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Abstract

Although Cryo-electron microscopy (cryo-EM) has been successfully used to derive atomic 

structures for many proteins, it is still challenging to derive atomic structure when the resolution 

of cryo-EM density maps is in the medium range, e.g., 5-10 Å. Studies have attempted to utilize 

machine learning methods, especially deep neural networks to build predictive models for the 

detection of protein secondary structures from cryo-EM images, which ultimately helps to derive 

the atomic structure of proteins. However, the large variation in data quality makes it challenging 

to train a deep neural network with high prediction accuracy. Curriculum learning has been 

shown as an effective learning paradigm in machine learning. In this paper, we present a study 

using curriculum learning as a more effective way to utilize cryo-EM density maps with varying 

quality. We investigated three distinct training curricula that differ in whether/how images used for 

training in past are reused while the network was continually trained using new images. A total of 

1,382 3-dimensional cryo-EM images were extracted from density maps of Electron Microscopy 

Data Bank in our study. Our results indicate learning with curriculum significantly improves the 

performance of the final trained network when the forgetting problem is properly addressed.
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1. INTRODUCTION

A cryo-electron microscopy (cryo-EM) density map is a 3-dimenisonal (3D) molecular 

image. For density maps of a medium resolution, such as 5-10 Å, it is hard to distinguish 

details of molecular features. However, it has been demonstrated that it is possible to 

detect the location of secondary structures of proteins from such 3D images through pattern 

recognition [1-8]. For example, a helix with longer than three turns often appears as a 

cylinder, and a β-sheet between 3 and 7 strands often appear as a twisted layer of density. 

The location of protein secondary structures in the cryo-EM density map provides important 

constraints for deriving the atomic structure. When secondary structure location in the 
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density map is combined with the protein sequence, it is possible to derive the overall 

topology of the secondary structure elements and subsequently, the backbone of the protein 

[9-11].

Recent effort using machine learning, especially deep learning approaches in detection 

of protein secondary structures has seen both potential and limitations [5, 12, 13]. Li et 

al. proposed the first Convolutional Neural Network (CNN) with inception and residual 

learning [12] that was predominately tested in simulated 3D density images.

Subramaniya et al. used a U-net architecture with an additional phase of processing in 

training of cryo-EM density maps [14]. In spite of the potential of deep learning approaches 

in the secondary structure detection problem, the complexity of the image data limits the 

success of training. Yet another bottleneck is the varying quality of density maps at medium 

resolutions [15]. As such, an effective learning method is needed to fully utilize the density 

data.

As of June 10, 2020, the Electron Microscopy Data Bank (EMDB) archives 891 entries of 

medium-resolution cryo-EM density maps that have corresponding atomic models. Most 

of the entries contain multiple unique chains, as cryo-EM is particularly effective in 

imaging large molecular complexes. Although this resource makes it possible to conduct 

deep learning studies, the complexity of the data makes it challenging to learn accurately. 

First, secondary structures – and in particular, β-sheets – do not have uniform patterns, 

since it is often affected by various local factors. Due to experimental and/or computational 

conditions, certain portions of a secondary structure may be missing, mis-aligned, or hard 

to be distinguished from surrounding structures. For example, some helix regions (arrows 

in Figure 1 (A)) appear as approximate cylinders, but other helix regions (purple arrows 

in Figure 1 (E, G)) do not follow the cylindrical shape that is expected in the atomic 

structure of a helix. In order to quantify the quality of the density maps, we previously 

developed a quick measure for the similarity between 3D images and their corresponding 

atomic structures at helix regions [16]. Using this measure, we observed various levels of 

disagreement (large variation) in the quality of the images. Presumably, it would be more 

difficult to train a neural network that is generalizable for the detection of protein secondary 

structures by using low-quality images as training examples rather than high-quality images.

Given the large heterogeneity in the data, we explore curriculum learning in the training of 

deep neural network, specially a variant of U-net [17] for the detection of protein secondary 

structures from the medium resolution Cryo-EM images. Curriculum learning is a learning 

paradigm that has long been used in human learning of complicated tasks. It is analogous to 

when a teacher uses a curriculum beginning with an easy example followed by increases in 

difficulty of the task at hand to teach students a complicated procedure [18]. Such a training 

strategy has recently been employed to train deep neural networks with varying architectures 

for various prediction tasks, such as medical image segmentation [19], speech recognition 

[20] and short computer program evaluation [21].

Besides the most straightforward strategy where the network was trained continuously with 

examples of increasing difficulty, we developed and studied two other strategies, aiming 
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to address the forgetting problem in the continual learning process. One is similar to the 

strategy used in [22], in which the training set starts with only easy cases, then is expanded 

to include all examples in two separate steps, first moderately difficult cases followed by 

difficult cases. The second is implemented using gradient Episodic Memory (GEM) method 

recently proposed for continual learning [23]. In this strategy, to avoid forgetfulness we 

make sure each update does not harm the performance of the learning algorithm on already 

learned examples while learning from those with increased difficulty. We report, in this 

paper, the design of the training curricula and results obtained using a dataset consisting of 

a total 1,382 cryo-EM density images to evaluate all the training strategies. Our results show 

that comparing to the baseline where the network was trained in the standard way (i.e., with 

no curriculum being involved), networks trained with curriculum have better performance 

when the issue of forgetfulness is effectively addressed. Our study is the first successful 

attempt to utilize a fast estimation of cryo-EM image quality for enhanced protein secondary 

structure detection via curriculum learning.

2. METHOD

2.1 Data

The data set contains 1382 pairs of data, each consisting of an atomic model and its 

corresponding regions of cryo-EM density map at 5-10 Å resolution. Atomic models were 

downloaded from Protein Data Bank (PDB), and cryo-EM density maps were downloaded 

from EMDB. Since most entries of cryo-EM density maps contain multiple copies of the 

same protein chains, we eliminated repetitive chains in the data set and isolated cryo-EM 

density map regions corresponding to unique chains. The quality of cryo-EM images was 

evaluated using our previously developed program based on the similarity between the 

image and the atomic structure at a helix region [24]. The 1382 images were divided 

into three bins, using the quality score – high-quality bin, medium-high-quality bin, and 

low-quality bin (Table 1). Since each chain contains multiple helices, the quality score of 

each chain is an average score of all helices of the chain weighted by the length of each 

helix. A chain is assigned to a specific quality bin based on the similarity score of the chain 

and the average difference between the precision and recall of all helices in the chain.

2.2 Training curricula

We divided the training process into three consecutive phases, Phase 1 to Phase 3, in 

order to send data of different quality using a curriculum. At each training stage, we 

trained the network until there was no improvement in its performance (as evaluated by 

the validation loss) calculated on a separate dataset that is independent from the training 

set. We investigated three learning curricula that differs in whether/how examples in the 

early training phase are used in the later phase. At all phases, we trained the network using 

stochastic gradient descent with mini-batch.

NoRevisit: Curriculum without revisit (CL-NoRevisit)—The first studied curriculum 

is the most basic, in which the network was trained by simply showing examples from 

the three bins consecutively (Figure 2 (A)). More precisely, the network was trained using 

examples from high-quality bin at Phase1, followed by medium-high-quality bin at Phase2 
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and lastly low-quality bin at Phase3. It is obvious that with this curriculum examples used 

at the early training phase were not revisited at subsequent phases. Though this curriculum 

lends itself to fast learning, since no revisiting previous examples while learning from new 

cases, the network may experience forgetfulness (i.e., forgetting what has been learned from 

early cases), a phenomenon commonly appearing and addressed in transfer learning [25] as 

well as continual learning [23].

SimRevisit: Curriculum with simple revisit (CL-Revisit)—To combat the likely 

forgetting in the network trained by above curriculum, i.e., NoRevisit, we developed a 

curriculum similar to the one used in [22]. Under this curriculum (Figure 2(A)), the network 

was still trained with only examples from high quality bin at Phase1 as in NoRevisit. 

However, at Phase2 examples from both high-quality bin and medium-high-quality bin were 

used and examples from all three bins were used at the subsequent Phase3. Note that here all 

examples included in the training set at each training phase were equality weighted, i.e., with 

equal chance to be picked in a mini-batch for training. In other words, we did not treat the 

examples differently according to whether they were newly added or have been used already 

at previous phases.

GEMRevisit: Curriculum with revisit via gradient of episodic memory (CL-
GEM-Revisit)—To better address the forgetting problem and potentially improve the 

performance of the trained network further, we implemented a third curriculum by 

leveraging a technique recently proposed for avoiding forgetting in the setting of continual 

learning. This technique is referred as gradient of episodic memory (GEM) first proposed 

by Lopez-Paz et al. [23]. The main idea of this method is to maintain a subset of previously 

learned examples as a “memory” while training a learning agent (in our case a neural 

network) on new examples. During each update in the optimization using stochastic gradient 

descent (Figure 2 (B)), the gradient, denoted by g, was first computed over the chosen 

mini-batch of new examples. Then, the closest projection of g, represented by g, was 

obtained by solving a quadratic problem (note the uniqueness of the solution is obtained by 

requiring that g has an acute angle with the gradient associated with the examples in the 

memory). Please refer to the original paper for the formulation of the quadratic problem and 

the algorithm to solve it. Subsequently, g was used to update the weights in the network. 

Because g has acute angle with that from previous examples, any update made to the 

network is guaranteed to do no harm to the network's performance for past examples (or at 

least for those stored in the memory). In our study, the training set is relatively small. Hence, 

the limit in the memory capacity commonly seen in continual learning is less of a concern in 

our case. Here, our primary goal is to obtain a network that has the best prediction accuracy. 

Therefore, we implemented the GEM in a slightly different way than that in the original 

paper [23]. Specially, at each later training phase, all examples in earlier phases were hold in 

the memory. For each update in a gradient step, we randomly selected five of past examples 

to use in finding the closest projection of gradient from new examples. In particular, we 

used examples from high-quality bin, medium-high-quality bin and low-quality bin as new 

training cases, respectively at Phase1-3 in a sequence. Examples from high-quality bin 

were used as past training cases at Phase2; and examples from both high-quality bin and 
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medium-high-quality bin were used as past cases at Phase3. There was no past case involved 

at Phase1.

2.3 Network architecture and implementation

Networks with a same architecture were used in all our experiments, for all three curriculum 

learning strategies and a baseline without any curriculum being involved (see Results 

section). This architecture consisting of total five blocks of layers was adapted from the 

3D U-Net, including a down-sampling path and an up-sampling path. In all settings, we 

trained the network to optimize an objective that is a combination of weighted cross-entropy 

E, and dice coefficient, D (1).

ℓ(w) = E(Y, P) + λd(2 − D(Y, P)) (1)

where λd is a hyper-parameter, Y and P represent the true and predicted labels, respectively, 

of training examples.

We implemented and trained the network using PyTorch, a popular machine learning library 

in deep learning research. To train the network, we partitioned the entire dataset of a 

total 1,382 cryo-EM images into three disjoint subsets for training, validation and testing, 

respectively. Each subset maintains roughly the same distribution of the three quality bins 

(discussed in section 2.1) as in the entire dataset. The detailed distribution of the examples 

across the three subsets as well as the three bins is provided in Table 1. Adam optimizer 

[26] was used to optimize the weights in the network with weight decay. We set the initial 

learning rate to 0.001 and used grid search for optimizing the step parameter in weight 

decay. The dropout rate was also optimized using grid search. The representation capacity 

of the network is expected to increase while the training moves along the phases. Hence, at 

each training phase after phase 1 we only tested dropout rate that is no more than the optimal 

one found at the previous phase. The specification of other hyper-parameters are as follows: 

λδ = 0.3, λu = 0.7, λd = 0.3, and batch size: 1. The optimal setting of all hyper-parameters 

in the search was determined based on the validation set. All networks were trained until 

there was no improvement that can be seen on the validation set.

3. Results

3.1 Pattern recognition of helices and β-sheets using three curriculum training methods

To demonstrate any potential advantage of training with curriculum, the exact same 

architecture was used without curriculum (Standard) as a comparison baseline. During this 

training, hyper-parameters were searched and set similarly as in training with curriculum as 

described in section 2.5. The best performing model obtained with each training method was 

used to compare (Table 2).

The F1 score is a commonly used performance indicator that considers precision and 

recall. We calculated the F1 score of detected helix voxels and β-sheet voxels. Using the 

curriculum in training enhances F1 score for both helix and β-sheet detection (Table 2). 

Two methods using curricula, CL-Revisit and CL-GEM-Revisit, have F1 score of 0.571 and 

0.560 respectively for detection of helix voxels, which are higher than the standard training 
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method of 0.553 (Table 2). Improvement is also shown for the detection of β-sheet voxels, 

with F1 score of 0.437 and 0.450 for using curriculum, as oppose to 0.425 without using 

curriculum. Also, note that when the forgetting phenomenon is not effectively addressed 

(CL-NoRevisit), the performance of the network trained with curriculum is in fact worse 

than that using standard training without a curriculum (Table 2).

GEM was implemented in CL-GEM-Revisit training [23]. In comparison with CL-Revisit, 

we observed that using GEM has overall more accurate performance. Although the F1 score 

of CL-GEM-Revisit is slightly lower than that of CL-Revisit for helix detection, it has 

better detection of β-sheets (Table 2). Using GEM, gradient updates are controlled to limit 

the “forgetting problem” (details in 3.3). In particular, a small number of random samples 

from the previous phase were used in calculating gradient update. For example, five random 

gradients of phase 1 were used to estimate each gradient update in phase 2. This process 

results in more computation but with slightly better accuracy.

3.2 Visualization of detected secondary structures of proteins

The detected helices and β-sheet voxels are shown in two test cases. One is in the high-

quality bin (Fig. 3 (B)) and the other is in the low-quality bin (Figure 3 (D)). The best 

CL-Revisit model was applied to the cryo-EM image (Figure 3 (A)) that corresponds to 

Chain Q of atomic structure 5lmp. It is noticeable that this chain has one helix and five 

β-strands, and that the cylindrical character of a helix is more obvious than that in the 

cryo-EM image of EMD-8335 (Figure 3(C)). In this case, most of the helix and β-sheet 

was detected correctly, as seen with the reference of the atomic model (Figure 3 (B)). The 

F1 scores of helix and β-sheet detection are 0.696 and 0.665 respectively. For the cryo-EM 

image in the low-quality bin (Figure 3 (C)), we observed more error in the detection with 

F1 scores being 0.58 and 0.48 for helix and β-sheet respectively. The lower F1 score reflects 

the error in both mis-detected helix regions and wrongly detected β-sheet regions (a purple 

arrow in Figure 3 (C), and (D)).

3.3 Validation loss during multiple phases for multiple quality bins

In order to understand how curriculum training enriches standard training process, we 

monitored validation loss of the best adopted model at each phase for the three curriculum 

training methods performing in different quality bins of images. In our curriculum training 

methods, images in the high-quality bin was used in phase 1. We explored using the same 

model obtained in phase 1 for the initial model of phase 2 for three training methods – 

CL-NoRevisit, CL-Revisit, and CL-GEM-Revisit. Curriculum training without revisit (CL-

NoRevisit) uses one bin in each phase rather than using data of the previous bin/phase in 

the current phase, “forgetfulness” was observed. As an example, the validation loss of the 

same images in Phase 1, when only high-quality bin was used, is already 0.9998 at the end 

of phase 1(starting red point in Figure 4), but it increases to 1.0038 at the end of phase 2, and 

then reduces a little to 1.0022 at the end of phase 3 (red squares in Figure 4). The validation 

loss at the end of phase 3 is higher than that at the end of phase 1, suggesting that the later 

training forgot what was learned in earlier training. Similar forgetfulness was also observed 

for Bin2 (medium-high quality bin) when no revisit was used (green squares in Figure 4).
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Revisit in curriculum training is important. We observed decreased loss in both CL-

Revisit and CL-GEM-Revisit methods from one phase to the next (diamonds and triangle 

respectively in Figure 4). This suggests that the training is moving towards the right 

direction for both data in the high-quality bin, even though they were introduced early 

in the training phase. GEM shows the most overall decrease of validation loss when revisit 

was applied. To visualize the effect of curriculum training across three phases, we monitored 

the F1 scores of all the 65 test cases that include all three quality bins (Figure 5). Both 

CL-Revisit and CL-GEM-Revisit see enhanced F1 scores for helix and β-sheet detection 

from phase 1 to phase 3.

4. CONCLUSION

Detecting secondary structures from medium-resolution cryo-EM density maps is 

challenging. The shape characters of secondary structures vary significantly due to the 

size of the secondary structures, the surrounding environment, experimental defects, and 

the resolution of the density maps. We established a U-net architecture and investigated 

three curriculum learning methods utilizing quantitative measurement of quality for density 

maps. Compared to standard training that uses all training data at once, we demonstrated 

that the curricula to train at three phases that introduce lower-quality data gradually while 

simultaneously revisiting data of earlier phases enhances the detection of both helices and β-

sheets. CL-GEM-Revisit is the most accurate training method of the three investigated, most 

likely because of the control in gradient update using a small number of random samples 

of an earlier phase. Although the enhanced performance is not dramatic, our investigation 

provided a valuable understanding of the learning process of CNN. Such understanding is 

pivotal in designing effective learning strategies that mimic human learning.
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Figure 1. Four samples of cryo-EM density maps at specific chain regions with different quality.
The surface representation of a cryo-EM density map at a specific chain region (left column) 

and its atomic model (right column, blue ribbon) is shown for each sample. (A, B) High-

quality bin: EMD-4041, chain C of 5LDX (PDB ID); (C, D) Medium-high quality bin: 

EMD-1657, chain AD of 4V5H (PDB ID); (E, F) Low-quality bin: EMD-8737, chain J of 

5VVS (PDB ID); (G, H) Poor-quality bin: EMD-5327, chain T of 3JO0 (PDB ID). Blue 

arrows (better) and purple arrows point to density regions of helices with varying quality of 

the map.
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Figure 2. 
Training curricula (A) and the gradient control in GEM (B).
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Figure 3. Cryo-EM density maps of various quality and detected voxels of helices and β-sheets 
using curriculum training CL-Revisit.
(A) Cryo-EM density map (EMD-4075) was downloaded from EMDB. The density area 

(gray) corresponding to chain Q of atomic structure 5lmp (PDB ID) was isolated from the 

entire cryo-EM density map. (B) Detected helix voxels (red) and β-sheet voxels (green) are 

superimposed with the atomic structure (ribbon) of chain Q of protein 5lmp. (C) and (D) are 

annotated similarly as in (A) and (B) for the area of cryo-EM density map (EMD-8335) that 

corresponds to chain K of protein 5t0h (PDB ID). The cryo-EM density area in (A) is in the 

high-quality bin, and that in (C) is in the low-quality bin. Blue arrows (better) and purple 

arrows point to density regions of helices with varying quality of the map.

Deng et al. Page 11

ACM BCB. Author manuscript; available in PMC 2022 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Validation loss at three phases for three curriculum training methods:
The validation loss for Bin 1 (the high-quality image bin shown in red), Bin 2 (the medium-

high quality image bin, shown in green) is shown for four different training methods CL-

NoRevisit, CL-Revisit, CL-GEM-Revisit. The same model was used as the initial model of 

phase 2.
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Figure 5. Effect of training curricula over different phases for the accuracy of 65 test cases in 
detection of helices (upper) and β-sheets(lower).
Blue triangles: CL-Revisit; Red triangles: CL-GEM-Revisit.
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Table 1 –
The division of cryo-EM image data into three bins of different quality.

HighBin: High-quality bin, MHighBin: Medium-high-quality bin, LowBin: Low-quality bin.

CL Overall HighBin MHighBin LowBin

Training 1216 200 569 447

Validation 101 30 30 41

Testing 65 10 30 25

ACM BCB. Author manuscript; available in PMC 2022 July 13.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Deng et al. Page 15

Table 2 –

Performance of four training methods for detection of helices and β-sheets.

F1
Helix

F1
Sheet

Standard 0.553 0.425

CL-Revisit 0.571 0.437

CL-GEM-Revisit 0.560 0.450

CL_NO_Revisit 0.546 0.396
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