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Abstract

Cryo-electron microscopy (cryo-EM) is an emerging biophysical technique for structural 

determination of protein complexes. However, accurate detection of secondary structures is 

still challenging when cryo-EM density maps are at medium resolutions (5–10 Å). Most of 

existing methods are image processing methods that do not fully utilize available images in the 

cryo-EM database. In this paper, we present a deep learning approach to segment secondary 

structure elements as helices and β-sheets from medium-resolution density maps. The proposed 

3D convolutional neural network is shown to detect secondary structure locations with an F1 

score between 0.79 and 0.88 for six simulated test cases. The architecture was also applied to an 

experimentally-derived cryo-EM density map with good accuracy.
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1 INTRODUCTION

Proteins are imperative to living cells. The three-dimensional (3D) structure of a protein 

determines the function of the protein. Cryo-electron microscopy (cryo-EM) is an important 

technique in molecular structure determination. Using cryo-EM, a growing number of large 

molecular complexes have been resolved to atomic resolutions [1, 2]. However, for cryo-EM 

density maps with a medium resolution (5–10 Å), it is much more challenging to recognize 

detailed molecular features. In most cases, it is not possible to derive atomic structures 
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from these medium resolution images without the knowledge of known atomic structures as 

templates. When a template structure is available, fitting is used to derive atomic structure 

[3, 5]. When no suitable template structures are available, matching secondary structures that 

are detected from the 3D image and those predicted from the sequence of the protein may 

suggest possible topologies of secondary structures [6–10].

The most common secondary structure elements (SSEs) in a medium-resolution density 

map are α-helices and β-sheets. The major difficulty of detecting secondary structures in 

such density maps is that the patterns of the SSEs can be indistinguishable from their 

narrowly located neighbors. Many methods have been developed to detect SSEs at medium 

resolutions. These approaches are mostly based on image-processing techniques. A helix is 

often identified using cylinder-like templates or carefully-designed cylinder-like features. A 

β-sheet is identified using plane-like templates or features. The drawbacks of these methods 

include carefully selected parameters and under-utilizing large amount of existing density 

maps in the database. If SSEs could be more accurately detected, this would be an important 

step to automatically resolve protein structures from cryo-EM images at medium resolutions 

[11–17].

Generally, long α-helices, such as those with more than 20 amino acids, can be detected 

by a variety of methods. On the other hand, short α-helices can be easily confused with 

turns/loops. Similarly, large β-sheets show unique characteristics while small β-sheets might 

be confused with an α-helix. Due to the small spacing of β-strands at about 4.5Å, these 

strands are often not visible in a medium-resolution density map. Several methods have 

been proposed to predict traces of β- strands from segmented β-sheet regions [18, 19]. 

As machine learning methods continue to show their merit in image processing tasks, 

several approaches have been taken to solve the problem presented. The authors of [20] 

used nested K nearest neighbors classifiers to detect α-helices. In addition, methods using 

support vector machines (SVM) have also been employed to identify α- helices and β-sheets 

[21]. However, empirically-derived features may not be representative enough to obtain state 

of the art accuracy. Most recently, Li et al. has shown potential of convolutional neural 

networks (CNNs) achieving good performance [22].

Convolutional neural networks utilize arranged layers to learn complex features. CNNs have 

been shown to produce state of the art performance in a variety of image related applications 

[23–28]. More recently, CNNs have been extended to tasks involving image segmentation 

with good accuracy [29–31]. CNNs are appealing due to their ability to learn features with 

trainable parameters in tasks that require nonlinear relationships. Due to these advantages, 

we explore CNNs to segment secondary structures from cryo-EM 3D density maps.

2 METHODS

2.1 Architecture and Parameters

Several challenges are presented when attempting to segment secondary structures from 

a cryo-EM density map. One of these challenges is the large diversity of proteins in the 

database. The architecture used to segment these SSEs must be able to learn features 

from multiple scales. A second challenge existing is the varying sizes of proteins with in 
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the database. In order to overcome this problem, we train and test with patches of size 

48×48×48. A visualization of the patch can be seen in Figure 1. We attempted to find a size 

that would be small enough to eliminate the need for padding the 3D images, while still 

being large enough to hold important information when the receptive field is reduced to its 

smallest window.

Inspired by 3D-UNET [32], we implemented a similar model. This model consists of an 

analysis path and a synthesis path. In the analysis path, each layer consists of two 3×3×3 

convolutions, both followed by a batch normalization and a relu operation. Each layer in the 

analysis path is ended by a 3×3×3 max pool with a stride of two. By using a stride of two, 

we reduced the receptive field by a factor of two at the end of each layer in this path. After 

three layers that use increasingly more features, the analysis path has ended. The receptive 

field at the end of the analysis path is now eight times smaller than the original input. 

The synthesis path is very similar except each layer is ended with a transposed convolution 

increasing the receptive field by a factor of two. We also concatenate the results of each 

layer in the analysis path with the results of each synthesis layer. In the last layer we use 

a 1×1×1 convolution to decrease the amount of output channels to three labels. A more 

detailed description of the architecture can be seen in Figure 2.

Small batches of four images and a dropout rate of 50% were used during training. Unlike 

the previous work using a CNN architecture [22], no post-processing was performed, yet 

the model produces equivalent results as those using post-processing in the previous CNN 

architecture. Naturally, we used softmax with cross entropy to measure loss. In order to 

optimize this loss function, we employ an Adam optimizer with a 1e-4 training rate.

2.2 Data

We have used the presented architecture to test six simulated 3D images and one 

experimentally-derived cryo-EM density map. After collecting 31 atomic protein structures 

from the Protein Data Bank (PDB), we simulated each to 9Å resolution with a 1Å voxel 

size using UCSF Chimera [33]. Among the 31 3D images, 25 images were used for training, 

and the remaining six were used for testing. In order to fully utilize the simulated 3D 

images, each image was rotated around the X, Y, and Z axes with a random angle to produce 

35 3D images as additional samples. Conversely, when using experimental data, we have 

downloaded each cryo-EM density map from Electron Microscopy Data Bank (EMDB) and 

the corresponding atomic structures from the PDB. Although there is a large number of 

cryo-EM maps with annotated resolution between 5–10Å, only those with visually good 

quality were used for training. When evaluating our model on experimental data, we used 42 

cryo-EM maps with a total of 67 chains for training. Much of the training data is unique, but 

there are a few chains in the set that are similar. The experimental data used for training and 

testing have voxel sizes between 0.82 Å/voxel and 1.86 Å/voxel. We expect the network to 

learn the characteristics of SSEs even when the voxel size might be different.

3. RESULTS

An example of secondary structures segmented from a simulated 3D image is shown in 

Figure 3. This protein 3j7i_a (PDB ID) has 17 helices and nine β-strands (Table 1). Visual 
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inspection shows that both the helix regions and the β-sheet regions were identified correctly 

using the proposed CNN architecture. When testing, we also use patches of 48×48×48. As 

an example for 3j7i_a, nine patches of 48×48×48 were randomly selected from the entire 

density map. The accuracy of detected helix voxels was quantified for each patch using 

the F1 score. We observed that the F1 scores of different patches in a protein are similar. 

The averaged F1 score of nine patches in 3j7i_a is 0.806 for helix detection (Table 1). The 

average F1 score of helix, β-sheet, and background is 0.789 for all nine patches in protein 

3j7i_a. The F1 scores for helix detection are between 0.734 and 0.872 for the six test cases 

(Table 1). The F1 scores for β-sheet detection are from 0.749 to 0.999. The three cases with 

the highest F1 scores of β-sheets have small β-sheets with two strands only. The overall 

3-class average of F1 scores are between 0.795 and 0.883 for the six simulated test cases.

Due to large amount of noise found in experimentally-derived cryo-EM density maps, it 

is much more challenging to identify secondary structures in such images. An example of 

segmented helices and β-sheets is shown for cryo-EM density map EMD-1740 with 6.2 Å 

resolution (Figure 4). A chain of the protein 3c92 (PDB ID) was used as an envelope to 

extract the density region that corresponds to the chain in EMD-1740. This chain consists 

of five helices and three β-sheets, all of which appear to be segmented correctly (Figure 4). 

In this case, the average F1 score for 14 patches is 0.819 for helix detection, and 0.853 for 

β-sheet detection. The accuracy for cryo-EM case is comparable, with an overall F1 score of 

0.828, to the accuracy of the simulated cases. We plan to expand the amount of training data 

in future and develop a standard dataset for training. With a larger amount of training data, 

the model is likely to be more accurate.

4. CONCLUSIONS

Deriving atomic structures from medium-resolution cryo-EM density maps is challenging. 

An important step to derive the atomic structure automatically is detecting the location 

of secondary structures within the density map. We have presented a 3D convolutional 

neural network for segmentation of secondary structure elements from cryo-EM images. 

Although CNN has been shown as a powerful image processing method, there is limited 

work developing CNN architectures that are effective in 3D segmentation problems for 

protein secondary structure detection from cryo-EM density maps. Using 3D UNET as a 

guide [32], we have created an encoder decoder architecture employing 3D convolutions to 

capture features along three dimensions. We show that this version of 3D U-Net can achieve 

good accuracy in a test of six simulated density maps and one experimentally-derived 

cryo-EM map. We plan to improve this model and to perform a large-scale test using more 

cryo-EM density maps.
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CCS CONCEPTS

• Computer vision → Computer vision problems → Image segmentation;

• Applied computing → Life and medical sciences → Computational 
biology → Imaging
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Figure 1. An example of the patch size in training and testing.
The density within a patch (red) is superimposed on the entire 3D image simulated using the 

atomic structure of protein 2XS1 (PDB ID).
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Figure 2. 
The 3D U-net architecture.
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Figure 3. An example of secondary structure segmentation using the CNN architecture.
(A) A 3D image simulated using the atomic structure of protein 3j7i_a (PDB ID) (shown in 

ribbon). (B) The detected helix regions (cyan), and β-sheet regions (pink) are superimposed 

with the atomic structure (ribbon).
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Figure 4. Detected helices and β-sheets from an experimentally-derived cryo-EM density map 
1740 (EMDB ID).
The corresponding atomic structure of protein 3c92(PDB ID) (ribbon) is superimposed.
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Table 1.

Detection accuracy of three classes (helix, β-sheet, and background). Row 2 to row 7 are simulated test 

cases using atomic structures of PDB. Row 8 involves an experimentally-derived test case with its EMDB ID 

indicated in parentheses.

PDB ID Patch Number Helix Number Strand Number F1-Helix F1-Sheet F1-Background F1-Avg

3j7i_a 9 17 9 0.806 0.749 0.812 0.789

1T79 10 12 4 0.872 0.766 0.861 0.883

1cv1 8 7 3 0.734 0.878 0.774 0.795

2XS1 8 26 2 0.81 0.998 0.802 0.87

3MK4 7 15 2 0.8 0.999 0.794 0.864

4P1T 7 25 2 0.822 0.998 0.812 0.877

3C92 (1740) 14 182 307 0.819 0.853 0.828 0.833
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