq 9 simplifies to

∑π π+ ≃
=

1i

m

M

m
i

0
1 (10)

This approximation is further validated by the observation that,
in experiments, on average one in ∼100 pulses give rise to a
photon.
By virtue of using empty pulses in the above equation, our

method learns absolute μρ for each species as opposed to
learning ratios of local μρ values, as was achieved using
previous methods.8,34,35 The basic intuition is as follows: when
we remove empty pulses from eq 10, the sum of probabilities is
no longer normalized to one. As such, we can at best compare
the relative intensity of different local regions, allowing us to
determine ratios of local μρ values. By contrast, by accounting
for empty pulses, we are able to deduce absolute values at
every local region.
Now that we have related pulse excitation probabilities to

μρ, we describe the experimental observable. The first
observation from a pulse is whether a pulse is empty or not.
This is captured using a binary parameter Wk

i , reminiscent of
flipping a coin. For this reason, the outcome of observing or
not observing a photon is drawn from a Bernoulli distribution

π∼ −W Bernoulli(1 )k
i i

0 (11)

The above sentence should read as follows: “The probability of
observing or not observing a photon in the kth pulse from the
ith pixel, Wk

i , is a random variable drawn from a Bernoulli
distribution parametrized by probability 1 − π0

i ”.
Next, we introduce the photon arrival time from the kth

pulse at the ith pixel, Δtki , of a detected photon. In order to
discuss this quantity, we must model from what chemical
species this photon originates. As we have many discrete
options, we use a Categorical distribution with M categories
(i.e., total number of species) and associated probabilities, for
each category, of π1:M

i for the ith pixel

π π∼s Categorical ( , ..., )k
i

M
i

M
i

1: 1 (12)

Here sk
i is the species label of photons that assigns an emitted

photon from the kth pulse in the ith pixel to one of the species,
sk
i ∈ {1, ..., M}. We call sk

i the indicator parameter also termed a
membership parameter in the literature.70

We are now in a position to construct the likelihood. The
likelihood is the probability of the observations (data), in this
case, pulses being empty or nonempty (Wk

i ) and photon arrival
times (Δtki ), given the model parameters that we care to learn.
These parameters are the lifetimes τm, the indicator parameters
sk
i , μρ, and νm which is the average of the GP prior for species
m (see Supporting Information, Note 2.1), collectively shown
by θ

∏ ∏θ θ θΔ | = | Δ |P W t P W P t( , ) ( ) ( )
k i

k
i

k
i

(13)

The overbars reflect shorthand notation for the set of Wk
i and

Δtki across all the pixels and pulses. Since all pulses and photon
arrival times are independent, the total likelihood is simply the
product of the likelihoods of every individual pulse, P(Wk

i |θ),
and photon arrival time, P(Δtki |θ). The likelihood of a pulse
being empty or not, P(Wk

i |θ), is given by eq 11.

Next, we motivate an explicit expression for P(Δtki |θ). In
order to derive this expression, we immediately generalize to
the case where an excited molecule may emit a photon n pulses
after its excitation (including, trivially, 0 where the molecule
emits following the pulse that excited it); see Figure S20. The
arrival time of such photon recorded by a detector is a function
of the time that the molecule spends in the excited state as well
as the shape of the IRF (approximated as a Gaussian, see
Figure S18 and Supporting Information, Note 1.3). The IRF
itself incorporates both of these effects: (1) the finiteness of
the excitation pulse and (2) the time required by the detector
to record the photon upon arrival.
By accounting for (1) the shape of the IRF, (2) the

fluorophore lifetime distribution, and (3) resuming over all
possible pulses that could have induced the excitation, that is,
all nT for all n before the immediate previous pulse where T is
the interpulse time, we arrive at
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by convolving the appropriate distributions; see Supporting
Information, Note 1.1. Here λm, N, and erfc(.) are, in turn, the
inverse lifetime of the mth fluorophore species, maximum
number prior pulses, and the complementary error function.

Model Inference. In the previous section we defined our
likelihood. Within the Bayesian paradigm our goal is to
construct the joint probability over all unknowns that we wish
to learn, namely, μρ, νm, and τm for each species, and sk

i , given
the data. This object is called a posterior

θ| ΔP W t( , ) (15)

where θ collects all unknowns. To construct the posterior, we
must first define priors over all unknowns. In particular, within
a Bayesian nonparametric paradigm, as we do not know the
shape of the μρ profiles, we will use a GP prior.53−57

Furthermore, we use the Categorical distribution (eq 12) as
prior over the indicator parameters since these parameters can
take a value from a finite and discrete set of numbers. For the
lifetimes and other associated parameters, we typically opt for
conditionally conjugate priors, for the sake of computational
efficiency, discussed in further detail in Supporting Informa-
tion, Note 2.1.
Now we turn to the GP prior on the μρ profiles. These

profiles are comprised of a set of spatially correlated random
variables (values of μρ at each point in space). As a prior
assumption, we can assume that these correlations decay in
space and depend inversely on the spatial separation between
them.53,71 The μρ profiles are thus drawn as follows

μρ ν∼ KGP( , )m m (16)

where νm and K are the GP prior mean and the covariance
matrix; see Supporting Information, Note 2. The means of GP
priors, νm, are often set to zero. However, since the values
associated with μρ profiles are larger than zero, we impose a
hyper-prior on νm and learn these parameters as well,
Supporting Information, Note 2.
With the posterior at hand, we are in a position to draw

reasonable values for our parameters of interest from the
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posterior. As the posterior does not assume an analytic form
and cannot be directly sampled from, we invoke a Markov
chain Monte Carlo (MCMC) procedure.39,48,60,72−75 In
particular, we opt for the following Gibbs sampling60,76

strategy sketched here and discussed further in the Supporting
Information, Note 2.2.
As the first step, we initiate the parameter chains to random

values taken from the corresponding priors. Next, we iteratively
draw new samples from the posterior either directly or by using
the Metropolis−Hastings (MH) procedure.72,73 At every
iteration, we sweep the parameters that we wish to learn in
the following order: (1) the set of μρ profiles are sampled; (2)
the set of GP prior means, νm, are sampled; (3) the set of
indicator parameters, sk

i , are sampled; (4) the set of lifetimes,
τm, are sampled. By the end, the resulting parameter sample
chains are used for further numerical analyses.
Experimental Data Collection. All data were acquired on

an ISS-Alba5 confocal microscope. Excitation was provided by
a white light laser (NKT SuperK EXTREME with a repetition
of 78093605 Hz) equipped with acousto-optic tunable filters
(SuperK SELECT) for selecting an excitation wavelength of
490 nm. Emission was collected by an avalanche photodiode
(Excelitas Technologies) and an ISS A320 FastFLIM unit for
lifetime determination.
For the in vitro data set in Figure 2, Fluorescein and

Coumarin6 were dissolved in ethanol, both at a concentration
of 12 μM. A mixture of the two was prepared in a 1:1 ratio,
corresponding to a final concentration of 6 μM for each
fluorophore. Emission was collected using a band-pass filter
535/50. For the in vivo data sets (HeLa cells; Figure 4), the
cells were seeded in a glass-bottom 8-well plate (Ibidi GmbH)
previously coated with 2 μg/mL Fibronectin in Dulbecco’s
Phosphate Buffer Solution (DPBS) without Ca, Mg, and
Phenol Red (GenClone, Genesee). Cells were stained with
1:1000 LysoView 488 (Biotium Inc.) and 100 nM TMRM
(Invitrogen) for 20 min, washed twice with DPBS, and
subsequently imaged. Emission of the individual samples
(LysoView 488 and TMRM) was collected using a band-pass
filter (520/35). Emission of the individual sample with TMRM
was collected using a band-pass filter at 605/55. The total
acquisition time, pixel dwell time, and pixel size were ∼21 s, 16
μs, and 0.196 μm, respectively.
Lifetime measurements using the phasor approach8 were

performed by visually inspecting the phasor distributions of the
stained samples, identifying the presence of components and
projecting them onto the universal circle; see Figure S13.

■ DISCUSSION
FLIM has become a universal tool in probing multiple cellular
processes,1,2 including metabolic changes indicative of cancer
metastasis.77,78 A quantitative assessment of FLIM data
requires high resolution lifetime maps typically associated
with long data collection, which in turn induces sample
phototoxic damage.
Our FLIM framework provides a means to deconvolve

lifetime maps from direct photon arrival analysis with subpixel
spatial resolutions with limited photon numbers. We do so by
leveraging the information provided by each photon as well as
empty pulses, one pulse window at a time in order to address
challenges 2−5 that we listed at the beginning of this Article.
These included, briefly summarized, reporting full error bars,
providing a method robust over a broad range of lifetimes,
resolving spatial features of the lifetimes maps below the pixel

size, and taking advantage of all data directly with no
preprocessing.
The conceptual progress required in order to address all five

challenges simultaneously (to which we would add the task of
learning the number of species) would necessarily involve a
doubly nonparametric formulation. That is, we would need to
be nonparametric in terms of the number of species and in
terms of the lifetime map profiles. While verifying the
consistency of single nonparametric processes is now
routine,49,59 the mathematics required to assess the consistency
of doubly nonparametric processes satisfactorily deserve future
attention.
We benchmarked our method on three different types of

data sets: (1) a wide range of synthetic data; (2) in vitro data
of a mixture of two fluorophore species with uniform
concentrations; (3) in vivo data with highly overlapping
inhomogeneous concentration profiles.
Using synthetic data, we assessed the performance of our

method under various levels of difficulty including variable
concentration profiles, different pixel sizes, photon counts and
increasingly small changes between lifetimes down to
subnanosecond differences. While the in vitro data set may
appear simple, we challenged our method by probing a case
involving a mixture of two species with a small difference in
lifetimes. The in vivo data, in turn, was acquired by introducing
two fluorophore species into a cell with high affinity for
lysosomes and mitochondria, respectively. Here, we tested our
ability to resolve individual cellular structures when observing
photon arrivals from two species at once.
While the BNP framework comes with multiple advantages

including high lifetime resolution over a wide range, subpixel
spatial resolution, it also comes with two caveats: (1)
interpretational issues arising from fundamental model
indeterminacy and (2) computational cost. For example, by
virtue of the nature of the data itself, the mathematics cannot
resolve whether two exponential components coincide with
different chemical entities or biexponential decays of a single
chemical entity. Strongly correlated spatial distributions of
these species may strongly suggest biexponential decay but falls
short of a firm proof that these are not different chemical
entities. On the computational front, our method scales
linearly with the number of species, photon counts per pixel,
and number of pixels. As such, for the typical values that we
selected, analyzing homogeneous profiles presented in Figure 2
took ∼4 h on an AMD Ryzen 3.8 GHz 12-core processor. On
the other hand, for more difficult problems with inhomoge-
neous profiles over large regions, such as those presented in
Figure 3, it took ∼48 CPU hours.
The data used in this paper were collected using a confocal

setup with an approximately Gaussian PSF. However, the
model presented in the Methods section is not restricted to
any specific PSF model and is capable of analyzing data
acquired with an arbitrary PSF shape. The model can also be
modified to work with any shape of IRF by adapting eq 14.
In addition, we can envision extending the method to

incorporate axial spatial information and learning inhomoge-
neous μρ along this axis by collecting data across multiple axial
planes. Based on the intuition built from Figures S5−S7, we
anticipate that we could further extend our method to
accommodate a mixture of multiple sub-IRF lifetimes given
precise IRF calibration and adequate photon counts with
arrival times recorded in fine resolutions.
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