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Abstract
Recognition of facial expressions plays an important role in understanding human behavior, classroom assessment, cus-

tomer feedback, education, business, and many other human-machine interaction applications. Some researchers have

realized that using features corresponding to different scales can improve the recognition accuracy, but there is a lack of a

systematic study to utilize the scale information. In this work, we proposed a hierarchical scale convolutional neural

network (HSNet) for facial expression recognition, which can systematically enhance the information extracted from the

kernel, network, and knowledge scale. First, inspired by that the facial expression can be defined by different size facial

action units and the power of sparsity, we proposed dilation Inception blocks to enhance kernel scale information

extraction. Second, to supervise relatively shallow layers for learning more discriminated features from different size

feature maps, we proposed a feature guided auxiliary learning approach to utilize high-level semantic features to guide the

shallow layers learning. Last, since human cognitive ability can progressively be improved by learned knowledge, we

mimicked such ability by knowledge transfer learning from related tasks. Extensive experiments on lab-controlled, syn-

thesized, and in-the-wild databases showed that the proposed method substantially boosts performance, and achieved state-

of-the-art accuracy on most databases. Ablation studies proved the effectiveness of modules in the proposed method.

Keywords Facial expression recognition � Hierarchical scale network � Dilated inception blocks � Feature guided auxiliary

learning � Knowledge transfer learning

Introduction

Facial expression recognition (FER) refers to infer human

expressions or emotions from their face images (Li and

Deng 2020). Emotions can also be identified by elec-

troencephalogram (EEG) signals (Chen et al. 2015; Shen

et al. 2020). Many real-world applications are based on

FER. FER has been used to collect implicit feedback from

customers (Kasiran and Yahya 2007), which could help

administrators understand reviews and improve their

operating strategies. In education, a teaching feedback

collection system based on FER has been developed to

visualize students’ emotions in classrooms (Zeng et al.

2020). Many other applications for medical treat-

ment (Shih et al. 2008), surveillance (Ocegueda et al.

2011), autonomous driving and other human-computer

interaction applications have been developed (Bartlett

et al. 2003). However, the study of FER, which is currently

under active research, still needs improvement. The most

widely used quantitative measurement of FER is categor-

ical facial expressions (Mollahosseini et al. 2017). Cate-

gorical facial expressions usually contain seven emotions

with six basic emotions, angry, disgusted, fearful/afraid,

happy, sad, surprised, and one neutral emotion (Wang

et al. 2010). In Li et al. (2017), the contemptuous is also

included as an emotion category.

A general pipeline for FER can be summarized as

detecting faces, aligning faces, extracting facial expression

features, and classifying expressions (Li and Deng 2020).

In most research studies on FER, face detection is per-

formed separately, so researchers focus on extracting
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features related to facial expression and recognition of

expressions. Many researchers designed hand-crafted fea-

ture extractors followed by a support vector machine

(SVM) or decision tree (DT) as a classifier to obtain the

final expressions (Bartlett et al. 2005). Deep learning is

changing the development of FER, leading to methodolo-

gies with higher performance (Li et al. 2018; Wen et al.

2020; Bai et al. 2009). In Mollahosseini et al. (2016), the

researchers introduced a convolutional neural network

(CNN) containing four Inception modules to extract FER

related features using 1� 1, 3� 3 and 5� 5 kernels and

claimed that the sparsity of the Inception helped to learn,

but they still used the original Inception blocks, which

increased the model size. Hu et al. (2017) applied deep

supervision to intermediate feature maps for FER, but high-

level semantic information was not used for intermediate

layers learning.

In this study, we proposed a hierarchical scale convo-

lutional neural network (HSNet) for FER to systematically

enhance information extracted from the kernel, network,

and knowledge scales. First, inspired by that the facial

expression that can be defined by different size facial

action units (AUs) and the power of sparsity, we proposed

dilation Inception blocks (DIBs), which contains a standard

dilation Inception block (SDIB) and a residual dilated

Inception block (RDIB), to enhance kernel scale informa-

tion extraction. Second, to supervise relatively shallow

layers for learning more discriminated features from dif-

ferent size feature maps, we proposed a feature guided

auxiliary learning (FGAL) to utilize high-level semantic

information to guide the shallow layers’ learning. Last,

since human cognitive ability can progressively be

improved by learned knowledge, we mimicked such ability

by knowledge transfer learning (KTL) to use knowledge

learned from related tasks. Extensive experiments on lab-

controlled, synthesized, and in-the-wild databases showed

that the proposed method substantially boosts performance,

and achieved state-of-the-art accuracy on most databases.

Ablation studies proved the effectiveness of modules in the

proposed method. The proposed HSNet obeys a general

hierarchy, which is better visualized by a scale pyramid in

Fig. 1. Sample images from the used databases are shown

in Fig. 2 with details given in Sect. 4.1. In summary, the

main contributions of this work include:

• We designed an HSNet with a hierarchical scale idea

for enhancing information extraction from the kernel,

network, and knowledge scales.

• We proposed DIBs with different receptive field kernels

to extract features with a sparser architecture than the

original Inception modules.

• We utilized high-level semantic information to guide

the learning of intermediate layers through FGAL.

• Superior performance was shown on lab-controlled,

synthesized, and in-the-wild databases. HSNet achieved

the state-of-the-art accuracy on RaFD (99.88%).

The rest of this paper is organized as follows. In Sect. 2,

the general background of facial expression recognition,

and related deep learning basics are presented. The pro-

posed HSNet is presented in Sect. 3. Section 4 describes

the experiments and their results. Section 5 concludes the

paper with potential future work.

Related work

Facial expression recognition

Traditional machine learning methods for FER focus on

face geometry, edges, and contours to extract facial fea-

tures. Shan et al. (2005) proposed a low computation FER

algorithm based on the local binary pattern (LBP) algo-

rithm, but it did not achieve satisfying performance when

dealing with faces in different orientations. Berretti et al.

Fig. 1 Scale pyramid for extracting information from the kernel,

network, and knowledge scales for deep neural networks

Fig. 2 Sample images from facial expression databases. RaFD

database has eight expressions, while KDEF, FERG-DB, and RAF-

DB have seven expressions each. RAF-DB has challenging images, in

which some expressions are even harder for humans to recognize
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(2010) extracted and selected scale invariant feature

transform (SIFT) features for FER to improve extracted

features in different scales, but it had a relatively high

computational cost. Contour and region harmonic features

for sub-local FER were proposed by Shahid et al. (2020).

Avani et al. (2020) pointed out lips geometry features are

useful for facial expression recognition, so they proposed a

method using lips features based on the properties of

parabola. To select the most relevant handcrafted features,

singular vector decomposition (SVD) based co-clustering

in feature extraction was adopted for FER to reveal the

salient features in terms of attention maps and enhanced the

learning performance (Khan et al. 2016, 2017).

Deep learning based FER has become popular over the

past few years, because it can extract features of good

quality and perform tasks in an end-to-end manner (Li and

Deng 2020). CNNs are used in most image based FER

applications to extract features, while recurrent neural

networks (RNNs) are used in sequence and video based

FER studies (Li and Deng 2020). Khorrami et al. (2015)

indicated that learned CNN features have a high relation

with facial AUs. Barsoum et al. (2016) pointed out that

there are noisy labels in the FER databases, but did not

provide an efficient solution. Balahur et al. (2011) intro-

duced a deep learning based network called EmotiNet to

recognize emotion with text built on appraisal theories, but

it was limited by concept nuances and complex linguistic

rules. In Fan et al. (2020), a hybrid separable convolutional

inception residual network (HSCIRN) for FER was

developed, which reduces the number of trainable param-

eters for embedded system friendly applications, but the

method lost accuracy. Due to the larger intra-class vari-

ances than inter-class variances in some cases, center loss

based-CNN (Center-CNN) by Wen et al. (2016) and deep

locality-preserving CNN (DLP-CNN) by Li et al. (2017)

explicitly minimized the intra-class variances to overcome

such issue. Zhang et al. (2020) claimed that identity

information could help the FER and developed an identity-

expression dual branch network (IE-DBN) to improve the

recognition performance. However, none of these methods

considered to extract robust features systematically for

FER.

Convolutional neural network

The winner of the ImageNet challenge, AlexNet, demon-

strated the power of CNN, when there are enough com-

putational resources and data (Krizhevsky et al. 2012).

However, these networks achieve limited feature extraction

due to their limited number of layers. A deeper network

was achieved by Inception, in which the network learns to

select different kernels, 1� 1, 3� 3, 5� 5 and pooling,

rather than have them selected by designers (Szegedy et al.

2015). Different kernels represent various receptive field

sizes, so Inception is capable of multiple scale feature

extraction. Inception networks were improved by replacing

one 5� 5 kernel as two 3� 3 kernels in Inception-V2 and

replacing n� n by its asymmetric pairs 1� n and n� 1

kernels in Inception-V3 (Szegedy et al. 2016). Residual

network (ResNet) utilized a skip connection to solve the

degradation problem, and allowed the network to be much

deeper (He et al. 2016). In addition, to improve the

effectiveness and making Inception deeper, Inception-v4

and Inception-ResNets were also developed by Szegedy

et al. (2017).

The dilated convolution (a.k.a atrous convolution)

operations insert holes among convolution kernels, so that

they can enlarge the receptive field and extract better

contextual information without increasing the number of

parameters (Yu and Koltun 2016). Compared with standard

convolutions

Flði; jÞ ¼
X

m

X

n

Fl�1ðiþ m; jþ mÞKðm; nÞ; ð1Þ

dilated convolution has skips in its operation as

Flði; jÞ ¼ ðFl�1 �KdÞði; jÞ

¼
X

m

X

n

Fl�1ðiþ m� d; jþ n� dÞKðm; nÞ;

ð2Þ

where Fl and Fl�1 are feature maps at layer l and l� 1

where l 2 f1; 2; . . .; Lg, K is the standard convolution filter,

Kd is the dilated convolution filter and d is the dilation rate.

It can be seen that the dilated convolution does not increase

the number of learnable parameters in kernels. For a

standard convolution with size k � k, the receptive field of

the dilated convolution kernel with dilation d becomes

kd � kd, where

kd ¼ k þ ðd � 1Þðk � 1Þ: ð3Þ

Therefore, by increasing the dilation rate d, the receptive

field of a kernel can be changed, while the number of

parameters remains unchanged as the ordinary kernels.

Knowledge transfer learning

Deep learning requires a vast amount of data to learn latent

patterns, but in many cases, collecting and annotating data

is difficult (Tan et al. 2018). KTL, which can transfer the

knowledge from the source domain to the target domain,

becomes very useful in these cases for reducing the effort

to collect and annotate more data. Given a source domain

and source task, and a target domain and target task, KTL

intends to assist in the learning of the target function uti-

lizing knowledge from the source domain and source

Cognitive Neurodynamics (2022) 16:847–858 849

123



task (Pan and Yang 2009). There are two categories of

KTL, inductive and transductive one (Deng et al. 2014).

The source and target tasks are the same in the former

setting, while they are different in the latter. In deep

learning based KTL, most methods focused on the induc-

tive KTL. Neural networks usually learn common features

in the first few layers, while they learn specific features in

the last layers (Yosinski et al. 2014). In addition, knowl-

edge learned from tasks with a closer relationship can

improve the model performance (Zamir et al. 2018).

Recently, there are several successful applications of

KTL (Chen et al. 2020; Devlin et al. 2019; Abbasi et al.

2020). The KTL process is similar to the human cognitive

ability that can progressively be improved by the knowl-

edge learned from other tasks. Inspired by the similarity

between KTL and how humans improve cognitive ability,

we employed KTL to transfer useful knowledge for the

FER task.

Methodology

Given a 3D tensor x as an input facial image, and the

ground truth expression scalar label y 2 f0; . . .;C � 1g, we
aim to use the proposed HSNet to predict a probabilistic

expression vector Ŷ where the index of the highest prob-

ability acts as the predicted class. To achieve this, HSNet

utilizes a hierarchical way to enhance the feature extraction

ability from the kernel (Sect. 3.1), network (Sect. 3.2), and

knowledge scales (Sect. 3.3). Finally, we summarize the

network structure and present the loss function in Sect. 3.4.

The schematic of HSNet is shown in Fig. 3.

Kernel-scale enhancement: dilated inception
blocks

The motivation for using dilated Inception comes from

facial expressions being represented by a combination of

facial AUs in different sizes (Lucey et al. 2010). There-

fore, novel DIBs (Fig. 4), consisted of SDIBs and RDIBs,

were proposed to extract features using kernels with dif-

ferent receptive fields. Compared with the original Incep-

tion module, DIBs not only have kernels with different

receptive fields, but also have reduced the number of

parameters of the network, which can result in a sparser

representation.

The general architecture of SDIBs is shown in Fig. 4a,

where the block uses 3� 3 convolutions with different

dilation rates d to realize the different receptive fields, 1�
1 convolutions to decrease the number of channels, and a

max pooling to preserve the orientation-invariant property.

By assuming the spatial input size as H �W , the spatial

output size is half of the spatial input size subtracted by one

rounded down to an integer as

bðH � 1Þ=2c � bðW � 1Þ=2c, while the number of chan-

nels depends on the specific implementation. Let Sli be the

intermediate feature map for ith branch of the layer l. SDIB

can be described as

Sli ¼ Fl�1 �Kl
1�1 �Kl

3�3;d ð4Þ

ði 2 f1; 2; 3g; d 2 fa; b; cgÞ;
Sl4 ¼ Fl�1 � Pl

3�3 �Kl
1�1;

ð5Þ

Fl ¼ Sl1 � Sl2 � Sl3 � Sl4; ð6Þ

where Kk�k and Pk�k refer to the k � k convolution and

max-pooling kernels; a, b and c are the dilation rates; �

Fig. 3 Schematic of HSNet. a shows kernel-scale enhancement which

is achieved by DIBs consisted of SDIBs and RDIBs in the dashed

green box. b shows the first part of network-scale enhancement which

is realized by the feature fusion of FGAL using high-level semantic

features in the dashed red box. c shows the second part of network-

scale enhancement, which is implemented by self-guided classifiers of

FGAL to learn weights for all classifiers in the dashed red box. d
shows knowledge-scale enhancement which is performed by KTL

from face recognition in the dashed purple box. The input size is

assumed as 3� 224� 224, but it can be varied
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and � denote the convolution and concatenation opera-

tions, respectively; Batch normalization and rectified linear

units (ReLUs) are ignored in the expressions for simplicity.

Similarly, RDIBs (Fig. 4b) are realized by 3� 3 con-

volutions with different dilation rates d, and 1� 1 convo-

lutions. In addition to that, a skip connection has been used

to add the input feature map Fl�1 and the concatenated

feature map Sl to obtain the final output feature map as

Sli ¼ Fl�1 �Kl
1�1 �Kl

3�3;d ð7Þ

ði 2 f1; 2; 3g; d 2 fa; b; cgÞ;
Sl4 ¼ Fl�1 �Kl

1�1;
ð8Þ

Sl ¼ Sl1 � Sl2 � Sl3 � Sl4; ð9Þ

Fl ¼ Fl�1 þ Sl; ð10Þ

where the output feature map size is the same as the input

feature map size.

During the implementation, there are variations for each

SDIB and RDIB as shown in Fig. 3a via setting different

dilation rates, and excluding some branches.

Network-scale enhancement: feature guided
auxiliary learning

The auxiliary learning for intermediate layers has been

used in Szegedy et al. (2015) to avoid gradient vanishing

problem, but the high-level semantic information is not

used. We proposed a novel FGAL approach to let the

network learn more discriminate features from intermedi-

ate feature maps by utilizing high-level semantic feature

maps. This will enable the network to learn more fine-

grained features from bigger feature maps.

Inspired by feature pyramid network (FPN) from the

object detection task (Lin et al. 2017) to incorporate high-

level semantic features, FGAL uses deeper features as

high-level features and generates fused feature maps for

different scales (Fig. 3b). After each RDIB, the network

obtains a low-level feature map FA, a medium-level feature

map FB and a high-level feature map FC. First, an 1� 1

convolution is applied on FC to obtain ~F
C
as

~F
C ¼ FC �KC

1�1: ð11Þ

Then, the high-level feature map ~F
C

is convolved by a

convolution to adjust the number of channels, and a nearest

upsampling operation UP to enlarge the size. Finally, it is

added with the feature map FB to obtain ~F
B
as

~F
B ¼ FB þ UPð ~FC �KB

1�1Þ; ð12Þ

Similarly, we can obtain ~F
A
from FA and ~F

B
as

~F
A ¼ FA þ UPð ~FB �KA

1�1Þ: ð13Þ

Since there are three fused features maps, but one classifier

is needed for the model’s final output, FGAL learns a

weight for each level feature map to guide itself for indi-

cating its importance (Fig. 3c). This self-guided classifier

using its own fused feature map is inspired by attention in

natural language processing (Luong et al. 2015). Consider

(a)Architecture of SDIBs

(b)Architecture of RDIBs

Fig. 4 General architectures of DIBs. Conv stands for the convolu-

tion, and MaxPool for the max pooling
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one of the fused feature maps as ~F
j
(j 2 fA;B;Cg), it first

goes through an adaptive average pooling and then resizes

as a feature vector W j, where the size depends on the

number of channels of ~F
j
. Then, there are two fully con-

nected (FC) layers, one W j
1 for mapping to a scalar fol-

lowed by a sigmoid function r to obtain a learned weight
~kj, and oneW j

C for mapping to an unweighted class output

~Y
j 2 C. The weighted class output Ŷ

j
for the jth classifier

is obtained by multiplying the weight with the unweighted

class output as

Ŷ
j ¼ rðW j �W j

1Þ � ðW j �W j
CÞ ð14Þ

¼ rðkjÞ � ~Y
j ¼ ~kj � ~Y

j
: ð15Þ

Finally, all the three classifiers’ outputs Ŷ
A
, Ŷ

B
, Ŷ

C
are

summed to obtain the model’s final output as

Ŷ ¼ ~kA � ~Y
A þ ~kB � ~Y

B þ ~kC � ~Y
C ð16Þ

¼ Ŷ
A þ Ŷ

C þ Ŷ
C
: ð17Þ

Knowledge-scale enhancement: knowledge
transfer learning

Inspired by how humans improve cognitive ability, we

applied KTL (Fig. 3d) to enlarge the knowledge scale.

First, an Inception-ResNetV1 (Szegedy et al. 2017) model

was used as the source model, which was trained on the

source face recognition domain using the VGGFace2

dataset with 3.31 million images to learn general face

related knowledge (Cao et al. 2018). The learned knowl-

edge for the stem is denoted as hrecog. Then, the proposed

HSNet f ðhÞ is used as the target model for the target FER

domain, consisting of the same stem as the Inception-

ResNetV1, and the subsequent modules as discussed in the

above sections. The parameter of HSNet h consists of 2

parts as hs for the stem, and hh for all the rest parts. Then,

the KTL starts by initializing the stem parameters from the

face recognition knowledge and then randomly initializing

the rest as

f ðhÞ ¼ f ðhs; hhÞjhs hrecog;hh HeInitðhhÞ; ð18Þ

where HeInit stands for the He initialization (He et al.

2015). Assuming the loss is L, when updating the param-

eters, hs is frozen as the fixed knowledge and hh is updated
using the gradient descent of learning rate q as

hs  hrecog; ð19Þ

hh  hh � qrhhL: ð20Þ

Network structure and loss function

The complete HSNet structure is built upon each compo-

nent as mentioned in the previous section except for the

stem network used from the Inception-ResNetV1 (Szegedy

et al. 2017). The HSNet structure details are defined in

Table 1, where we include all convolutions, poolings,

upsampling, and FC layers, but omit BatchNorm and

activation functions for simplicity. The input image size is

assumed as 3� 224� 224 in the Table 1 and Fig. 3 for

demonstration purposes, but the size can be varied.

For training, the maximum likelihood estimation (MLE)

is used to derive the the multi-class cross-entropy (CE) as

the loss function. Consider a minibatch of training samples

fðxi; yiÞ j i ¼ 1; . . .;NBg, and the model generates a pre-

dicted vector Ŷ i ¼ f ðxi; hÞ. The loss can be expressed as

L ¼ � 1

NB

XNB

i¼1
log

�
eŶiðyiÞ

PC

j¼1
eŶiðjÞ

�
; ð21Þ

where NB is the number of samples within a minibatch.

Experiment and result

Comprehensive experiments were conducted on frequently

used databases. We also performed ablation studies for the

proposed modules.

Database

RaFD

The Radboud Faces Database (RaFD) (Langner et al.

2010) is a laboratory-controlled FER database covering 8

expressions as 6 basic, 1 neutral and 1 contemptuous

expressions. It has 8056 images of 67 subjects.

KDEF

The Karolinska Directed Emotional Faces (KDEF)

(Lundqvist et al. 1998) is an early laboratory-controlled

FER database with 7 expressions as 6 basic and 1 neutral

expressions. It contains 4,900 images taken from 70 sub-

jects who were well informed and instructed before image

acquisition, and 5 images were taken from different views.

FERG-DB

The Facial Expression Research Group 2D Database

(FERG-DB) (Aneja et al. 2016) is a synthesized character

style database containing 7 expressions, 6 basic and 1

852 Cognitive Neurodynamics (2022) 16:847–858
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Table 1 The details of the network structures

For the convolution (Conv) and max pooling (MaxPool) operations, the number besides is the kernel size and the numbers under them are the

stride, zero padding and dilation rate. For the adaptive average pooling (AdaptAvgPool) and fully-connected (FC) layer, the numbers below are

the output dimensions. The nearest mode is used for upsampling (UpSample). The input image size is assumed as 3� 224� 224

Cognitive Neurodynamics (2022) 16:847–858 853
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neutral expressions, based on 6 cartoon characters. The

55,767 annotated faces were created by MAYA (Trepag-

nier et al. 2006) using CNN models trained on the Exten-

ded Cohn-Kanade (CK?), Denver Intensity of

Spontaneous Facial Actions (DISFA), MMI and KDEF

databases.

RAF-DB

The Real-world Affective Face Database (RAF-DB) is an

FER database collected from the ‘‘wild’’ (Li et al. 2017; Li

and Deng 2018). The database has 7 expressions, 6 basic

emotions and neutral, with 29,672 images covering diverse

poses, illuminations, and backgrounds. It facilitates

research from lab-controlled conditions to natural or ‘‘in-

the-wild’’ environments.

Implementation detail

The experiments were implemented using the PyTorch

deep learning framework (Paszke et al. 2019). An adaptive

moment (Adam) optimizer (Kingma and Ba 2015) was

used with an initial learning rate of 0.01, and the first and

second order momentums of 0.9 and 0.999 respectively.

The model was trained for 500 epochs with a minibatch

size of 32. The ReduceLROnPlateau scheduler dynami-

cally reduced the learning rate if the validation loss does

not change for 20 epochs. Random horizontal flips and 5

degree rotations were applied as the data augmentation.

Experiments were conducted on a computer with an Intel

Xeon Silver 4108 CPU and an NVIDIA GeForce RTX

2080Ti GPU. For data pre-processing, we used multitask

cascaded convolutional networks (MTCNN) to detect

faces (Zhang et al. 2016). For RaFD and KDEF, faces

were detected and cropped to 100� 100 and 256� 256

resolution, while other datasets provide cropped faces and

face detection is not needed.

Evaluation metrics

As a classification task, it is normally evaluated by using

the top-1 overall accuracy (Acc.) as

Acc. ¼
PC

j¼1 TPj

N
; ð22Þ

where TPj stands for truth positive for class j; N ¼
PC

j¼1 Nj

is the sum of the number of samples for each class Nj. A

common evaluation metric for imbalanced data is the mean

accuracy (mAcc.), which takes the mean of accuracy for

each class as

mAcc. ¼
XC

j¼1

TPj

Nj

 !
=C: ð23Þ

Experiment and discussion

Demonstration of qualitative results is shown in Fig. 5.

Quantitative results including overall accuracy, mean

accuracy and confusion matrices are discussed below.

Experiment on RaFD

No face alignment was applied, since some images were

taken completely from side views. The database was

divided into training, validation and test sets of 5,152,

1,440, and 1,608 images respectively. Each expression

class was balanced with 644 images for training, 160 for

validation and 201 for testing.

Fig. 5 Demonstration of qualitative recognition results for each

database. GT: ground truth label; PD: predicted label

(a)RaFD (b) KDEF

(c) FERG (d) RAF-DB

Fig. 6 Confusion matrix of test sets of different datasets

854 Cognitive Neurodynamics (2022) 16:847–858
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The confusion matrix of the experiments on the RaFD

database is shown in Fig. 6a. Table 2 shows that HSNet

achieved 99:88% predicted accuracy, which is the state-of-

the art result on RaFD. HSNet, through its hierarchical

scale feature extraction process, has excellently learned

features to discriminate most expressions. Some errors

were made on the neutral, contemptuous, fear and disgust

classes, however, these expressions, especially neutral and

contemptuous, are confusing for people in some cases.

Experiment on KDEF

For training 7798 images were selected and divided into

training and validation sets at an 8:2 ratio. 1956 images

were selected for testing. The number of images for each

expression class in this database is almost equal.

The performance of HSNet and results from other

advanced methods are summarized in Table 3. HSNet

outperforms the other methods, achieving an overall

accuracy of 93.35%. The confusion matrix for HSNet is

shown in Fig. 6b and it indicates that the expressions of

afraid and surprised can be confused, as approximately

10% of afraid expressions are recognized as surprised. This

may due to the main characteristic of both expressions

being the opened mouth.

Experiment on FERG-DB

In this synthetic database, the backgrounds of images are

pure white or black, so the original images with resolution

256� 256 can be used to train the network. The purpose to

test on this dataset is that more and more people tend to

replace their faces as characters on social media to protect

their privacy, so the expression recognition of those syn-

thesized faces becomes important.

The performance of HSNet and other advanced methods

is summarized in Table 4. FERG-DB is a relatively easy

database for FER, since the synthesized faces do not have a

dense representation of facial expressions and most meth-

ods achieve high accuracy. HSNet still obtained the highest

accuracy at 99.35%. The confusion matrix for HSNet on

FERG-DB is shown in Fig. 6c.

Experiment on RAF-DB

The RAF-DB database provides aligned images and has

pre-defined training and testing sets of 12,271 and 3065

images, respectively. The training data was categorized at a

9:1 ratio for training and validation. This ‘‘in-the-wild’’

database is highly imbalanced. Of the 12,271 original

training images, 1290 are for surprised, 1982 for sad, 2524

for neutral, 4772 for happy, 281 for fearful, 705 for angry

and 717 images for disgusted expressions. The input image

is resized as 224� 224.

The performance of HSNet and other advanced methods

is summarized in Table 5. As this database is an imbal-

anced database, we evaluate the performance based on both

overall accuracy and mean accuracy against each class.

From the confusion matrix (Fig. 6d), HSNet performs well

on the surprised, happy, sad, and neutral expressions, but

did poorly on the angry, fearful and disgusted expressions.

The decrease of accuracy on angry, fearful and disgusted

expressions is likely because there are fewer images in the

training database for these classes. Despite not using

advanced methods to reduce intra-class and increase inter-

class distances, HSNet outperformed DLP-CNN in mean

accuracy by 2.69%. This may due to that our network can

learn fine-grained discriminated features from multiple

scales. In addition, HSNet surpassed a recent method IE-

DBN by approximately 2% in overall accuracy. The result

proves that HSNet are able to generalize to the in-the-wild

scenarios.

Ablation study

An ablation study on the RAF-DB database was conducted

for the DIB, FGAL and KTL components, which corre-

spond to the kernel, network, and knowledge scales

enhancement. The result is shown in Table 6 and described

below. The baseline network is Inception-ResNet v1 pre-

sented in Szegedy et al. (2017).

First, by adding a single module, DIB, FGAL or KTL,

into the baseline network, the accuracy increased by no

more than 1%. The increase caused by DIB is surprising.

This improvement may not only due to the different

receptive fields created by the DIB, but also the sparser

representation yielded from the dilation operations. Sec-

ond, by adding two modules to the baseline, we can

observe an increase of more than 1%. Among these results,

we see that FGAL may play a slightly more important role

for contributing to the final improvement. This

Table 2 Accuracy on RaFD database

Method Acc. (%)

Bayesian (Mao et al. 2016) 74.96

ExpNet (Chang et al. 2018) 75.00

DAECNN (Prieto and Oplatkova 2018) 78.51

VSDL (Mavani et al. 2017) 95.71

HSCIRN (Fan et al. 2020) 96.87

SBNN (Sun et al. 2017) 96.93

DeepExp3D (Koujan et al. 2020) 97.65

HSNet 99.88
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improvement shows that using high-level semantic feature

to guide the learning of intermediate features are very

useful in FER tasks. Last, using DIB, FGAL and KTL, we

can see the accuracy has another approximately 0.5%

increase. This proves that knowledge transfer can help the

learning of other similar tasks, and the three modules can

coordinate with each other to work as better as they can.

Conclusion

In this study, we proposed an HSNet for FER to system-

atically enhance information extracted from kernel, net-

work, and knowledge scales. First, inspired by the facial

expression can be defined by different size facial AUs and

the power of sparsity, we proposed DIBs to enhance kernel

scale information extraction. Second, to supervise rela-

tively shallow layers for learning more discriminated fea-

tures from different size feature maps, we proposed an

FGAL to utilize high-level semantic information to guide

the shallow layers’ learning. Last, since human cognitive

ability can progressively be improved by learned knowl-

edge, we mimic such ability by KTL from related tasks.

The experimental results demonstrate state-of-the-art per-

formance on several databases, especially the 99.88%

accuracy achieved on the RaFD database. Ongoing work is

to design more robust methods to attack problems with

FER ‘‘in-the-wild’’, such as the long-tailed and misla-

belling problems.
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