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Abstract

Purpose of Review—Aberrant amygdala activity is implicated in the neurobiology of social 

anxiety disorder (SAD) and is, therefore, a treatment target. However, the extent to which 

amygdala predicts clinical improvement or is impacted by treatment has not been critically 

examined. This review highlights recent neuroimaging findings from clinical trials and research 

that test links between amygdala and mechanisms of action.

Recent Findings—Neuropredictor studies largely comprised psychotherapy where 

improvement was foretold by amygdala activity and regions beyond amygdala such as frontal 

structures (e.g., anterior cingulate cortex, medial prefrontal cortex) and areas involved in visual 

processes (e.g., occipital regions, superior temporal gyrus). Pre-treatment functional connectivity 

between amygdala and frontal areas was also shown to predict improvement signifying circuits 

that support emotion processing and regulation interact with treatment. Pre-to-post studies 

revealed decreases in amygdala response and altered functional connectivity in amygdala 

pathways regardless of treatment modality. In analogue studies of fear exposure, greater reduction 

in anxiety was predicted by less amygdala response to a speech challenge and amygdala activity 

decreased following exposures. Yet, studies have also failed to detect amygdala effects reporting 

instead treatment-related changes in regions and functional systems that support sensory, emotion, 

and regulation processes. An array of regions in the corticolimbic subcircuits and extrastriate 

cortex appear to be viable sites of action.

Summary—The amygdala and amygdala pathways predict treatment outcome and are altered 

following treatment. However, further study is needed to establish the role of the amygdala and 

other candidate regions and brain circuits as sites of action.
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Introduction

Social anxiety disorder (SAD) is a disabling illness [1, 2] characterized by excessive fear 

and avoidance in a range of social situations that involve potential scrutiny by others [3]. 

Once a largely neglected disorder by the medical community [4], it is now recognized as one 

of the most common mental health disorders [5, 6] and a public health problem across the 

world [7]. Efforts to elucidate the brain pathophysiology of SAD have largely focused on 

the amygdala (AMYG), a key structure in the “fear circuit” that directs defense mechanisms 

in response to threat [8–10]. Among functions, the AMYG mediates fear responses [9], 

rapidly detects motivationally relevant stimuli such as emotional faces, plays an important 

role in the selection and processing of threat-relevant cues and other operations critical 

for emotional processing [11, 12], and is involved in social cognition [13]. In light of its 

relevance to anxiety symptoms, the AMYG is a logical region of investigation. Functional 

magnetic resonance imaging (fMRI) studies consistently show the AMYG is a common 

locus of dysfunction in SAD; as a marker of the disease state, it is reasonable to expect 

that the AMYG is a target of treatment. However, the extent in which the amygdala predicts 

clinical improvement or is remediated by pharmacotherapy or psychotherapy has not been 

critically examined.

While first-line treatments are efficacious for many, response to treatment is unpredictably 

varied and patients who complete treatment frequently fail to achieve clinically meaningful 

improvement. As neuroimaging work suggests SAD is a “brain-based” disorder, delineating 

neural predictors and understanding mechanisms of change have the potential to optimize 

clinical outcome. Based on evidence for the role of the AMYG in the pathophysiology of 

SAD, treatment success may involve mechanisms that modulate AMYG reactivity and/or 

alter functional connectivity in circuits that intersect with the AMYG. Accordingly, in this 

review, we highlight recent studies of SAD that directly compare treatments that differ in 

mechanisms of action and discrete studies that link brain activity to theory for mechanisms 

of change. Due to gaps in the literature, we also review promising interventions that are 

not yet considered “gold standard.” These interventions are acceptance and commitment 

therapy (ACT) which, like cognitive behavioral therapy (CBT), involves fear exposures 

but emphasizes “acceptance” of negative thoughts and feelings instead of modifying them 

directly [14]; attention bias modification, a behavioral intervention that aims to reduce 

social anxiety by decreasing biased attention to threat-relevant information [15]; and the 

neuropeptide, oxytocin. Though at a preclinical stage, oxytocin is associated with prosocial 

behaviors [16], has anxiolytic properties [17], and modulates AMYG activity in healthy 

and clinical samples (see [18] for review). Increased understanding of AMYG activity as a 

predictor and marker of change has inferences for precision medicine.

Amygdala and Neurobiology of SAD

Accumulating data from fMRI studies point to a hyperactive fear circuit in SAD. For 

example, Stein and colleagues [19] were among the first to demonstrate greater AMYG 

activation in SAD, relative to healthy controls (HC), to threat faces along with exaggerated 

activation in structures involved in emotion processing—bilateral medial prefrontal cortex 

(PFC), inferior frontal gyrus, superior frontal gyrus, parahippocampal gyrus, and uncus [20]. 
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Since then, studies have largely replicated this finding (for reviews, see [21–23]) while also 

showing greater AMYG activation in SAD, relative to HC, to a variety of aversive cues such 

as loud angry voices [24], threat-relevant words [25, 26], and symptom provocation (e.g., 

speech anticipation) [27, 28]. In addition to exaggerated AMYG response, individuals with 

SAD display heightened activation in other subcortical regions (e.g., insula, hippocampus) 

and atypical (hyper- or hypo-) activity in the (pre)frontal areas (e.g., medial PFC, anterior 

cingulate cortex, orbitofrontal cortex) and sensory cortex (e.g., occipital regions, fusiform 

gyrus) [24, 29] (for reviews, see [21–23]). Regarding faces, a potent socioemotional cue, a 

meta-analytic study reported higher AMYG activity (among other regions) compared to HC 

to general facial expressions [30]. Thus, while a hyperactive AMYG response to threatening 

stimuli or situations relevant to SAD is widely documented, this response may extend to 

salient but not overtly threatening cues.

While the AMYG is usually examined as a unitary structure in SAD, it can be divided 

into basolateral, centromedial, and superficial regions based on connectivity patterns and 

functional specialization [31, 32]. Basolateral AMYG is connected to the visual cortex 

and thalamus and, therefore, mediates sensory input [31]; it is also involved in emotional 

learning [33] (e.g., positively linked with activity in the hippocampus [32]). By contrast, 

the centromedial AMYG is connected to diencephalic structures and responds only to 

stimuli that are aversive or signal threat [31]. Finally, the superficial nuclei of the AMYG 

processes olfactory information [34] and is associated with positive activity in the limbic 

lobe [32]. Thus, subregions serve complementary functions. In one of the few studies that 

reported on AMYG subregions, activation in the central portion was found to be greater 

to threat-relevant scenes in SAD compared to HC [35] signifying SAD is characterized by 

heighted activity to threat-relevant cues in a subsystem that engages preparatory responses 

[35]. There was also evidence of concurrent hyperengagement of the lateral AMYG in SAD 

[35]. Findings suggest disturbances in subregions that integrate fear-relevant information for 

optimal response to threat may contribute to SAD.

The AMYG has extensive connections in a distributed cortical–subcortical network [33, 36], 

therefore, aberrations in AMYG excitability in SAD may have “downstream” consequences 

on the engagement of other brain regions that are highly connected to the AMYG. 

For example, neural pathways relevant to emotion processing and emotion regulation 

include direct AMYG connections with ventral portions of the cortex, specifically the 

ventral anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC), as well as indirect 

connections from dorsal and lateral portions of the prefrontal cortex [9, 33, 36]. Recent 

task-based and/or resting state studies show aberrant functional connectivity in SAD, 

relative to HC, between the AMYG and (1) (pre)frontal (e.g., ACC, OFC, lateral prefrontal 

cortices; [37–45]); (2) insula and subcortical/cingulate areas (e.g., parahippocampal gyrus, 

cingulate gyrus; [40, 46]); (3) temporal regions (middle, inferior, superior temporal gyrus; 

[40, 46, 47]); (4) visual regions (e.g., occipital cortex, fusiform gyrus; [40, 46–48]); and 

(5) cerebellum [40]. These findings expand on an early study that reported disturbances 

between the AMYG and cortical structures involved in sensory and emotion processing 

(e.g., medial PFC, inferior parietal lobule, superior temporal sulcus) to emotional faces 

in SAD, compared to HC [49]. Although the pattern of functional (dys)connectivity has 

been inconsistent and sometimes similar between SAD and controls (e.g., [50]), potentially 
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due to methodological differences across studies, overall findings suggest altered AMYG-

related functional connectivity in SAD is relatively diffuse. In addition, AMYG functional 

connectivity differences are frequently associated with AMYG-(pre)frontal disturbances that 

may signal difficulty in regulating emotional states.

Treatment

SAD begins early in life and its course tends to be protracted unless appropriately treated 

[7]. Well-studied commonly accepted first-line treatments for SAD are individual CBT 

(Hedges’ g = 0.56), group CBT (Hedges’ g = 0.29) [51], and selective serotonin reuptake 

inhibitors (SSRIs) (Hedges’ g = 0.44) [52]. Unfortunately, many patients do not attain 

clinically meaningful change after completing these treatments as indicated by the moderate 

effect sizes of these interventions. Identifying neural predictors of treatment outcome and 

neurobiological processes underlying treatment has the potential to match the right patient 

with the right treatment and inform novel treatments for those with an inadequate response.

CBT and SSRIs are thought to exert their therapeutic effects by targeting top-down 

and bottom-up brain regions, respectively. CBT emphasizes cognitive intervention to 

aid in the identification of negative thoughts associated with anxiety, which are 

subsequently challenged with the adoption of a rational, objective perspective (e.g., 

cognitive restructuring). Along with cognitive approaches, CBT encompasses exposure-

based techniques aimed at reducing anxiety via fear extinction and/or habituation [53]. 

Thus, CBT is proposed to primarily interact with (pre)frontal areas, as opposed to bottom-up 

emotion generating/processing regions, as techniques practiced by patients tap into higher-

order functions (e.g., inhibition, sustained attention, contingency learning) [54, 55]. In 

contrast, bottom-up limbic/paralimbic areas are considered primary targets for SSRIs. For 

example, the AMYG is densely innervated by fibers releasing 5-hydroxytryptamine (5-HT), 

and in healthy participants, 5-HT availability predicts AMYG reactivity [56]. Moreover, 

short-term administration of SSRIs (e.g., 7–10 days) appears to reduce AMYG responsivity 

to threat faces, among other regions (e.g., medial frontal gyrus), in healthy participants 

[57]. It remains to be established why SSRIs take several weeks to show their clinical 

effects despite evidence of early pharmacological manifestations. Mechanisms associated 

with placebo response are also unclear. For example, SAD patients who respond to either 

an SSRI or pill placebo exhibit comparable decreases in AMYG activity to emotional faces 

or symptom provocation [58–60] suggesting the AMYG is a common target for anxiolytic 

effects whether it be due to pharmacological or psychological factors [58–60].

As SAD is associated with both exaggerated AMYG reactivity and atypical AMYG-

(pre)frontal cortex connectivity, the neural signatures of successful treatment may be 

treatment independent, rather than treatment dependent. For instance, if effectual CBT 

“normalizes” frontal activity, increased top-down control may downregulate limbic response 

to threat thereby reducing AMYG reactivity even though this region is not considered to be 

a principal site of action. Conversely, for SSRIs, the attenuation of AMYG activity to threat 

may in turn reduce the frequency and/or intensity of negative thoughts that contribute to 

social fears. This is supported by reports that SSRIs themselves modulate top-down regions 

and alter negative cognitions [61–63]. Thus, in the case of either CBT or SSRIs, reduced 
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AMYG activity may be a marker of clinical improvement in SAD. Indeed, an early positron 

emission tomography (PET) study by Furmark and colleagues [64] revealed the AMYG 

was a common site of action in responders (n = 9) to either 9 weeks of group CBT or an 

SSRI. In this study, responders exhibited equivalent post-treatment reductions in regional 

cerebral blood flow in the AMYG, along with decreases in the hippocampus, and temporal 

cortex during a speech challenge [64]. While these data point to a modality-independent 

mechanism of change involving the AMYG, it will be important to replicate findings. To 

date, we are not aware of another neuroimaging study that directly contrasted CBT with 

SSRIs in SAD, a reflection of the relatively nascent stage of this area of study.

Neurofunctional Predictors of Clinical Improvement

Intriguingly, far more psychotherapy than pharmacotherapy studies report neuroimaging 

predictors of treatment response in SAD. Regarding AMYG, we and others have observed 

greater pre-treatment AMYG activity to threat cues predicted better response to treatment. 

Specifically, more AMYG reactivity to video clips depicting social threat [65] and 

threatening face distractors [66] foretold better CBT outcome. However, this pattern 

of activation is not consistent. For example, we also found that less baseline AMYG 

engagement to emotional faces (vs. face distractors) corresponded with more symptom 

improvement following CBT [67]. With regard to functional connectivity as a predictor, 

Månsson and colleagues [68] demonstrated improvement a year after completing internet-

delivered CBT (iCBT) was predicted by less pre-treatment AMYG-ACC coupling to threat 

(i.e., self-referential criticism). As a classifier, the investigators revealed AMYG activity 

together with ACC activity to threat significantly distinguished iCBT responders from non-

responders (e.g., area under the curve (AUC) = 0.89); therefore, both regions were necessary 

to predict which patient was likely to benefit from iCBT. In a departure from regions 

as predictors, a resting-state connectomic study showed favorable improvement following 

group CBT was foretold by greater baseline AMYG connectivity with a ventral cluster (i.e., 

subgenual ACC/caudate/putamen) and less AMYG coupling with the central sulcus and 

temporal/occipital cortex [69•]. Importantly, brain-based activity was superior to baseline 

symptom severity in predicting which patient would improve [69•], which is consistent with 

prior CBT studies [66, 70–72]. Finally, greater resting-state AMYG connectivity involving 

subgenual ACC has also been shown to portend better CBT outcome [73].

Taken together, findings indicate baseline variance in AMYG activity and AMYG pathways 

interacts with CBT. The extent to which predictors relate to cognitive and/or behavioral 

components of CBT is unclear, however, as the neural correlates of CBT outcome are 

evaluated after patients complete all CBT modules. That said, one fear extinction study 

provides support for AMYG reactivity as a predictor of response to fear exposure, a core 

component of CBT [53]. The therapeutic effect of exposure comprises extinction learning, 

a form of inhibitory learning associated with biochemical changes in AMYG, which plays 

a role in memory consolidation [74]. In the context of extinction learning, the neural 

correlates of AMYG as a predictor were examined by Ball and colleagues [75]. As an 

analogue of fear exposures in clinical settings, SAD patients completed four sequential 

public-speaking challenges. Results revealed greater reduction in social anxiety following 

the public-speaking challenges corresponded to less baseline AMYG activity during fear 
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extinction (i.e., exposure to neutral stimulus previously paired with a scream). These 

investigators also observed symptom improvement corresponded with a ventral system that 

contributes to fear extinction [74] as patients with less insula and periaqueductal gray 

activity, yet more ventromedial PFC engagement, during extinction learning benefitted from 

the analogue fear exposure session [75]. Although replication is warranted given the relative 

lack of similar research, this study represents an important step in determining why certain 

patients with SAD may respond to an active ingredient in CBT.

In addition to AMYG, data suggest other brain regions “set the stage” for treatment 

outcome, particularly regions within the (pre)frontal cortex. For example, dorsal ACC to 

threat portends improvement a year after iCBT (AUC = 0.91) [68], and we and others have 

found CBT response is predicted by more activity in ventral portions of the ACC or OFC 

to threat stimuli [65, 66, 76, 77]. There are also reports that improvement corresponds with 

more activity in the insula and an array of cortical regions (e.g., superior frontal gyrus, 

supramarginal gyrus, precentral gyrus) to threat distractors [77] as well as less activity in 

the (pre)frontal regions (e.g., rostral ACC, dorsolateral prefrontal cortex) during explicit 

regulation of threat [66, 78]. Moreover, clinical improvement is predicted by enhanced 

activation to threat cues in areas involved in perceptual processing (e.g., occipital regions, 

superior temporal gyrus) [65, 70, 76] and parietal regions [65].

Evidence of treatment-dependent brain-based predictors is unclear as there has been little 

research in this area. However, in a study that examined two psychotherapy interventions 

for SAD, greater insula response to social threat foretold improvement after completing 

a trial of ACT but not CBT [65] suggesting baseline insula activity uniquely interacted 

with ACT. Illuminating potential candidate predictors, regions not strongly implicated 

in the neurobiology of SAD may nonetheless portend treatment response. For example, 

improvement after completing CBT corresponds with more baseline activation in the 

cerebellum to fearful faces [76] and greater resting-state functional connectivity between 

the cerebellum and dorsolateral prefrontal cortex and angular gyrus foretells improvement 

following group CBT [79]. Regarding pharmacotherapy, there seems to be only one study 

of SAD concerning neural predictors of response to medication and it examined the neural 

correlates of tiagabine, a selective gamma-aminobutyric acid reuptake inhibitor, with PET 

during resting state. Results revealed greater reduction in symptom severity after 6 weeks 

of treatment corresponded with lower pre-treatment activity (i.e., metabolic rate of glucose 

uptake) in the subcallosal cortex [80].

In summary, brain response and functional connectivity interact with treatment, although 

differences in subdivisions of structures and patterns of activation suggest that neuroimaging 

predictors are task dependent. Consequently, depending on the circuit probed by a paradigm 

(e.g., emotion processing, cognitive control, threat regulation, fear extinction), stimuli 

used (e.g., threat faces vs. emotional faces), and methodological factors (e.g., region-of-

interest vs. whole-brain approach), neural predictors may or may not involve AMYG 

or AMYG pathways. Even so, the direction of activation has important implications for 

precision medicine. For example, in cases where more improvement is predicted by greater 

baseline activity in (pre)frontal structures during cognitive control, patients with intact or 

compensatory top-down control are expected to benefit more from treatment. Conversely, 
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when clinical improvement is predicted by greater baseline dysfunction during cognitive 

control, patients with more pre-treatment deficiency in top-down function are expected to 

benefit more from treatment. Although further study is necessary to disambiguate patterns 

of activation signifying a “play to strengths” or “play to weakness” model, results point to 

the use of neuroimaging as a promising predictor of treatment response for those with SAD. 

Importantly, accumulating data suggests neural activity may be more sensitive in predicting 

treatment outcome than non-imaging measures.

Neurofunctional Activity: Pre-to-Post Treatment

AMYG as a putative target of treatment is supported by discrete studies showing that 

reduced AMYG activation to threat stimuli or symptom provocation occurs after treatment 

with iCBT [81] or an SSRI [59, 82] along with pre-to-post changes in resting-state 

AMYG pathways after group CBT (e.g., reduced AMYG-ACC coupling [83]). Therefore, 

psychotherapy and pharmacotherapy appear to ameliorate exaggerated AMYG response or 

circuits that intersect with AMYG in SAD.

Highlighting mechanisms of fear exposure, a PET study examined the effects of sequential 

public speaking in SAD. Specifically, patients completed two back-to-back speech 

challenges followed by sequential exposure to faces [84]; findings revealed a decrease in 

AMYG activity after the second speech challenge (Δ1stSpeech-2ndSpeech) but no change in 

AMYG response to faces (Δ1stFaceTask-2ndFaceTask). Along with reduced AMYG activity, 

increased activation was observed in the dorsal ACC and cerebellum following repeated 

exposure to public speaking representing changes in self-focus during public speaking [84]. 

Taken together, neural changes were specific to a stress exposure and bottom-up processes 

appeared to account for anxiety reductions [84].

As to the anxiolytic mechanisms of pharmacotherapy, Frick and colleagues [59] examined 

the role serotonin synthesis plays in clinical improvement in light of animal and human 

data demonstrating SSRIs reduce serotonin synthesis [85–87]. In their study, SAD patients 

were randomly assigned to 6 weeks of an SSRI, 4 weeks of an NK1R antagonist, or 

placebo. All participants underwent a public-speaking task during PET and results showed 

reduced serotonin synthesis in the AMYG, regardless of condition, though the placebo 

group also exhibited an increase in synthesis in an AMYG subregion. Notably, greater 

decreases in symptom severity corresponded with greater reduction in serotonin synthesis 

rate suggesting improvement was associated with a decrease in serotonin turnover. Beyond 

AMYG, remediation of social fears was also linked with attenuated serotonin synthesis 

in the postcentral gyrus. Regions that interacted with the condition included the middle 

temporal gyrus in the SSRI group, ACC and superior parietal gyrus in the NK1R antagonist 

group, and middle frontal gyrus in the placebo group. Again, changes were in the direction 

of decreased serotonin synthesis [59]. Altogether, findings indicate that greater serotonergic 

tone in AMYG, sensory, and emotion processing regions may be a potential mechanism by 

which pharmacotherapy or placebo exerts its effects.

In contrast to standard psychotherapy and pharmacotherapy, several studies have also 

investigated the role of oxytocin (OXY), a neuropeptide produced in the hypothalamus, 
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as a therapeutic candidate for SAD due to its anxiolytic-like properties [88] and association 

with pro-social behaviors [16]. For example, in non-clinical samples, administration of 

intranasal OXYenhances trust behavior [89] and reduces stress response to a psychosocial 

stressor relative to placebo [90]. In SAD, intranasal OXY targets neural circuits implicated 

in emotion processing and emotion regulation as evinced by functional connectivity 

studies that demonstrate OXY remediates aberrant activity in AMYG pathways [91, 92]. 

Specifically, in a randomized double-blind placebo-controlled OXT challenge, Gorka and 

colleagues [92] showed OXY increased AMYG-middle cingulate/dorsal ACC coupling and 

AMYG-insula connectivity to threat faces in SAD such that connectivity patterns were 

comparable to HCs. Moreover, the SAD group who received OXY had greater AMYG-

frontal and AMYG-insula coupling to threat faces than controls assigned to the placebo 

condition [92]. Findings are in line with an earlier resting-state study that found attenuated 

AMYG-medial PFC/ACC connectivity in SAD was enhanced following OXYadministration 

[91]. Together, these results build on previous data that point to OXY as a possible 

therapeutic agent [16], though the clinical value of OXY remains to be established as the 

intervention does not appear to have benefits beyond exposure therapy for SAD [93].

In clinical settings, an SSRI is frequently combined with CBT as patients may benefit 

from additive or synergistic therapeutic effects [94]. For example, socially anxious patients 

randomly assigned to 9 weeks of an SSRI together with iCBT (SSRI+iCBT) had a better 

clinical outcome than those assigned to iCBT+pill placebo [16]. The combined treatment 

group also tended to exhibit a greater pre- to post-treatment reduction in AMYG reactivity to 

threat faces though the effect was only observed at a liberal statistical threshold (puncorrected 

< 0.05). Regardless of condition, treatment responders had more preto post-treatment 

reduction in AMYG reactivity to threat and greater increase in connectivity between 

nodes in the fear network (i.e., enhanced AMYG–insula functional connectivity) relative 

to non-responders. Results indicate neural signatures of effectual treatment represent a 

common pathway for SAD treatment [95•]. Further support comes from a study that 

compared 12 weeks of CBT against 12 weeks of ACT. Results showed clinical improvement 

was comparable between psychotherapies [96], AMYG activity during implicit emotion 

regulation (affect labeling vs. gender labeling) decreased after psychotherapies, and there 

was increased functional connectivity between the AMYG and visual cortex, parietal 

regions, and primary motor cortex across SAD patients following treatments. Also, greater 

decrease in symptom severity corresponded with more negative change (i.e., reduced 

positive/greater inverse connectivity) in coupling between AMYG and ventral PFC pre- 

to post-treatment. Findings suggest mechanisms of CBT and ACT converge on a shared 

pathway that supports emotion regulation capability [96].

Evidence AMYG response may track the effectiveness of treatment involves a study that 

contrasted 9 weeks of iCBT against 4 weeks (twice weekly) of internet-delivered attention 

bias modification (ABM). Significantly more SAD patients benefitted from iCBT than ABM 

and AMYG response to threat (i.e., self-referential criticism) decreased more after iCBT 

than ABM [97]. However, with regard to long-term post-treatment amygdala activity, the 

same group found that the diminished AMYG response immediately after CBT was not 

maintained, nor did it correspond to differences in clinical outcome (i.e., 7 responders; 

6 non-responders) [98]. Since gains with CBT are known to have enduring effects after 
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treatment is terminated [99], further study is needed to evaluate neural mechanisms that 

sustain improvement.

Collectively, findings verify the pivotal role AMYG plays in the disease state and as a target 

of treatment. Even so, some studies have failed to detect pre-to-post differences in AMYG 

response to threat [76, 100, 101] or alterations in AMYG-based functional connectivity 

[102] instead reporting treatment-related changes in regions and pathways implicated 

in emotion, emotion regulation, and sensory processes (e.g., insula, ACC, medial PFC, 

occipital gyrus, ACC-precuneus connectivity; [76, 100–102]). Broadly, these results suggest 

an array of regions beyond the AMYG may be viable treatment targets for those with 

SAD. In support, a recent meta-analysis of neuroimaging work comprising psychotherapy 

and pharmacotherapy in SAD did not find pre-to-post AMYG effects, possibly because the 

amygdala is too small to be significant when whole brain analysis is performed or that 

different treatments target different subregions of the AMYG and/or cortical activity patterns 

that modulate AMYG [103•].

In summary, few neuroimaging studies of SAD have directly compared treatments that differ 

in mechanisms of change. However, limited data suggests AMYG and its pathways may be 

common sites of action [64, 95•, 96] and a possible neural metric of effectual treatment [97]. 

Neuroimaging work focused on testing assumptions about elements of clinical improvement 

also verify AMYG as a putative target for interventions [59, 84, 91, 92]. Nevertheless, the 

neurobiology of SAD continues to evolve (e.g., [30]) and despite the relevance of AMYG in 

models of SAD and other illnesses associated with excessive fear, the AMYG may be one of 

multiple candidate treatment targets.

Conclusions and Future Directions

The AMYG is strongly implicated in the neurobiology of SAD and evidence AMYG and/or 

its functional pathways predict treatment outcome or change as a result of treatment further 

supports its putative role in SAD. However, data indicate neural predictors and sites of 

action go beyond AMYG and suggest regions in corticolimbic circuits and extrastriate 

cortex implicated in emotion, emotion regulation, and sensory functions may serve as 

predictors or treatment targets. Evidence of task-dependent effects—namely, improvement 

predicted by increased or decreased baseline activity—provides an opportunity to advance 

our understanding of factors that figure into successful treatment outcome and inform novel 

treatments. Reports of treatment-independent pre-to-post changes in neurofunctional activity 

and/or connectivity suggest effectual interventions converge on a final pathway.

While findings are promising, it is important to emphasize that considerable work remains 

due to substantive gaps in the literature and the tendency of studies to have small sample 

sizes. Also, more research is needed to explore time-dependency effects (e.g., SAD-related 

habituation in AMYG response to emotional faces [104]) and amygdala subregions as 

possible targets [103•]. Evidence of disruption in networks involved in social cognition, self-

referential processing, and executive control in this population [38, 105] suggests it may be 

fruitful to shift from an AMYG-centric framework to a large-scale network model of SAD 

to delineate predictors and mechanisms of change. Moreover, it is important to consider 
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methods that would strengthen the reproducibility of findings. For example, reporting effect 

sizes of pre-to-post changes in brain response, sensitivity/specificity of predictors, and more 

standardization with regard to what constitutes a “successful” treatment response as various 

benchmarks have been used (e.g., 50% or more decrease in social anxiety symptoms; score 

based on a clinician-administered measure; standard deviation cut point; [64, 78, 81]). 

Challenges to generalization and replication need to be carefully considered if findings are 

to catalyze novel interventions and inform treatment planning in clinical settings.
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