Table 1.
Metrics comparison of 35 different ML regression models. Models were compared on the basis of their performance to predict MIC values of three antibiotics on test datasets.
Names of models used | Ciprofloxacin |
Cefixime |
Azithromycin |
||||
---|---|---|---|---|---|---|---|
RMSE | R2 | RMSE | R2 | RMSE | R2 | ||
1 | ADABoostRegressor | 13.61701 | 0.12067 | 0.04143 | 0.66328 | 6.28431 | 0.14474 |
2 | ADARegressor | 9.58793 | 0.62305 | 0.04086 | 0.76301 | 1.61560 | 0.78313 |
3 | BaggingRegressor | 6.10417 | 0.69089 | 0.04038 | 0.67140 | 1.37854 | 0.7369 |
4 | BayesianRidge | 6.06775 | 0.69462 | 0.03931 | 0.68590 | 1.54538 | 0.70676 |
5 | CATBoostRegressor | 3.87531 | 0.77393 | 0.03807 | 0.74570 | 1.40781 | 0.79317 |
6 | DecisionTreeRegressor | 7.82284 | 0.54359 | 0.04396 | 0.61863 | 1.91145 | 0.66770 |
7 | DummyRegressor | 9.12458 | 0.31455 | 0.07010 | 1.2696e-32 | 2.84645 | −0.00093 |
8 | ElasticNet | 7.39072 | 0.58821 | 0.07011 | 1.8281e-19 | 2.72904 | 0.65383 |
9 | ElasticNetCV | 0.03914 | 0.68890 | 0.68433 | 0.68433 | 1.51770 | 0.71596 |
10 | ExtraTreeRegressor | 8.01472 | 0.53616 | 0.04531 | 0.59814 | 1.81783 | 0.68063 |
11 | ExtraTreesRegressor | 0.04073 | 0.66861 | 0.04373 | 0.62071 | 1.75033 | 0.70090 |
12 | GaussianProcessRegressor | 0.04942 | 0.68436 | 0.04259 | 0.65792 | 1.99184 | 0.54625 |
13 | GradientBoostingRegressor | 6.02614 | 0.70108 | 0.03914 | 0.68890 | 1.44105 | 0.74478 |
14 | HistGradientBoostingRegressor | 5.71240 | 0.73384 | 0.03816 | 0.70486 | 1.35686 | 0.77633 |
15 | HuberRegressor | 6.68917 | 0.65186 | 0.04073 | 0.66861 | 1.59841 | 0.68702 |
16 | KNeighborsRegressor | 0.08358 | 0.63807 | 3.49214 | 0.63424 | 1.21033 | 0.71268 |
17 | KernelRidge | 9.60091 | 0.46778 | 0.03990 | 0.67779 | 1.62867 | 0.68134 |
18 | LarsCV | 9.51242 | 0.45764 | 0.04045 | 0.66715 | 1.55067 | 0.70463 |
19 | Lasso | 7.58347 | 0.57166 | 0.07010 | 1.883e-15 | 2.84645 | 0.73652 |
20 | LassoCV | 8.64752 | 0.54124 | 0.03942 | 0.68436 | 1.50917 | 0.71937 |
21 | LassoLarsCV | 0.03989 | 0.67792 | 0.04104 | 0.65787 | 1.52546 | 0.71292 |
22 | LassoLarsIC | 6.72328 | 0.63309 | 0.04039 | 0.66812 | 1.53725 | 0.70890 |
23 | LinearRegression | 8.41567 | 0.54621 | 0.34524 | 0.01717 | 1.76178 | 0.64022 |
24 | MLPRegressor | 6.61081 | 0.68461 | 0.05356 | 0.53807 | 1.57986 | 0.73443 |
25 | NuSVR | 7.65251 | 0.58619 | 0.03863 | 0.69966 | 2.20857 | 0.66841 |
26 | OrthogonalMatchingPursuit | 11.75760 | 0.31796 | 0.03991 | 0.67679 | 1.55638 | 0.70262 |
27 | OrthogonalMatchingPursuitCV | 6.73327 | 0.62534 | 0.04989 | 0.66592 | 1.54569 | 0.70547 |
28 | PoissonRegressor | 6.10017 | 0.69149 | 0.06490 | 0.58745 | 2.30000 | 0.46240 |
29 | RandomForestRegressor | 2.69214 | 0.77241 | 0.04104 | 0.75787 | 1.33418 | 0.79009 |
30 | Ridge | 9.60075 | 0.46806 | 0.03989 | 0.67792 | 1.62883 | 0.68132 |
31 | RidgeCV | 6.79794 | 0.64527 | 0.03931 | 0.68599 | 1.53935 | 0.70838 |
32 | SGDRegressor | 4.29214 | 0.68241 | 0.04483 | 0.67187 | 1.82504 | 0.70766 |
33 | SVR | 7.71597 | 0.58373 | 0.07486 | 0.57187 | 2.21276 | 0.66886 |
34 | XGBoostRegressor | 6.01090 | 0.70446 | 0.03859 | 0.79708 | 1.44787 | 0.76031 |
35 | XGBoostRFRegressor | 5.81138 | 0.72186 | 0.44421 | 0.68538 | 1.47658 | 0.73711 |
RMSE: root mean square error, R2: Coefficient of determination, NuSVR: Nu Support Vector Regression, SVR: Support Vector Regression.