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Scalable multiplex co-fractionation/mass
spectrometry platform for accelerated protein
interactome discovery
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Dzmitry Padhorny4, Sergei Kotelnikov 5, Dima Kozakov4,5 & Andrew Emili 1,2✉

Co-fractionation/mass spectrometry (CF/MS) enables the mapping of endogenous macro-

molecular networks on a proteome scale, but current methods are experimentally laborious,

resource intensive and afford lesser quantitative accuracy. Here, we present a technically

efficient, cost-effective and reproducible multiplex CF/MS (mCF/MS) platform for measuring

and comparing, simultaneously, multi-protein assemblies across different experimental

samples at a rate that is up to an order of magnitude faster than previous approaches. We

apply mCF/MS to map the protein interaction landscape of non-transformed mammary

epithelia versus breast cancer cells in parallel, revealing large-scale differences in protein-

protein interactions and the relative abundance of associated macromolecules connected

with cancer-related pathways and altered cellular processes. The integration of multiplexing

capability within an optimized workflow renders mCF/MS as a powerful tool for system-

atically exploring physical interaction networks in a comparative manner.
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Proteins often physically associate to form higher order
multimeric assemblies that perform key biochemical func-
tions in different cell types and cell states1,2. Multiple

experimental approaches have been devised to identify these
biophysical interactions3, but most techniques (e.g., affinity pur-
ification, proximity labeling, or immunoprecipitation) involve
selective protein tagging, which precludes the unbiased study of
endogenous macromolecular networks. While isotopic labeling
and the use of sophisticated computational scoring have emerged
as potent means for enhancing the reliability of interactomic
studies4,5, these strategies impose additional constraints that have
limited their wider adoption. Thus, more efficient, and effective
strategies for mapping protein interaction networks (PINs) by
increasing assay throughput, automation, and quantitative accu-
racy remain desirable.

Biochemical fractionation-coupled to mass spectrometry (i.e.,
CF/MS) is a powerful alternative approach for the large-scale
detection of native protein complexes in cellular extracts6–11. CF/
MS involves the biophysical separation (e.g., chromatography) of
endogenous macromolecules isolated from cell or tissue-derived
soluble lysates, followed by liquid chromatography-tandem mass
spectrometry (LC/MS) based identification of stably interacting
proteins that co-elute together as components of intact multi-
protein assemblies1,12. Since there is no exogenous introduction
of genetic material or requirement of reagents for affinity pur-
ification, CF/MS can be used to examine macromolecular net-
works in a near physiological context starting from virtually any
biological sample. Protein interaction network (PIN) coverage
and accuracy are significantly improved by performing replicate
CF/MS experiments and by inclusion of supporting functional
association evidence5–8,13, but the former strategy is burdensome
since it involves time-consuming, resource-intensive processing
and LC/MS analysis of potentially hundreds of replicate fractions
while the latter imposes bias14.

Here, we leverage isobaric tandem mass tag (TMT) sample
barcoding together with automated processing of replicate bio-
chemical fractionations as the basis of a multiplexed (mCF/MS)
workflow that overcomes existing CF/MS drawbacks. We
designed, optimized and validated a rigorous mCF/MS protocol
that can markedly accelerate comparative interactome discovery
by minimizing manual sample manipulation and total LC/MS
instrument time while also eliminating the need for computa-
tional integration of functional annotation evidence for high
confidence PIN scoring. We apply this enhanced workflow to
decipher and compare the global protein interactomes of non-
transformed mammary epithelia against the PIN of two breast
cancer cell lines associated with triple-negative and luminal A
molecular subtypes, revealing macromolecular complexes that
appear to drive important malignant cell phenotypes. This breast
cancer interactome resource is publicly available at https://www.
bu.edu/dbin/cnsb/BrCa3CL/.

Results
Multiplex CF/MS Workflow. We designed and optimized a
seamless mCF/MS workflow to multiplex the analyses of up to 18
independent biochemical fractionation experiments, implement-
ing automated (robot-assisted) desalting and proteolytic digestion
of protein samples coupled to isobaric (TMT) peptide
labeling15,16 and pooling prior to standard LC/MS runs (Fig. 1).
To achieve high-resolution separation of endogenous macro-
molecules, we first subjected soluble protein lysates extracted
from cell (or tissue) biospecimens of interest (e.g., tumor-derived
cell lines) to extensive multibed ion-exchange liquid chromato-
graphy (IEX-HPLC), as described previously6,9. Using an
empirically optimized scheme, we applied a gentle salt gradient to

preserve native macromolecule integrity while collecting up to
192 fractions (i.e., two 96-well plates) per biological sample. To
ensure rigor (data reproducibility), we also performed multiple
independent fractionations (duplicate IEX-HPLC runs per sam-
ple). Since CF/MS generates a substantial number of native
protein fractions (e.g., potentially >1000 fractions in a replicate
experiment comparing three cell lines), we implemented auto-
mated magnetic bead-based sample processing compatible with
high peptide recovery and low reagent consumption (see Meth-
ods). We opted for paramagnetic carboxylic resin17, which is
well-suited for reversed-phase protein desalting, followed by
direct on-bead trypsin digestion in a 96-well plate format to
preserve sample orthogonality. The use of a magnetic bead
handling robot minimized sample consumption, time and labor
prior to downstream manual sample processing steps. As outlined
schematically in Fig. 1, the peptides generated from respective
sample fractions are then individually barcoded using distinct
TMT (e.g., 6-plex16) reagents and then pooled for LC/MS ana-
lysis, allowing both replicates and different samples to be studied
in parallel to reveal both intra-replicate reproducibility and
quantitative biological differences.

Multiplex CF/MS enables multi-condition protein co-elution
profiling. As a test use case, we performed a large-scale survey of
PIN alterations in breast cancer by using mCF/MS to compare the
composition and levels of protein macromolecules in three
established human cell lines (mammary-tumor derived triple-
negative MDA-MB-231, estrogen receptor-positive MCF7, and
non-transformed MCF10A breast epithelial cells). The cell lines
were grown in near-identical tissue culture conditions and sub-
jected to extensive IEX-HPLC fractionation in two replicates.
After automated protein digestion, TMT-6-plex labeling and
pooling of multiplexed samples, we performed quantitative LC/
MS analyses to examine the nature and extent of macromolecular
rewiring that occurs in the transformed cell state.

In total, the coelution profiles of 4613 soluble proteins were
identified and quantified with high confidence (Supplementary
Data 1), with the vast majority (4599, 99.7%) detected across all
six samples without missing values (Fig. 2a). Notably, sample
multiplexing significantly reduced (in this case, by 6-fold) the
total number of LC/MS injections, greatly accelerating data
acquisition while using less instrument time (e.g., 2 weeks as
opposed to ~14–18 weeks using our standard label-free method).
Our mCF/MS workflow also consumed substantially less starting
material (total protein extract) while still exhibiting high peptide
reporter ion intensity, signal-to-noise and protein co-elution
profile reproducibility (average Pearson correlation ≥0.95
between replicates; Supplementary Fig. 1a, b). For example, we
observed consistently high pairwise co-elution profile correlations
among known (annotated) complex subunits as compared to
randomized protein pairs (Supplementary Fig. 1c). Notably, the
annotated components of many representative multi-protein
assemblies (e.g., ARP2/3, 20 S proteasome, CCT/TRiC, COG,
Exocyst, COP9, Exosome, EIF3) were found to reproducibly
coelute (Fig. 2b), attesting to the overall reliability of the entire
mCF/MS workflow.

Mapping high resolution differential protein interaction net-
works in breast cancer cells. To rigorously infer high-confidence
PIN from these global co-fractionation data, we applied a strin-
gent supervised classifier scoring model, implemented within our
extensively benchmarked EPIC software13, to assess co-elution
profile similarity and predict PPIs relative to a large set of
reference “gold standard” protein complexes curated by Gene
Ontology (GO)18, IntAct19, and CORUM20. To avoid any
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potential bias, we did not use or integrate any functional evidence
in our scoring scheme. Rather, we evaluated the overall perfor-
mance of the mCF/MS data to reliably infer protein complex
memberships by calculating a summary Composite Score com-
prised of three independent evaluation metrics commonly used to
assess the accuracy of macromolecule predictions relative to
annotated complexes8,13,21, i.e., (i) Maximum Matching Ratio, (ii)
Overlap and (iii) Prediction Accuracy (Fig. 2c).

This rigorous benchmarking confirmed that our mCF/MS
procedure generated reliable PIN data for each of the three cell
lines. Notably, a third (9327) of the 25,235 PPIs detected by EPIC
(Supplementary Data 2) were preferentially detected in breast
cancer (MCF7 and MDA-MB-231) cells (Fig. 2d), suggesting
potential involvement in the establishment of the oncogenic
phenotypes. Moreover, most (73%, or 18,774) of the PPIs
detected by joint mCF/MS analysis of the three cell lines had at
least one supporting reference in the literature or a public
repository (Supplementary Fig. 2a). Using an empirically
optimized EPIC cutoff (0.625 score threshold), mCF/MS-derived
macromolecules attained >80% precision (FDR= 0.2) against
reference co-complexes curated in the CORUM database
(Supplementary Fig. 2b), pointing to the overall reliability of
mCF/MS for global PIN mapping. Strikingly, whereas supporting
functional evidence from external annotation repositories is often
required to boost prediction reliability using standard co-
fractionation workflows6–8,11,13, our mCF/MS experimental data
alone produced comparably high Composite Scores that were not
significantly enhanced by the additional inclusion of associating
evidence from STRING22 or GeneMANIA23 (Fig. 2c). Out of the
772 putative multi-protein assemblies identified from our mCF/
MS data (Fig. 2e, black; Supplementary Fig. 3; Supplementary
Data 3), most (498, 64.5%) showed significant overlap (Simpson’s
similarity index ≥0.45) to a previously reported (annotated)
protein complex (Fig. 2e, red). The remaining set of 274 novel

multi-protein assemblies (Supplementary Fig. 3) illustrate the
potential of the mCF/MS platform for biological discovery.

The precise TMT-labeling revealed quantitative changes in the
levels (relative abundance) of multiple protein complexes between
the control MCF10A and cancerous MCF7 and MDA-MB-231
cell lines (Fig. 3a). We observed a widely distributed protein
complex similarity index (Simpson’s Index; SI) profile among the
three cell lines (Supplementary Fig. 4a–c), revealing several highly
conserved complexes including the well characterized anaphase
promoting complex or cyclosome (APC/C)24,25 and human PAF1
complex (hPAF1c)26,27 (SI= 0.8–1.0, Supplementary Fig. 4d, e),
as well as a considerable number of differential macromolecular
assemblies (SI < 0.45) relevant to breast cancer cells. Some of the
exemplar differential complexes relevant to oncological contexts
include CID.105 (PAPSS2, STXBP2, GGCT, PLOD2, CTSB,
COLGALT1, and ZNHIT3) enriched in MDA-MB-231 cells
(Supplementary Fig. 4f) and CID.215 (AKAP12, ARFGEF1,
TRIM16, PURA, PURB), CID.220 (NRAS, IDE, PRKCD,
KCTD9, WDR4) and CID.161 (UBA52, SERPINH1, PPA2,
PCBP1, PLEC, and CTSD) that were preferentially found in the
ER+MCF7 cells (Fig. 3b–e; Supplementary Fig. 4g). PURA and
PURB are nucleic acid-binding proteins that form nucleoprotein
complexes associated with hematologic malignancies and
hyperproliferation28,29. Structural modeling revealed a potential
interaction interface situated in the N-terminal regions of both
polypeptide subunits (Fig. 3b), indicative of a heterocomplex
potentially formed in conjunction with RNA/DNA. AKAP12,
another member of this same complex, plays a significant role in
phosphorylation-dependent cell cycle progression and nucleocy-
toplasmic shuttling to facilitate DNA repair30,31, implying
alteration of these activities in ER+ breast cancer. Likewise,
while PRKCD is known to regulate RAS signaling extensively in
several tumor types including breast cancer32, our mCF/MS
results suggest an unexplored physical role in modulating
downstream MAPK signaling33 (Fig. 3c).
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Up to 9 biological samples Up to 18 HPLC runs Up to 18-Plex TMT
Up to 9 interactome maps

in one fell swoop

Native IEX-HPLC Fractionation Desalting/Digestion TMT-Labeling Data Acquisition Data Analysis

MS2

R1

R2

R1

R2

R1

R2

MS1

In
te

ns
ity

In
te

ns
ity

m/z

m/z

 Time line: 2 - 6 days              Time line: 6 - 18 days             Time line: 2 - 6 day              Time line: 16 days         Interactomes in parallel

TMT6-126

TMT6-129

TMT6-127

TMT6-130

TMT6-128

TMT6-131

Label-free CF-MS 
▪ 12 - 36 filled 96 well plates (i.e., 1,152 - 3,456 fractions)
▪ 2 hrs LC-MS analysis per fractions
▪ Total MS instrument time: 2,304 - 6,912 hrs (96 - 288 days)

Multiplexed CF-MS by TMT 
▪ 12-36 filled 96 well plates multiplexed into 2 x 96-well plates (192 fractions)
▪ 2 hrs LC-MS analysis per fraction
▪ Total MS instrument time: 384 hrs (16 days)

Fig. 1 Multiplex CF/MS workflow. Schematic illustration of the main modular steps: 1 – native protein extraction; 2 - biochemical fractionation (replicates
R1/R2); 3 - automated protein desalting and digestion; 4 - isobaric (TMT) labeling; 5 - LC/MS data acquisition; 6 – PPI/co-complex data analysis. For our
use case, soluble protein extracts from cultured MCF10A, MCF7, and MDA-MB-231 cells were used to illustrate and benchmark the mCF/MS pipeline. The
processing time for each modular step is shown in terms of total instrument usage as compared to a conventional label-free CF/MS procedure under
otherwise identical conditions.
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Within the set of differential protein assemblies exhibiting
rewiring in the breast adenocarcinoma-derived MDA-MB-231
cells, we enriched a well-characterized multiprotein assembly
involving Src, PTK2 (FAK) and PXN, corroborating previously
reported molecular mechanisms underlying breast tumor
plasticity34,35 (Fig. 3d). Among other complexes altered in
MDA-MB-231, we noted CID.083 (PDHB, PDHA1, NAA10,
HSPA4L, EPB1L1, DLST, COA7, CAPZA2, UBE4B, UBA6)
(Fig. 3e) whose members include a heterotetrameric pyruvate
dehydrogenase subcomplex (PDHA1, PDHB), mitochondrial
matrix components (e.g., CAO7, DLST, HSP4L) and non-
resident mitochondrial factors (e.g., UBE4B, UBA6). The
association of the ubiquitin-like modifier enzyme UBA6 aligns
with recent studies implicating UBA6-specific substates in
mitochondrial dysfunction36 and the enhanced metabolic char-
acteristics of triple-negative breast cancers37,38, and may be

attributed to differential regulatory phosphorylation by pyruvate
dehydrogenase kinases, PDHKs and phosphatases, PDP1/239.

To gain broader functional insights into the cellular pathways
and processes impacted by the differential protein assemblies
detected by mCF/MS, we performed systematic functional
enrichment analysis. Significant (adj. p < 0.05) alterations were
seen in the relative abundance of dozens of multi-protein
assemblies linked to 98 different cellular pathways and processes
(Supplementary Data 4), which were broadly annotated into 64
major functional themes (Supplementary Fig. 5). As anticipated, a
number of established oncogenic signaling pathways linked to cell
survival and invasiveness were enriched in the breast cancer cells.
These included assemblies preferentially detected in MDA-MB-231
cells with components implicated in Hedgehog and ERBB signaling
as previously reported for triple negative cancers40–42, and
complexes enriched for WNT and FGFR2 signaling components
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Source data are provided as a source data file. d Venn diagrams depicting the distribution of inferred high-confidence PPIs, both unique and shared among
the three cell lines, including total (black) and previously reported associations (red). e Venn diagram depicting the distribution of protein complexes
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in both MCF7 and MDA-MB-231 cells. Additionally, multi-protein
assemblies with components involved in RNA processing/mRNA
splicing, angiogenesis and central metabolism (e.g., oxidative
phosphorylation and carbohydrate utilization) were enriched in
both cancer lines (Supplementary Data 4), implicating these in
mediating oncogenic phenotypes.

Since protein interaction networks and, consequently, cellular
and physiological phenotypes are often profoundly impacted by
genomic aberrations associated with tumor progression43,44, we
cross-referenced the components of our mCF/MS-derived
macromolecular networks against the Cancer Genome Atlas
(TCGA)45 to link cancer-causing genomic alterations to the
differential assemblies we detected in the cancer cell lines. This
led us to identify molecular alterations present in triple-negative
(126 cases) and ER-positive (622 cases) breast cancer, including
missense and nonsense mutations, genomic insertions, and
deletions that map specifically onto the PIN and multi-protein
assemblies we detected in MCF-7 and MDA-MB-231 (Supple-
mentary Figs. 6, 7). Overall, clinical genomic aberrations were
associated with 2263 PPIs in MDA-MB-231, and 2038 PPI in
MCF7. In addition to the extensive TP53 mutations cataloged in
both ER-positive and triple negative cases, multiple genes (e.g.,

CDH1, AKT1, NCOR1, DYNC2H1, BIRC6, MYO18B) encoding
the interacting components of cancer cell line-specific PPIs
displayed significant rates of mutation in each the respective
breast cancer molecular subtypes (Supplementary Figs. 6, 7),
suggesting that this mutational burden impacts multi-protein
complexes directly and consequently elicits distinct malignant
phenotypes as noted recently by ref. 46.

Discussion
The automated processing and isobaric barcoding of biochemical
fractions implemented in the mCF/MS workflow represents a
substantive advance in speed, efficiency and efficacy for com-
parative exploration of cellular interactomes relative to standard
label-free6–9,11,13 or alternate SILAC-based CF/MS methods4,5.
Our multiplexing strategy shows good performance in bench-
marking tests even after sample downscaling (less resource con-
sumption), conferring additional advantages over existing
workflows4–12. In comparison, our previous studies of alternate
human embryonic and cancer cell lines (HEK293, HeLa) imple-
menting orthogonal 2-dimensional chromatography workflows
that generated >1000 biochemical fractions6 detected only half as
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many (~14,000) PPIs, of which just a small subset was deemed to
be cancer cell line-specific, underscoring the high overall utility of
mCF/MS relative to standard approaches.

Cellular PIN rewiring is governed by genomic alterations and
dynamic changes in protein expression, post-translational mod-
ification, and subcellular localization47–51. Robust detection and
quantification of co-eluting proteins across different samples is
essential to optimally infer differential protein complexes. Cap-
turing protein expression information is therefore paramount to
protein complex discovery. A poorly expressed protein in one cell
line for instance, may potentially go undetected due to the sto-
chastic nature of MS-based data acquisition leading to a pre-
sumably artefactual omission of the protein from a specific
protein complex. Our mCF/MS workflow here is technically
advantageous in boosting and enabling the reproducible detection
of proteins at otherwise near- or below-noise threshold. However,
it is important to note that the relative expression of proteins
between cell lines, e.g., cancer and non-cancer lines, may account
for potential intrinsic mechanisms deployed to either favor or
curb molecular association and elicit specific cellular functions.
Such differences in protein abundance are especially well docu-
mented in cancer cells and tissue including breast cancer52. We,
therefore, reasoned that the quantitative capabilities of mCF/MS
would enable insights into differential PPI formation among
oncoproteins and the accumulation of key macromolecules in
breast cancer cells, missed by standard qualitative CF/MS work-
flows (Fig. 3a). In principle, using new generation 16-18-plex
TMT reagents15,53, mCF/MS experiments encompassing replicate
analyses of up to 8 to 9 distinct biospecimens can be accom-
plished in a similar timeframe. This highlights the unique
advantage of barcoding and automation for improving through-
put and facilitating quantitative comparisons of larger sample
cohorts15,53. We conclude that mCF/MS should empower map-
ping of the basic macromolecular machinery of tumors and other
cell types.

Methods
Cell culture and preparation of native cellular protein extracts. Human
mammary tissue-derived cell lines were procured from American Tissue Culture
Collection (ATCC, VA, USA). MCF10A cells (cat. # CRL-10317, ATCC) were
cultured in Dulbecco’s modified Eagle’s medium (DMEM)-F12 medium supple-
mented with 0.5 mg/mL hydrocortisone, 100 ng/mL cholera toxin, 20 ng/mL EGF,
10 μg/mL insulin, and 5% horse serum (Fisher Scientific). MCF7 (cat. # HTB-22,
ATCC) and MDA-MB-231 (cat. # HTB-26, ATCC) cells were cultured in high-
glucose DMEM supplemented with 10% (v/v) fetal bovine serum (Fisher Scientific)
and 10 μg/mL insulin (MCF7 only). All cells were cultured in 5% CO2 at 37 °C.
Replicate cell cultures were harvested at sub-confluence by scraping in 1x phos-
phate buffered saline. Cells were centrifuged at 7000 × g for 1 min, snap-frozen in
liquid nitrogen and stored at −80 oC until use. Cell lysis was performed by
resuspension and Dounce homogenization in buffer containing 10 mM Tris-HCl,
250 mM sucrose, 5 mM MgCl2, 1 mM dithiothreitol (DTT), 0.1% (v/v) dodecyl-β-
D-maltopyranoside (DDM) and 1× Complete Protease and Phosphatase Inhibitor
Cocktail (Roche). The homogenates were treated with Turbonuclease (100 units/
mL) (Accelagen) for 30 min at 4 oC, clarified by centrifugation at 18,000 × g for
20 min at 4 °C, quantified by Bradford assay (Bio-Rad) and adjusted to 6.0 mg
protein/mL prior to fractionation.

Biochemical fractionation. To enhance resolution and streamline downstream
sample processing, we scaled down our previously optimized semi-preparative
triple phase IEX-HPLC methodology6. Specifically, protein extracts from each cell
line replicate were fractionated independently by triple-phase ion-exchange chro-
matography using an Agilent 1260 Infinity binary HPLC system consisting of a
stacked assembly in which a weak anion exchange PolyWAX LP column
(200 × 2.1 mm i.d., 5 µm, 1000-A; PolyLC Inc., MD, USA) was connected in tan-
dem to two weak cation exchange PolyCAT A columns (each 200 × 2.1 mm i.d.,
5 µm, 1000-A; PolyLC). The columns were conditioned in buffer A (10 mM Tris-
HCl, pH 7.6, 3 mM NaN3, 1% (v/v) glycerol) prior to loading 1.5 mg of protein
extract per replicate. For each replicate, 192 80-µL fractions were collected (two 96-
well plates) at a flow rate of 0.125 mL/min using a gradient elution of 0–67% buffer
B (buffer A+ 1.5 M NaCl) from 8–80 min, followed by 67–100% between
80–96 min. Protein elution was monitored by determining the UV absorbance at
280 nm. The collection of low sample volume allowed direct protein denaturation

in a manageable final volume compatible with the downstream automated
desalting and digestion on an automated Kingfisher magnetic purification instru-
ment (Thermo Fisher Scientific).

Automated desalting and digestion of co-fractionated proteins. The IEX-
HPLC co-fractionated samples were desalted and digested with trypsin in 96-well
format using the KingFisher Apex instrument (Thermo Fisher Scientific). Protein
fractions (≤10 µg total proteins) were denatured using 4M urea, reduced with
20 mM DTT for 30 min and alkylated with 20 mM iodoacetamide for another
30 min in the dark at room temperature. After the reaction was quenched with
10 mM DTT for 15 min at room temperature, the reduced and alkylated protein
fractions were desalted using 100 µg of an equal mixture of hydrophobic and
hydrophilic SeraMag SpeedBead carboxylate-modified magnetic particles (GE Life
Sciences), followed by on-bead digestion using sequencing-grade trypsin (Pierce) in
a 100 mM triethylammonium bicarbonate solution for 8 h at 37 oC. After drying in
SpeedVac, samples in the plates were labeled using a unique TMT-6plex reagent
(ThermoFisher Scientific) according to the manufacturer’s instructions with slight
modification to minimize TMT reagent consumption. Briefly, a total of 5 mg of
reagent per channel was used to equally label the 192 ion-exchange protein fraction
digests (i.e., 25 µg total reagent per 5 µg protein digests in each well), which were
then pooled (totaling 192 multiplex samples) and dried by SpeedVac for sub-
sequent analysis by LC-MS/MS.

Nanoflow LC-MS/MS data acquisition and analysis. The TMT-labeled peptides
were solubilized in mobile phase A (2% acetonitrile, 0.1% formic acid), loaded
using an EasyNanoLC 1200 HPLC pump onto a C18 trap column (75 µm i.d
× 2 cm, Acclaim PepMap100, Thermo Fisher Scientific), and resolved on an EASY-
spray column (75 µm i.d × 50 cm, PepMap RSLC C18, Thermo Fisher Scientific)
using a 90-min gradient (7–35% over 60 min, 35–60% over 30 min) of mobile
phase B (80% acetonitrile, 0.1% formic acid) at a 250 nL/min flow rate prior to
injection into the Q Exactive Orbitrap HF mass spectrometer (Thermo Fisher
Scientific). The instrument was operated in positive ion mode using an electrospray
voltage of 2100 V. High-energy collision dissociation (HCD) fragmentation data
were acquired in data-dependent acquisition (DDA) mode. Precursor ions (MS1,
300–1500 m/z) were scanned at a resolution of 120,000 at m/z 200, using an
injection time of 60 ms with an AGC target of 3 × 106 ions. The top 10 precursor
ions were selected for fragmentation (MS2) and scanned at a resolution of 30,000 at
m/z 200, using an injection time of 60 ms and an AGC target of 1 × 105 ions.

The raw data were processed using MaxQuant (version 1.6.1.0). All spectra were
searched using the Andromeda search engine against a FASTA file of the Homo
sapiens proteome (dated January 2021; 20,294 entries) downloaded from
UniprotKB. Oxidation and acetylation were specified as variable modifications,
while carbamidomethylation was specified as a fixed modification. For
quantification at tandem MS level, reporter ion MS2 with pre-defined 6-plex TMT
labels and reporter mass tolerance of 0.003 Da were set as relevant parameters.
Trypsin/P was specified as the proteolytic enzyme, with up to two missed cleavage
sites allowed. The precursor and fragment ions tolerance were set to 4.5 and
20 ppm, respectively. Match between runs was enabled, with all other MaxQuant
settings set to default. Batch-specific correction factors for TMT isotope ratios were
entered to correct for variable channel intensities. Protein and peptide
identification confidence threshold were set to an FDR of 1%.

Computational scoring of PPIs and protein complexes. The search files, con-
taining batch-corrected peptide MS2 reporter ion intensities corresponding to all
fractions, were processed in EPIC13 to predict PPIs and protein complexes, using a
random forest classifier with default parameters, as described previously8,13. Briefly,
after proteins detected in only a single fraction were discarded and the resulting
matrix was subjected to column-wise and row-wise normalizations to mitigate
fraction-bias8,13. Annotated protein complexes from Gene Ontology18, IntAct19,
and CORUM20 were used for training and evaluation. Co-elution scores were
calculated for each cell line using five correlation metrics (Euclidean, Bayes, Jac-
card, Apex, Mutual information)8,13. Predictions based on mCF/MS data alone
gave the best Composite Score results at an EPIC score cut-off of 0.625 and were
compared to those obtained with functional associations (excluding physical
interactions to avoid circularity) collected from STRING22 and GeneMANIA23.
Protein complex memberships were defined using ClusterOne21. Simpson’s simi-
larity index was used to estimate the overlap of predicted complexes between cell
lines, then among annotated complexes from the literature and publicly available
repositories. Pearson’s correlation coefficients (R2) were calculated to determine
reproducibility across intra-replicate IEX-HPLC experiments.

Mapping PPIs to public interactome repositories, literature and TCGA data-
base. To evaluate the extent to which our predicted PPIs recapitulate previously
published/annotated interactions, we mapped our binary protein interactions to
human protein interactions from various public repositories and literature. Phy-
sical and functional protein associations were downloaded from curated public
repositories including STRING v11.022, GeneMania23, HumanNet v.2.054, BioGrid
(July 2021)55, IrefIndex v.1156, CORUM20, Reactome57, Gene Ontology18,
IntAct19, hu.MAP2.0 PPIs58 (confidence cut off of 0.02), BioPlex 3.059, consensus
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human CF/MS interactome14, and high-throughput co-complex pairwise protein
interactions from CF/MS6,7 were used for cross-validations. UniprotKB accession
ID were used as a common identifer.

The R package ‘Maftools’60 was used to map TCGA45-cataloged mutations onto
PPI genes associated with the MDA-MB-231 and MCF7 breast cancer cell lines.
Mutations in 16,803 genes across 126 triple-negative and 622 ER-positive breast
cancer samples were cross-referenced to infer the frequency of mutations as well as
the mutational variants (SNPs, deletions and insertions) linked specifically to the
PPI genes.

Structural modeling of protein interactions. The structural models of protein
complexes were prepared using a combination of AlphaFold261 and
ClusProTBM62,63. For AlphaFold2, the multiple sequence alignments were pre-
pared using the MMseqs2 tool64 (Version 13-45111), and model selection was done
based on the cutoff value of 10.0 for the Predicted Aligned Error (PAE) of interface
residues. For ClusProTBM, the homology search was performed on a PDB100
database using hhsearch and the models were selected using probability cutoff of
99% and coverage cutoff of 75%. PDB templates for the computational structural
models shown in Fig. 3 and Supplementary Fig. 4 are 2V55 (ROCK-1:RhoE co-
complex)65, 1NI4 (Pyruvate dehydrogenase)66 and 2X0B (Angiotensinogen:Renin
co-complex)67.

Gene set enrichment analyses. A comprehensive compiled list of Human
Pathway annotations maintained by Bader Lab containing 4457 genesets (Ver.
January 01, 2022) was downloaded from http://download.baderlab.org/EM_
Genesets/January_01_2022. Geneset enrichment analysis (GSEA)68 of predicted
complexes from each cell line was performed using the normalized average protein
intensity profiles. Genesets were restricted to 3925 pathways annotated with 3–500
proteins. Complexes enriched for pathways (p < 0.05) were visualized in
Cytoscape69 using the Enrichment map70 and Auto Annotate71 plugins.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The mass spectrometry proteomics data (including both raw MS data and processed
MaxQuant output) have been deposited to the ProteomeXchange Consortium72 via the
PRIDE73 partner repository with the dataset identifier PXD027704. The breast cancer
interactome resource is available at https://www.bu.edu/dbin/cnsb/BrCa3CL/.
Computational structural models in Fig. 3 and Supplementary Fig. 4 were generated
using the following PDB entries as template; 2V55 (ROCK-1:RhoE co-complex)65, 1NI4
(Pyruvate dehydrogenase)66 and 2X0B (Angiotensinogen:Renin co-complex)67. Source
data are provided with this paper.
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