Skip to main content
. 2022 Mar 4;29(5):3687–3693. doi: 10.1016/j.sjbs.2022.02.047

Table 1.

Metrics comparison of 35 different ML regression models. Models were compared on the basis of their performance to predict MIC values of three antibiotics on test datasets.

Names of models used Ciprofloxacin
Cefixime
Azithromycin
RMSE R2 RMSE R2 RMSE R2
1 ADABoostRegressor 13.61701 0.12067 0.04143 0.66328 6.28431 0.14474
2 ADARegressor 9.58793 0.62305 0.04086 0.76301 1.61560 0.78313
3 BaggingRegressor 6.10417 0.69089 0.04038 0.67140 1.37854 0.7369
4 BayesianRidge 6.06775 0.69462 0.03931 0.68590 1.54538 0.70676
5 CATBoostRegressor 3.87531 0.77393 0.03807 0.74570 1.40781 0.79317
6 DecisionTreeRegressor 7.82284 0.54359 0.04396 0.61863 1.91145 0.66770
7 DummyRegressor 9.12458 0.31455 0.07010 1.2696e-32 2.84645 −0.00093
8 ElasticNet 7.39072 0.58821 0.07011 1.8281e-19 2.72904 0.65383
9 ElasticNetCV 0.03914 0.68890 0.68433 0.68433 1.51770 0.71596
10 ExtraTreeRegressor 8.01472 0.53616 0.04531 0.59814 1.81783 0.68063
11 ExtraTreesRegressor 0.04073 0.66861 0.04373 0.62071 1.75033 0.70090
12 GaussianProcessRegressor 0.04942 0.68436 0.04259 0.65792 1.99184 0.54625
13 GradientBoostingRegressor 6.02614 0.70108 0.03914 0.68890 1.44105 0.74478
14 HistGradientBoostingRegressor 5.71240 0.73384 0.03816 0.70486 1.35686 0.77633
15 HuberRegressor 6.68917 0.65186 0.04073 0.66861 1.59841 0.68702
16 KNeighborsRegressor 0.08358 0.63807 3.49214 0.63424 1.21033 0.71268
17 KernelRidge 9.60091 0.46778 0.03990 0.67779 1.62867 0.68134
18 LarsCV 9.51242 0.45764 0.04045 0.66715 1.55067 0.70463
19 Lasso 7.58347 0.57166 0.07010 1.883e-15 2.84645 0.73652
20 LassoCV 8.64752 0.54124 0.03942 0.68436 1.50917 0.71937
21 LassoLarsCV 0.03989 0.67792 0.04104 0.65787 1.52546 0.71292
22 LassoLarsIC 6.72328 0.63309 0.04039 0.66812 1.53725 0.70890
23 LinearRegression 8.41567 0.54621 0.34524 0.01717 1.76178 0.64022
24 MLPRegressor 6.61081 0.68461 0.05356 0.53807 1.57986 0.73443
25 NuSVR 7.65251 0.58619 0.03863 0.69966 2.20857 0.66841
26 OrthogonalMatchingPursuit 11.75760 0.31796 0.03991 0.67679 1.55638 0.70262
27 OrthogonalMatchingPursuitCV 6.73327 0.62534 0.04989 0.66592 1.54569 0.70547
28 PoissonRegressor 6.10017 0.69149 0.06490 0.58745 2.30000 0.46240
29 RandomForestRegressor 2.69214 0.77241 0.04104 0.75787 1.33418 0.79009
30 Ridge 9.60075 0.46806 0.03989 0.67792 1.62883 0.68132
31 RidgeCV 6.79794 0.64527 0.03931 0.68599 1.53935 0.70838
32 SGDRegressor 4.29214 0.68241 0.04483 0.67187 1.82504 0.70766
33 SVR 7.71597 0.58373 0.07486 0.57187 2.21276 0.66886
34 XGBoostRegressor 6.01090 0.70446 0.03859 0.79708 1.44787 0.76031
35 XGBoostRFRegressor 5.81138 0.72186 0.44421 0.68538 1.47658 0.73711

RMSE: root mean square error, R2: Coefficient of determination, NuSVR: Nu Support Vector Regression, SVR: Support Vector Regression.