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Deciphering how regulatory functions are encoded in 
genomic sequences is a major challenge in understand-
ing how genome variation links to phenotypic traits. Cell 

type-specific regulatory activities encoded in elements such as pro-
moters, enhancers and boundary elements are critical to defining 
the complex expression programs essential for multicellular organ-
isms. Most disease-associated variants from genome-wide associa-
tion studies (GWAS) are located in noncoding regions1, yet without 
knowing how changes in sequence affect regulatory activities, we 
cannot predict the impact of these variants and uncover the regula-
tory mechanisms contributing to complex diseases and traits.

Substantial progress has been made in the experimental profiling 
and integrative analysis of epigenomic marks, such as histone marks 
and DNA accessibility, across a wide range of tissues and cell types2–4.  
At the same time, deep learning sequence modeling techniques 
have been successfully applied to learn sequence features predictive 
of transcription factor (TF) binding and histone modifications5–11. 
These models are powerful tools for inferring the impact of sequence 
variation at the chromatin level—for example, whether a variant 
increases or decreases C/EBPβ binding. However, we continue to 
lack an integrative view of sequence regulatory activities, including 
all major aspects of cis-regulatory functions, such as tissue-specific 
or broad enhancer and promoter activities. This limits our ability to 
interpret the integrated effects of all chromatin-level perturbations 
caused by genomic variants and determine their impact on human 
health and diseases.

We address this challenge by creating a global map for sequence 
regulatory activity based on a new deep learning-based framework 
called Sei. This framework introduces a sequence model that pre-
dicts 21,907 publicly available chromatin profiles—the broadest set 
to date—and uses the model to quantitatively characterize regula-
tory activities for any sequence with a vocabulary we call sequence 
classes. Sequence classes cover diverse types of regulatory activi-
ties, such as promoter or cell type-specific enhancer activity, across 
the whole genome by integrating sequence-based predictions from 
histone marks, TFs and chromatin accessibility across a wide 

range of cell types. Importantly, sequence classes can be used to 
both classify and quantify the regulatory activities of any sequence 
based on predictions made by the deep learning sequence model, 
thereby allowing any mutation to be quantified by its impact (for 
example, increase, decrease or no change) on cell type-specific 
regulatory activities.

Thus, the Sei framework enables an interpretable and system-
atic integration of sequence-based regulatory activity predictions 
with human genetics data to elucidate the regulatory basis of 
complex traits and diseases. We applied our framework to char-
acterize disease- and trait-associated regulatory disruptions in 
GWAS data based on a nonoverlapping partitioning of heritability 
by regulatory activities. Moreover, we applied variant effect pre-
diction at the sequence class-level to interpret cell type-specific 
regulatory mechanisms for individual disease mutations and dif-
ferentiate between gain-of-function (GoF) and loss-of-function 
(LoF) regulatory mutations.

We provide the Sei framework as a resource for systematically 
classifying and scoring any sequence and variant with sequence 
classes, additionally providing the Sei model predictions for the 
21,907 chromatin profiles underlying the sequence classes. The 
framework can be run using the code available at https://github.
com/FunctionLab/sei-framework; a user-friendly web server is 
available at hb.flatironinstitute.org/sei.

Results
Developing a comprehensive, chromatin-level sequence model. 
To capture the widest range of sequence features predictive of regu-
latory activities, we first developed a new deep learning sequence 
model, which we refer to as the Sei model that enables the base-level 
interpretation of sequences by predicting 21,907 genome-wide 
cis-regulatory targets—including peak calls from 9,471 TF bind-
ing, 10,064 histone mark and 2,372 chromatin accessibility pro-
files—with single-nucleotide sensitivity. Most of this data (19,905 
profiles) was processed by the Cistrome Project4; the remaining 
chromatin profiles were processed by the ENCODE2 and Roadmap 

A sequence-based global map of regulatory activity 
for deciphering human genetics
Kathleen M. Chen   1,2, Aaron K. Wong2, Olga G. Troyanskaya   1,2,3 ✉ and Jian Zhou   4 ✉

Epigenomic profiling has enabled large-scale identification of regulatory elements, yet we still lack a systematic mapping from 
any sequence or variant to regulatory activities. We address this challenge with Sei, a framework for integrating human genet-
ics data with sequence information to discover the regulatory basis of traits and diseases. Sei learns a vocabulary of regulatory 
activities, called sequence classes, using a deep learning model that predicts 21,907 chromatin profiles across >1,300 cell 
lines and tissues. Sequence classes provide a global classification and quantification of sequence and variant effects based on 
diverse regulatory activities, such as cell type-specific enhancer functions. These predictions are supported by tissue-specific 
expression, expression quantitative trait loci and evolutionary constraint data. Furthermore, sequence classes enable charac-
terization of the tissue-specific, regulatory architecture of complex traits and generate mechanistic hypotheses for individual 
regulatory pathogenic mutations. We provide Sei as a resource to elucidate the regulatory basis of human health and disease.

Nature Genetics | VOL 54 | July 2022 | 940–949 | www.nature.com/naturegenetics940

mailto:ogt@cs.princeton.edu
mailto:jian.zhou@utsouthwestern.edu
https://github.com/FunctionLab/sei-framework
https://github.com/FunctionLab/sei-framework
https://hb.flatironinstitute.org/sei
http://orcid.org/0000-0002-7461-9530
http://orcid.org/0000-0002-5676-5737
http://orcid.org/0000-0002-3721-4550
http://crossmark.crossref.org/dialog/?doi=10.1038/s41588-022-01102-2&domain=pdf
http://www.nature.com/naturegenetics


ArticlesNaTurE GEnETicS

Epigenomics3 projects. The Sei model encompasses an estimated 
1,000 nonhistone DNA-binding proteins (which we refer to as TFs), 
77 histone marks and chromatin accessibility across >1,300 cell 
lines and tissues (Supplementary Tables 1 and 2).

To efficiently predict 21,907 chromatin profiles from sequence, 
we designed a new residual block architecture with dual linear 
and nonlinear paths, which takes as input a 4-kilobase (kb) length 
sequence and predicts the probabilities of 21,907 cis-regulatory tar-
gets at the center position (Supplementary Fig. 1 and Methods).

The model achieved an average area under the receiver operat-
ing characteristic (AUROC) of 0.972 and average area under the 
precision-recall curve (AUPRC) of 0.409 across all 21,907 chro-
matin profiles (Supplementary Fig. 2). In addition to accurately 
predicting individual profiles, Sei predictions recapitulated their 
correlation structure, indicating that the model captures the colo-
calization patterns of chromatin profiles (Supplementary Fig. 3). 
Furthermore, the Sei model improved over our best previously 
published model, DeepSEA Beluga7, on the 2,002 chromatin pro-
files predicted by both models by 19% on average (measured by 
AUROC/(1 − AUROC); Supplementary Fig. 4).

Therefore, the Sei model is the most comprehensive 
chromatin-level sequence model to date and offers an expansive 
new resource for sequence and variant interpretation.

Defining sequence classes from sequence model predictions. 
Next, we applied the Sei model to develop a global, quantitative map 
from genomic sequences to specific classes of regulatory activities, 
which we termed sequence classes, by integrating the wide range 
of chromatin profiles predicted by Sei. Therefore, sequence classes 
were mapped directly from sequence, with each class representing 
a distinct program of regulatory activities across the tissues and 
cell types covered by the Sei model. Furthermore, sequence classes 
allow for the mapping of any sequence to quantitative scores that 
represent a broad spectrum of regulatory activities.

Here we identified sequence classes from Sei predictions for 30 
million sequences uniformly tiling the whole genome (4-kb win-
dows with 100-base pair (bp) step size) by applying Louvain com-
munity clustering12 to these predictions to categorize the 30 million 
sequences into 40 sequence classes (Fig. 1a). We then visualized the 
global structure of sequence regulatory signals as represented by the 
model’s chromatin profile predictions using nonlinear dimensional-
ity reduction techniques13,14 (Fig. 1).

This visualization of human genome sequences demonstrates 
the global organization of sequence regulatory activities (Fig. 1b). 
The center of the visualization contains sequences with weak or no 
regulatory activity based on histone mark and TF enrichment—
sequences with specific regulatory activities radiate outward from 
there. Different branches of sequences are enriched in distinct chro-
matin modifications and TFs, and sequences with similar regulatory 
activities are grouped together. For example, tissue-specific enhancer 
sequences were predominantly grouped by tissue in the visualization 
(Fig. 1b). In addition, sequences with repressive Polycomb marks were 
spatially adjacent to H3K9me3-marked heterochromatin sequences 
(Fig. 1b), reflecting their extensive crosstalk in epigenetic silenc-
ing15–17. Promoter-proximal and CTCF–cohesin binding sequences 
form two well-defined clusters separate from other sequences, which 
may indicate the distinct nature of these activities (Fig. 1b).

The sequence classes identified from whole-genome sequences 
provide a basis for summarizing sequence activities globally. They 
recapitulate the sequence organization shown in the visualization 
(Fig. 1b) and are robust to changes in clustering parameter choices 
(Supplementary Figs. 5 and 6). Each sequence class is labeled with 
a functional group acronym and index denoting the rank of the 
class within the group (Supplementary Fig. 13; for example, E1 
encompasses a larger proportion of the genome than E2). Because 
genomic sequences encode their regulatory activity programs 
across all cell types, sequence classes show distinct activity patterns 
across cell types and tissues (Fig. 2a, Supplementary Figs. 7–12  
and Supplementary Data). To facilitate intuitive interpretation 
of sequence classes, they are named primarily by their active, cell 
type-specific regulatory activities—in particular, enrichment of 
promoter and enhancer activities. In other words, sequence classes 
not labeled as enhancer (E) or promoter (P) generally lack enhancer 
or promoter activity in any cell type predicted by Sei.

Based on their enrichment in relevant histone marks and TFs, 
sequence classes consist of the following categories: P, promoter; E, 
enhancer; CTCF; TF; PC, Polycomb; HET, heterochromatin; TN, 
transcription; and L, low signal, which are not strongly enriched in 
the measured histone marks (Fig. 2a, Supplementary Figs. 7–12 and 
Supplementary Data). For example, the P promoter class is enriched 
in the active promoter histone mark H3K4me3 across all cell types 
(Fig. 2a and Supplementary Fig. 7). The 12 E enhancer classes are 
strongly enriched in enhancer histone marks (H3K4me1, H3K27ac) 
and TFs relevant to their activities in select cell types (for exam-
ple, PU.1/SPI1 in E7 monocytes/macrophages, SOX2/NANOG/
POU5F1 in E1 stem cells) and often display repressive H3K27me3 
marks in inactive cell types (Fig. 2a, Supplementary Figs. 8–10 and 
Supplementary Data). As a whole, the 40 sequence classes cover 
>97.4% of the genome (Supplementary Fig. 13).

Beyond classification of genomic sequences, sequence classes 
provide a global and quantitative scoring of sequence regulatory 
activities. This for the first time allows us to (1) predict the regula-
tory activity for any sequence and (2) quantify the changes in regu-
latory activity caused by any variant (Fig. 1c). Sequence class scores 
summarize predictions for all 21,907 chromatin profiles based on 
weights specific to each sequence class. Scores are computed by 
projecting Sei predictions onto unit-length vectors that point to 
the center of each sequence class; the impact of a variant is repre-
sented by the difference between scores for the reference (Ref) and 
alternative (Alt) alleles. Sequences that score highly for a particu-
lar sequence class have high predictions for the chromatin profiles 
associated with that class. While sequence classes defined using 
Sei model predictions are highly concordant with those defined 
from chromatin profiling data (Supplementary Fig. 14), defining 
sequence classes based on Sei model predictions enables the map-
ping of any sequence to sequence classes beyond the reference 
genome. Importantly, this capability cannot be directly obtained 
from chromatin profiling data alone.

Enhancer sequence classes predict tissue-specific expression. The 
group of sequences that likely have the most impact on tissue-specific 
gene expression regulation are the enhancer (E) sequence classes; 
thus, we assessed the association of enhancer sequence class scores 
with tissue-specific gene expression.

Fig. 1 | Mapping the global regulatory landscape of genomic sequences. a, Overview of the Sei framework for systematic prediction of sequence regulatory 
activities. Sequence classes were extracted from the predicted chromatin profiles of 30 million sequences evenly tiling the genome. The predictions were 
made by Sei, a new deep convolutional network sequence model trained on 21,907 chromatin profiles. Specifically, classes are identified by applying Louvain 
community detection to the nearest neighbor graph of 180 principal components extracted from the predictions data. b, Visualizing the global regulatory 
landscape of human genome sequences discovered by this approach with UMAP. Major sequence classes include cell type-specific enhancer classes, CTCF–
cohesin, promoter, TF-specific and heterochromatin/centromere classes. AR, androgen receptor. c, This framework was further applied to predict sequence 
class-level genome variant effects, quantified by changes in sequence class scores.
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Fig. 2 | Sequence classes predict cell type-specific regulatory activities and directional, expression-altering variant effects. a, Sequence class-specific 
enrichment of histone marks, TFs and repeat annotations; log fold change enrichment over genome-average background is shown in the heatmap. No 
overlap is indicated by the gray color in the heatmap. The top 1–2 histone mark and TF annotation enrichments were selected for each sequence class. 
hESC, human embryonic stem cell. b, Enhancer sequence classes near TSS were correlated with cell type-specific gene expression in the applicable tissue 
or cell types (Methods). The y axis shows the Spearman rank correlation between the proportion of each sequence class annotation within 10 kb of TSS 
and the tissue-specific differential gene expression (fold over tissue average). c, Regulatory sequence class-level variant effects are predictive of directional 
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In the visualization of sequence regulatory activities, sequence 
classes with different cell type- and tissue-specific enhancer activi-
ties are localized to distinct subregions (Fig. 1b). E sequence classes 
capture both specific and broad enhancer activities (Figs. 1b and 2a).  
For example, based on enhancer mark enrichment, E7 is specific 
for monocytes and macrophages, E9 is specific for liver and intes-
tine, E1 is specific for embryonic and induced pluripotent stem 
cells (iPSCs) and E10 and E3 are specific for brain (Fig. 2a and 
Supplementary Figs. 8 and 9; all enrichments stated are significant 
with P < 2.2 × 10−16, two-sided Fisher’s exact test). In contrast, broad 
enhancer sequence classes such as E2 and E4 encompass enhancer 
activity in many different cell types (for example, fibroblast, muscle, 
osteoblast, epithelial). Sequence class enhancer activities are also 
supported by the enrichment of relevant chromatin states2 and 
DNase I hypersensitive sites (DHSs)18 across tissues and cell types 
(Supplementary Figs. 15 and 16). Consistent with their predicted 
cell type-specific activities, the coverage of E sequence class annota-
tions within a 10-kb window to transcription start sites (TSS) are 
correlated with the differential expression patterns of these genes in 
the corresponding cell types over the tissue average (Fig. 2b).

Since sequence class scores allow us to systematically predict the 
effects of variants on regulatory functions, we can estimate whether 
a given variant diminishes, maintains or increases the enhancer 
activity of a sequence. Evaluated on Genotype-Tissue Expression 
(GTEx) expression quantitative trait loci (eQTL) data19, we found 
that variants predicted to increase E sequence class activity were 
significantly positively correlated with higher gene expression, 
whereas those predicted to increase PC sequence class activity were 
significantly negatively correlated with gene expression, consistent 
with the expected repressive role of PC sequence class activities  
(Fig. 2c). Moreover, when only analyzing fine-mapped eQTLs20 
with high posterior inclusion probability (>0.95), we observed 
higher correlations with overall comparable levels of significance 
(Supplementary Fig. 17). Therefore, sequence classes can dis-
tinguish the effects of variants on gene expression based on their  
consequences in regulatory activities.

Sequence classes are under evolutionary constraints. Variants 
that alter the regulatory activities of sequences often disrupt gene 
regulation and are therefore expected to impact human health 
and disease. We tested this expectation by comparing human 
population genome variant allele frequencies (AFs)21 based on the 
sequence class in which each variant is located and the predicted 
variant effect on that class. Indeed, we found that variants local-
ized in regulatory sequence classes (E, P and CTCF) have lower 
common variant frequency than variants in other sequence classes 
and showed higher overall negative selection constraint (Fig. 3a, 
x axis). More importantly, variants predicted to strongly per-
turb regulatory sequence classes are significantly less likely to be 
common variants than variants that weakly perturb these classes 
(measured by bidirectional variant effect constraint; Fig. 3a, y axis 
and Fig. 3b and Methods). Therefore, this is consistent with the 
hypothesis that disruption of regulatory sequence class activities 
has a major negative impact on fitness, which we refer to as a nega-
tive selection signature.

Specifically, we observed strong negative selection signa-
tures for variants assigned to all E, CTCF and P sequence classes  
(Fig. 3). Multi-tissue enhancer sequence classes E4 and E2 and the 
brain enhancer sequence class E10 showed the strongest associa-
tion of the predicted sequence class-level variant effect and the 
probability of a variant being a common variant. Notably, for the 
CTCF sequence class, only negative variant effects—decreasing 
sequence class activity—appear to be under very strong con-
straints, suggesting that CTCF sites are generally tolerant to posi-
tive effect mutations that further increase CTCF binding. This is 
in contrast to the generally deleterious impact of both increase 
and decrease of enhancer and promoter activities. As expected, 
TN sequence classes, which overlap with protein-coding 
regions, are among the sequence classes with the lowest AF  
(Supplementary Fig. 18).

Variants assigned to the HET, PC, TF and L sequence classes 
generally did not show strong negative selection signatures 
(Supplementary Fig. 18). Importantly, this does not suggest that PC 
or TFs are inessential: PC-related regulation is likely critical for E 
and P sequence classes, which are often PC-repressed in some cell 
types but enhancers or promoters in other cell types (Supplementary 
Figs. 7–10). Similarly, we expect that TF binding plays a central role 
in E classes that are highly enriched in relevant TFs (Fig. 2a and 
Supplementary Data).

Therefore, sequence classes show distinct evolutionary con-
straints and E enhancer sequence classes show the strongest bidirec-
tional constraints. This suggests that both increases and decreases 
of enhancer activity are expected to lead to deleterious effects 
on fitness, highlighting the importance of precisely controlling  
gene expression.

The regulatory architecture of GWAS traits. The population AF 
analysis on sequence classes suggests that variants perturbing regu-
latory sequence class activities are likely to be involved in human 
health and disease. To explore this hypothesis, we used GWAS 
data to delineate the genetic contribution of each sequence class to  
diseases and traits.

Partitioned heritability from linkage disequilibrium (LD) score 
regression (LDSR) has been a powerful tool for understanding the 
genetic architecture of diseases and traits using GWAS summary 
statistics22, including identifying enrichment of disease heritabil-
ity in regulatory elements22,23. Previous applications of LDSR used 
overlapping annotations22–24, which allow for the joint analysis of 
heritability contribution across annotations and have generated 
important insights into a wide range of traits; however, such analyses 
cannot unambiguously partition heritability into nonoverlapping 
categories. Because sequence classes are both nonoverlapping (that 
is, each variant is assigned to one sequence class) and cover nearly 
the entire genome, they provide a clear and easily interpretable pic-
ture of the regulatory architecture of diseases and traits. To show 
this, we estimated the proportion of heritability explained by each 
sequence class for 47 GWAS traits in the UK Biobank (UKBB)25,26 
(Methods). Our analysis of the UKBB GWAS revealed genetic sig-
natures of sequence class-specific regulatory functions (Fig. 4 and 
Supplementary Table 3).

Fig. 3 | Variants with strong regulatory sequence class effects show negative selection signatures. a, Scatter plot for AF-based analysis of each sequence 
class. The x axis shows 1 − common variant frequency (AF >0.01) across all 1000 Genomes variants per sequence class; the y axis shows the bidirectional 
variant effect constraint z-score, which was computed based on logistic regressions predicting a common variant (AF >0.01) from the sequence class-level 
variant effect score for both positive and negative effects (Methods). Sequence classes with significant (Benjamini–Hochberg FDR <0.05) bidirectional 
variant effect constraint are indicated with larger dots. L sequence classes are excluded due to lack of interpretation for their sequence class-level variant 
effect scores. b, Comparison of common variant frequencies for 1000 Genomes variants (n = 81,501,608) assigned to different sequence classes and 
variant effect bins. The common variant threshold is >0.01 AF across the 1000 Genomes population (n = 12,803,919). The error bars show ±1 s.e. and the 
center of the error bars represents the mean. The sequence class-level variant effects are assigned to six bins (+3, top 1% positive; +2, top 1–10% positive; 
+1, top 10–100% positive; −1, top 10–100% negative; −2, top 1–10% negative; −3, top 1% negative).
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Importantly, E and P sequence classes, which are also inferred 
to be under strong evolutionary constraints, cover almost all classes 
that explain a high proportion of heritability for GWAS traits and 

diseases (Fig. 3a and Supplementary Table 3). We observed three 
main groups of traits that share similar heritability composition 
signatures across sequence classes. The first group encompasses 
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blood-related traits and contains two subgroups of immune- and 
nonimmune-related traits. Most of the heritability signals in 
blood-related traits are explained by enhancer classes for the rel-
evant cell type(s), such as monocyte/macrophage enhancer (E7) for 
‘monocyte count’ (Fig. 4). Furthermore, autoimmune-related traits 
are selectively associated with the immune cell-related enhancer 
sequence classes E5 (B cell-like), E11 (T cell) and E7 (monocyte/
macrophage), while red blood cell-related traits are linked to 
erythroblast-like enhancer E12. Therefore, sequence classes can 
dissect the cell type-specific regulatory architecture of traits and 
diseases with heritability decomposition, even without relying on 
gene-level information.

Cognitive and behavioral traits (‘morning person’, ‘neuroticism’, 
‘smoking status’, ‘years of education’, ‘college education’) also share 

similar sequence class-level heritability decompositions; in this 
group, heritability was mostly explained by brain (E10 and E3) and 
stem cell (E1) enhancer sequence classes. The link to E1 is consis-
tent with our observation that E1 was also moderately enriched 
for the active enhancer mark H3K4me1 in brain cell types (Fig. 2a  
and Supplementary Fig. 7) and is positively correlated with gene 
expression in brain tissues (Fig. 2b).

The third group of traits is intriguingly diverse, including ‘bald-
ing’, ‘lung forced vital capacity (FVC)’, ‘waist–hip ratio’, ‘height’ and 
‘heel T-score’. The heritability of these traits is mostly explained by 
multi-tissue enhancer classes (E4, E2 and E8), which show activ-
ity in epithelial cells, fibroblasts, muscle and many other cell types. 
Enhancer activity across multiple tissues in the body may explain 
the diverse phenotypes that are associated with these traits.
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Beyond these three groups, there are a number of traits with 
unique heritability patterns that are also linked to highly relevant 
sequence classes. For example, the ‘high cholesterol’ trait was most 
associated with the liver and intestine enhancer sequence class (E9), 
which is consistent with the physiology of cholesterol metabolism 
and known etiology of this condition27. E9 was also linked to red 
blood cell-related traits, in line with the role of liver in erythropoiesis.

Finally, the promoter sequence class P uniquely explained a 
sizable proportion of heritability in nearly all traits, suggesting a 
near-universal involvement of promoter sequence variations in all 
traits and diseases.

We next assessed whether sequence classes could explain 
GWAS heritability beyond that explained by annotations  
discovered in previous studies. We uncovered 83 significant 
sequence class-trait associations after conditioning on published 
baseline annotations (Supplementary Table 4 and Methods).  
We found that 33 out of 47 of all UKBB GWAS traits and 9 
out of 13 of the E and P sequence classes have at least 1 sig-
nificant association after multiple hypothesis testing correction 
(Supplementary Table 4). This finding suggests that sequence 
classes can identify extensive new regulatory signals that enrich 
GWAS interpretation.
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Disease mutations disrupt sequence class activities. Sequence 
class-level effects enable the prediction of specific regulatory mech-
anisms at the individual, pathogenic mutation level. To showcase 
our framework’s capability to predict the mechanisms of individual 
mutations, we used Sei to predict the direction and magnitude of 
sequence class-level mutation effects for all 853 regulatory disease 
mutations from the Human Gene Mutation Database (HGMD)28 
(Fig. 5). For systematic classification and quantification of these 
mutations, we assigned each mutation to an affected sequence  
class (Methods).

Overall, the average variant effect score of disease mutations 
is 4.2 times larger than that of de novo mutations in healthy indi-
viduals (0.903 versus 0.217, P <2.2 × 10−16, two-sided Wilcoxon 
rank-sum test, maximum absolute effect across sequence classes) 
and 6.5 times larger than the 1000 Genomes common variants 
with AF >0.01 (0.903 versus 0.139, P < 2.2 × 10−16). In this study, 
we focused on analyzing mutations with the strongest predicted 
effects (>1.1, n = 138 out of 853) (Fig. 5 and Supplementary Fig. 19). 
Because sequence class-level variant effects are directional—that is, 
predicting whether the Alt allele increases or decreases sequence 
class-level activity—we discovered that while most (approximately 
80%) of pathogenic mutations with strong predicted effects are 
predicted to decrease sequence class activity, the remaining 20% of 
HGMD pathogenic mutations are predicted to increase sequence 
class activity. Moreover, perturbations to the E, P and CTCF classes 
make up >99% of the mutations with strong predicted effects on 
sequence class activity (Supplementary Table 5), with 44.9% pre-
dicted to affect tissue-specific E sequence classes, 38.4% predicted 
to affect the P sequence class and, interestingly, 15.9% predicted to 
affect the CTCF–cohesin sequence class (Methods).

Almost all mutations with strong predicted effects in cell 
type-specific E sequence classes contributed to diseases relevant 
to that same cell type (Fig. 5 and Supplementary Table 5). For 
most of these mutations, the nearby gene is known to be rele-
vant to the disease but the molecular mechanisms of regulatory 
disruption is unknown. For example, mutations causing vitamin 
K-dependent protein C deficiency and hemophilia B, two diseases 
characterized by deficiency of specific plasma proteins produced 
in the liver, are predicted to decrease E9 liver/intestine sequence 
class activities. Blood cell-specific enhancer sequence classes (for 
example, E12 erythroblast-like, E7 monocyte/macrophage-like 
and E5 B cell-like) are disrupted in distinct blood-related 
diseases and deficiencies relevant to the corresponding cell 
type. For developmental diseases, such as preaxial triphalan-
geal thumb-polysyndactyly syndrome, the E1 embryonic stem 
cell-specific enhancer sequence class is predicted to be disrupted 
by mutations in a known distal enhancer of sonic hedgehog sig-
naling molecule (SHH) (chromosome 7: 156,583,949 G>C)29, a 
gene that plays a crucial role in the positioning and growth of 
limbs, fingers and toes during development.

In addition, 38% of the regulatory mutations with strong pre-
dicted effects disrupt P sequence class activity (Fig. 5). The high 
proportion of mutations perturbing the P class likely reflects both 
the critical role of promoters in diseases and the emphasis on 
promoter-proximal mutations in past studies.

While the mutations we have discussed thus far are nega-
tive effect mutations (decreasing sequence class activity), 20% of 
HGMD pathogenic mutations are predicted to increase sequence 
class activity. Indeed, these mutations include many known GoF 
mutations, which validate our predictions. The highest increase in 
sequence class activity was observed for a mutation (X chromosome: 
73,072,592 G>C) near the XIST gene that skews X-inactivation of 
the mutant chromosome in females30; this mutation was predicted 
to increase the activity of the CTCF sequence class and has been 
experimentally validated to increase CTCF binding31. Similarly, 
positive effect predictions for E and P sequence classes were  

validated by previously studied mutations: an α-thalassemia muta-
tion near HBM (chromosome 16: 209,709 T>C)32 known to create a 
GATA1 binding site and increase intergenic transcription was pre-
dicted to increase erythroblast-specific E12 activity; a TERT muta-
tion found in individuals with familial melanoma (chromosome 5: 
1,295,161 T>G)33 was predicted to increase P activity. Beyond this, 
many mutations predicted to have strong positive effects were not 
previously understood. For example, a mutation near the HBG1 
gene (chromosome 11: 5,271,262 A>G)34 causing persistence of 
fetal hemoglobin is predicted to increase erythroblast-specific E12 
sequence class activity. Previously, this mutation was known to cre-
ate an ATGCAAAT octamer34 that matches the POU family TF 
motif but its functional consequences were unclear.

Taken together, sequence class-level effects both corroborate 
existing regulatory mechanisms and propose new mechanisms for 
individual pathogenic mutations. We expect our framework to be 
a valuable tool in accelerating genetic discoveries of disease causal 
mutations and their mechanisms in the regulatory genome.

Discussion
We developed a genome-wide sequence-based map of regula-
tory activities using sequence classes, a vocabulary for genomic 
sequence activities discovered using a data-driven, systematic 
method. Our deep learning-based framework uses a compendium 
covering 21,907 publicly available cis-regulatory profiles and the 
whole-genome sequence to create a mapping from any sequence to 
a comprehensive set of sequence classes. Sequence classes are a con-
cise vocabulary of regulatory activities that is interpretable, quan-
tifiable and easily analyzed globally (across all sequence classes)  
and individually.

We demonstrated that E and P sequence classes are strongly 
enriched in trait and disease GWAS heritability and under evolu-
tionary constraints. Importantly, sequence classes provide insights 
into the mechanisms of individual pathogenic mutations by pre-
dicting effects on the function of tissue-specific enhancers, pro-
moter activity and long-range genome interactions (for example, 
the CTCF–cohesin sequence class). Using sequence class-level 
variant effect predictions, we linked many pathogenic mutations 
to tissue-specific regulatory changes in the relevant tissues. These 
predictions point to potential mechanisms that can be tested experi-
mentally in the future.

This work demonstrates the potential of sequence classes to dis-
cover regulatory disruptions in human diseases, through both the 
aggregation of genome-wide variant association signals and the pre-
diction of the impact of individual mutations. We expect sequence 
classes and the Sei model to be a powerful tool for understanding 
the mechanistic effects of noncoding mutations in human health.
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Methods
Training data. A total of 21,907 cis-regulatory profiles in peak format were 
compiled from the processed files of the Cistrome4, ENCODE2 and Roadmap 
Epigenomics projects3. The Cistrome Project, which systematically processes 
publicly available cis-regulatory profiles, contributed most of the profiles predicted 
in Sei (n = 19,905). We excluded profiles from Cistrome with fewer than 1,000 
peaks. Genome sequences are from the GRCh38/hg38 human reference genome. 
The full list of cis-regulatory profiles is available in Supplementary Table 1.

Deep learning sequence model training. The Sei model was trained to predict 
21,907 TF binding, histone marks and DNA accessibility from cis-regulatory profile 
peaks at the center of 4-kb length sequences. The model is trained on chromatin 
profile peak calls, which are binary (presence/absence), but the model output is 
continuous, representing probabilities of peaks.

The model architecture is composed of three sequential sections: (1) a 
convolutional network with dual linear and nonlinear paths; (2) residual dilated 
convolution layers; (3) spatial basis function transformation and output layers. A 
detailed specification of the model is available in Supplementary Fig. 21 and in the 
code repository (https://github.com/FunctionLab/sei-framework, downloadable 
from https://doi.org/10.5281/zenodo.4906996). In the convolutional architecture, 
we introduced a new design composed of both linear and nonlinear convolution 
blocks. The linear path allows for fast and statistically efficient training, while 
the nonlinear path offers strong representation power and the capability to learn 
complex interactions. The nonlinear blocks consist of convolution layers and 
rectified linear activation functions, similar to regular convolutional networks. The 
linear blocks have the same structure as the nonlinear blocks but do not include 
activation functions to facilitate learning of linear dependencies. Each nonlinear 
block is stacked on top of a linear block with a residual connection adding the 
input of the nonlinear block to the output, allowing the computation to go through 
either the linear or nonlinear path. Dilated convolutional layers with residual 
connections further expand the receptive fields without reducing spatial resolution. 
Finally, for scaling and performance, we introduced a layer of spatial basis 
functions, which integrates information across spatial locations with much higher 
memory efficiency than fully connected layers. Spatial basis functions are used to 
reduce dimensionality of the spatial dimension while preserving the capability to 
discriminate spatial patterns of sequence representations. Specifically, in the Sei 
model, a B-spline basis matrix (256 × 16) with 16 degrees of freedom across 256 
uniformly spaced spatial bins is generated and multiplied with the convolutional 
layers output to reduce the 256 spatial dimensions to 16 spline basis function 
dimensions. After the spline basis function transformation, a fully connected layer 
and an output layer are used to integrate information across the whole sequence 
and generate the final 21,907 dimensional predictions.

Our model training pipeline was updated35 to improve training speed 
and performance by using on-the-fly sampling, which reduces overfitting by 
generating new training samples for every training step. Training, validation 
and testing datasets are specified by different sets of chromosomes in the hg38 
genome (holding out chromosome 8 and 9 for the test set and chromosome 10 
for the validation set) and samples drawn uniformly across the hg38 genome 
for these partitions, excluding regions specified in the ENCODE blacklist36. For 
training, we sampled training sequences and their labels on the fly from the 
training set of chromosomes using Selene35. Thus almost all training samples 
are drawn from unique genomic intervals with distinct start and end positions 
to reduce overfitting during the training process. For each 4-kb region, a 21,907 
dimensional binary label vector was created for the 21,907 cis-regulatory profiles 
based on whether the center bp overlaps with a peak in each of the profiles. The 
model was implemented in PyTorch and trained with Selene. A detailed training 
configuration file is available at https://github.com/FunctionLab/sei-framework/
blob/main/train/train.yml.

Model performance. We computed the AUROC and AUPRC for all cis-regulatory 
profiles predicted by Sei on the test holdout dataset, excluding profiles that had 
fewer than 25 positive samples in the test set. Additionally, to assess the correlation 
structure of the predictions, we compared the rank-transformed pairwise 
Spearman rank correlations for the predicted cis-regulatory profiles to the pairwise 
correlations for the true labels (peak calls provided in the Cistrome Data Browser).

The model performance comparison between DeepSEA and Sei was computed 
on the 2,002 cis-regulatory profiles from Roadmap and ENCODE that both 
DeepSEA and Sei predict. Because both models have the same chromosomal test 
holdout (chromosomes 8 and 9), we use the regions specified in the DeepSEA test 
holdout set to create a common test dataset of sequences and labels on which to 
evaluate the models.

Sequence classes. We selected 30 million genomic positions that uniformly tile 
the genome with a 100-bp step size and then computed Sei predictions for 4-kb 
sequences centered at each position. Sequences overlapping with ENCODE 
blacklist regions36 or assembly gaps (Ns) were removed. To process the 30 
million × 21,907 predictions matrix, the dimensionality was first reduced with 
principal component analysis (PCA). The PCA transformations were fitted with 
incremental PCA using a batch size of 1,000,000 for 1 pass of the whole dataset; 

genomic positions were randomly assigned to batches. The top 180 principal 
components, scaled to unit variance, were used for constructing a nearest neighbor 
graph where each node is connected to its k-nearest neighbors by Euclidean 
distance (k = 14). Louvain community clustering with default parameters was 
applied to the nearest neighbor graph with the python-louvain package (version 
0.6.1), which resulted in 61 clusters. We refer to the largest 40 clusters as sequence 
classes and exclude the remaining (smallest) 21 clusters, which constitute <2.6% 
of the genome, from our analyses due to their size. These 21 clusters mainly 
displayed L or HET-like enrichment (Supplementary Fig. 20). We refer to this 
cluster assignment to sequence classes at 100-bp resolution as sequence class 
annotations. We visualized the genome-wide predictions by computing uniform 
manifold approximation and projection (UMAP) embedding with a subsample of 
PCA-transformed Sei predictions of 30 million sequences and then fine-tuned the 
visualization with openTSNE (version 0.6.0). The detailed procedures are available 
in our code repository (https://github.com/FunctionLab/sei-manuscript).

Sequence class scores. Each sequence class is represented as a unit vector in the 
21,907 dimensional cis-regulatory profile space, in the direction of the average 
prediction of all sequences assigned to this sequence class among the 30 million. 
In more formal notation, the vector for sequence class i is vi =

ps∈Sequence class i

||ps∈Sequence class i||2
, 

where ps represents the 21,907 dimensional Sei prediction for sequence s. Each 
Sei prediction can then be projected onto any sequence class vector to obtain a 
sequence class-level representation of the prediction, which we call sequence class 
score or scores, i = pTs · vi. In addition, predicted sequence class-level variant 
effects are represented by the difference between the sequence class scores of the 
sequences carrying the Ref and Alt alleles or scorev, i = scoreAlt, i − scoreRef, i. 
To better represent predicted variant effects on histone marks, it is necessary to 
normalize for nucleosome occupancy (for example, a LoF mutation near the TSS 
can decrease H3K4me3 modification level while increasing nucleosome occupancy, 
resulting in an overall increase in observed H3K4me3 quantity). Therefore, for 
variant effect computation, we used the sum of all histone profile predictions as an 
approximation to nucleosome occupancy and adjusted all histone mark predictions 
to remove the impact of nucleosome occupancy change (nonhistone mark 
predictions are unchanged):
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Ref  represents the sum over all histone mark predictions (among 21,907 

dimensions of a prediction) for the Ref allele. We generally excluded L sequence 
classes in sequence class-level variant effect analyses because they lack an intuitive 
biological interpretation.

Sequence class enrichment of chromatin profiles and genome annotations. 
We computed the log fold change enrichment of various chromatin profiles and 
genome annotations for each sequence class based on sequence class annotations 
(described above); log fold change enrichment is computed by taking the log ratio 
of the proportion of a sequence class intersecting with the annotation versus the 
background proportion of the annotation, where we consider all regions assigned 
to any sequence class. We computed enrichment for all 21,907 profiles predicted 
by Sei, filtered the chromatin profiles for each sequence class to only those having 
Benjamini–Hochberg-corrected (two-sided Fisher’s exact test) P < 2.2 × 10−16 and 
selected the top 25 profiles based on log fold change enrichment. Cistrome Project 
profile enrichment is computed over 2 million random genomic positions.

The annotation of centromere repeats was obtained from the University of 
California, Santa Cruz RepeatMasker track and annotations of histone marks 
over multiple cell types were obtained from the Roadmap Epigenomics project—
enrichments for both of these sets of annotations were computed over the entire 
genome. In addition, we obtained ChromHMM chromatin states from ENCODE2 
and tissue- and cell type-specific DHS vocabulary from Meuleman et al.18.

Enhancer sequence class correlations with cell type-specific gene expression. 
Tissue expression profiles are from GTEx19, Roadmap Epigenomics3 and ENCODE2 
and transformed to log RPKM (reads per kilobase of transcript, per million mapped 
reads) scores as previously described7 and normalized by tissue average. Specifically, 
a pseudocount was added before log transformation (0.0001 for GTEx tissues, which 
are averaged across individuals, and 0.01 for Roadmap and ENCODE tissues). After 
log transformation, the average scores across tissues were subtracted for each gene; 
thus, the processed scores represent log fold change relative to tissue average.

Gene-wide expression prediction was evaluated on sequence class annotations 
(from Louvain community clustering) for positions within ±10 kb of the TSS for 
these genes. For each enhancer sequence class and tissue, we computed a Spearman 
correlation between the sequence class annotation coverage and gene expression.

Sequence class variant effect correlation with directional eQTL variant effect 
sizes. We collected the eQTLs within ±5 kb of gene TSS from GTEx v8, combined 
across all GTEx tissues, and computed the Spearman correlation between the top 
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15,000 variant effect predictions for each sequence class and the eQTL variant 
effect sizes (averaged across multiple tissues if the variant was an eQTL in multiple 
tissues). P values were derived from a two-sided Spearman rank correlation test 
and Benjamini–Hochberg correction was applied. L and HET sequence classes 
were excluded from this analysis due to lack of interpretation for their variant 
effect scores in this context.

Additionally, we collected fine-mapped GTEx eQTLs from the eQTL 
Catalogue20 and obtained sequence class scores for eQTLs with a posterior 
inclusion probability greater than 0.95. Variants were assigned to sequence classes 
based on the sequence class annotation for the reference genome (that is, variants 
were not further selected based on variant effect predictions). For each sequence 
class, we computed the Spearman rank correlation between sequence class scores 
and eQTL variant effect sizes in the same way we described above.

Evolutionary constraints on variant effects. We computed sequence class-level 
variant effects for all 1000 Genomes Project phase 3 variants21. Variants were 
assigned to sequence classes based on the 100-bp resolution genome-wide 
assignment derived from Louvain community clustering. For each sequence class, 
we divided variants into six bins based on their effects in the same sequence class as 
illustrated in Fig. 3 and summarized the common variant (AF > 0.01) frequencies 
in each bin by mean and s.e.m. We also estimated statistical significance of AF 
dependency on sequence class-level variant effects. For each sequence class, we 
applied logistic regression separately for positive effect and negative effect variants 
to predict common variants (AF > 0.01) from the absolute value of the sequence 
class-level variant effect score and obtained the significance z-score of the regression 
coefficient of variant effect. The bidirectional evolutionary constraint z-score is 
defined as the negative value of the combined z-scores from positive and negative 
effect variants with Stouffer’s method.

Partitioning GWAS heritability by sequence classes. The UKBB GWAS summary 
statistics were obtained from Loh et al.25. To study the association of sequence 
class genome annotation and sequence class variant effects and trait heritability, 
we performed partitioned heritability LDSR as described by Finucane at al.22. 
To partition the heritability as sums of heritability explained by each sequence 
class, we ran LDSR with only sequence class annotations and a baseline all-ones 
annotation. We obtained the estimated proportion of h2 explained by each 
sequence class and its s.e. with LDSR as implemented in https://github.com/bulik/
ldsc. Because the estimated proportions can have high variance or even be negative 
(the true value of heritability explained can only be nonnegative), we used a robust 
and conservative estimator that is the estimated proportion of h2 subtracted by one 
s.e. and then lower-bounded by zero. (The s.e. of the estimated proportion of h2 
explained is given by LDSR and was estimated with the block jackknife procedure 
as described by Finucane et al.22.)

To assess the contribution of sequence classes to explaining additional 
heritability when conditioned on known baseline annotations, we also ran 
LDSCORE v.2.2 with the baseline annotations (https://alkesgroup.broadinstitute.
org/LDSCORE/). P values were derived from the coefficient z-score; Benjamini–
Hochberg correction was applied.

Sequence class variant effect analysis of noncoding pathogenic mutations. 
We obtained all mutations assigned ‘DM’ and ‘regulatory’ annotation in the 
HGMD database (2019.1 release). RMRP gene mutations were excluded because 
they are likely pathogenic due to impacting RNA function instead of regulatory 
perturbations, despite being annotated to the regulatory category in HGMD. For 
every mutation, we predicted the sequence class scores for both the Ref and Alt 
alleles and computed the sequence class-level variant effect as the predicted scores 
for the Alt allele subtracting the scores for the Ref allele. To provide an overview of 
sequence class-level effects of human noncoding pathogenic mutations, mutations 
were first assigned to sequence classes based on the sequence class annotations of 
the mutation position. For mutations with a strong effect in a different sequence 
class than the originally assigned sequence class (absolute value higher than the 

original sequence class by >1 absolute difference and >2.5-fold relative difference), 
we reassigned the mutation to the sequence class with the strongest effects.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The eQTL data were obtained from GTEx v.8 (ref. 19). Human population variants 
were obtained from the 1000 Genomes Project phase 3 (ref. 21). Human regulatory 
disease mutations were obtained from the HGMD (2019.1 release). All data for the 
manuscript results are available at https://github.com/FunctionLab/sei-manuscript.

Code availability
The Sei framework code is available at https://github.com/FunctionLab/sei- 
framework and the model and associated data files can be downloaded by following 
the instructions in the GitHub repository. The code for the manuscript results is 
available at https://github.com/FunctionLab/sei-manuscript. Both repositories are 
available for download at https://doi.org/10.5281/zenodo.6502732.
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