TABLE 5.
5-fold performance comparison of different feature selection algorithms in the deep learning-based prediction model.
Mi | t-SNE | The proposed model | |||||||
---|---|---|---|---|---|---|---|---|---|
Cost | Accuracy | AUROC | Cost | Accuracy | AUROC | Cost | Accuracy | AUROC | |
1 | 1.9900 | 0.6156 | 0.4309 | 0.6508 | 0.7143 | 0.5000 | 0.0004 | 0.9999 | 0.9998 |
2 | 3.3951 | 0.6230 | 0.5000 | 0.6574 | 0.6230 | 0.5000 | 0.0171 | 0.9959 | 0.9967 |
3 | 6.7629 | 0.4298 | 0.5000 | 0.8742 | 0.4551 | 0.5077 | 0.1822 | 0.9849 | 0.9808 |
4 | 1.4862 | 0.5076 | 0.5028 | 0.9059 | 0.4702 | 0.4677 | 0.1213 | 0.9764 | 0.9772 |
5 | 3.2534 | 0.6534 | 0.5000 | 0.5965 | 0.6754 | 0.6193 | 0.0454 | 0.9945 | 0.9958 |
Average | 3.3775 | 0.5659 | 0.4867 | 0.7370 | 0.5876 | 0.5189 | 0.0732 | 0.9903 | 0.9916 |
The average Cost, Accuracy and AUROC of DEG+DMP feature selection algorithm are used in the prediction model based on deep learning.