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Multiple mechanisms shape the relationship
between pathway and duration of focal
seizures

Gabrielle M. Schroeder',I Fahmida A. Chowdhur'y,2 Mark ). Cook,:"’4 Beate Diehl,2
®John S. Duncan,? Philippa J. Karoly,*** ®Peter N. Taylor'*®? and Yujiang Wang'*%?

A seizure’s electrographic dynamics are characterized by its spatiotemporal evolution, also termed dynamical ‘pathway’, and the time
it takes to complete that pathway, which results in the seizure’s duration. Both seizure pathways and durations have been shown to
vary within the same patient. However, it is unclear whether seizures following the same pathway will have the same duration or if
these features can vary independently. We compared within-subject variability in these seizure features using (i) epilepsy monitoring
unit intracranial EEG (iEEG) recordings of 31 patients (mean: 6.7 days, 16.5 seizures/subject), (ii) NeuroVista chronic iEEG record-
ings of 10 patients (mean: 521.2 days, 252.6 seizures/subject) and (iii) chronic iEEG recordings of three dogs with focal-onset seizures
(mean: 324.4 days, 62.3 seizures/subject). While the strength of the relationship between seizure pathways and durations was highly
subject-specific, in most subjects, changes in seizure pathways were only weakly to moderately associated with differences in seizure
durations. The relationship between seizure pathways and durations was strengthened by seizures that were ‘truncated’ versions, both
in pathway and duration, of other seizures. However, the relationship was weakened by seizures that had a common pathway, but
different durations (‘elasticity’), or had similar durations, but followed different pathways (‘semblance’). Even in subjects with distinct
populations of short and long seizures, seizure durations were not a reliable indicator of different seizure pathways. These findings
suggest that seizure pathways and durations are modulated by multiple different mechanisms. Uncovering such mechanisms may re-
veal novel therapeutic targets for reducing seizure duration and severity.
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Same seizure pathway, different duration (elasticity)

Introduction

Many health conditions are challenging to treat due to
changes in symptoms and disease severity over time.'™
Recent research has emphasized that temporal fluctuations
are also an important consideration in focal epilepsy, as sei-
zures can change over time within the same patient.*
Specifically, a patient’s spatiotemporal seizure dynamics
can vary in two main ways. First, the evolution of patho-
logical activity, as measured by EEG recordings, can differ
from seizure to seizure. These seizure evolutions can be de-
scribed mathematically with various computational models,
including functional networks™'® and neural mass models,”
that capture specific dynamical seizure properties. Using
such approaches, each seizure evolution can be conceptualized
as a pathway through the chosen feature space.*”''=!3
Second, each seizure may be characterized by its duration,
the time that elapses from its electrographic start to fin-
ish.'™” Together, these features describe both the sequence
of brain activity during a seizure as well as the time that it
takes to complete that sequence.

Both seizure pathways and seizure durations are related to
seizure clinical symptoms, severity, and clinical manage-
ment.*"57'® For example, seizure duration is featured in sev-
eral seizure severity scales.'® Certain types of diversity in
seizure pathways, such as multifocal onsets'*~*! and variable

22,23

recruitment patterns, are associated with worse out-
comes following epilepsy surgery. Additionally, seizure pre-
diction is more challenging in patients who have distinct
populations of short and long seizures.® Despite the clinical
relevance of seizure pathways and durations, little is known
about how these features interact. In particular, it is unclear
whether variability in seizure duration arises purely from
changes in seizure pathways, or whether pathways and dura-
tions can vary independently within the same patient.

It is conceivable that two seizures with distinct pathways
must also have distinct durations. In an analogy, where
two passengers embark on a bus at the same stop, the passen-
ger riding for more stops (longer pathway) will also necessar-
ily have a longer journey time (longer duration). Some
previous studies suggest that seizure pathways and durations
are linked in a similar manner. First, seizure duration often
differs between different International League Against
Epilepsy clinical seizure types,>* which are also associated
with changes in functional networks.*1%%* More severe seiz-
ure types have also been reported to last longer; for example,
focal seizures that progress to bilateral tonic—clonic seizures
tend to have longer durations than seizures that remain fo-
cal,">'® and focal seizures tend to be longer if they involve
loss of awareness.'®'” Meanwhile, analysis of chronic
iEEG recordings suggests that seizures with different
durations have similar onsets, but different terminations.”



Seizure pathway and duration mechanisms

Additionally, there is evidence that distinct populations of
short and long seizures correspond to different seizure path-
ways with characteristic durations in some patients.®” These
findings suggest that seizure pathways and durations may be
linked within patients, with different seizure durations serv-
ing as a proxy for different seizure pathways and vice versa.

It is also possible that seizure duration is modulated inde-
pendently of the seizure’s pathway. In our analogy above, it
is possible to travel the same bus route (same pathway) on
two different days, with a longer journey time (longer dur-
ation) on the day with more traffic. Similarly, two seizures
could potentially follow the same pathway, but have differ-
ent durations due to different rates of progression (e.g. by
‘dwelling’ in particular EEG activity patterns). In a rodent
model, Wenzel et al.>® found seizures with consistent recruit-
ment patterns and different rates of seizure spread at a neur-
onal level, a characteristic termed ‘elasticity’. To our
knowledge, no studies have quantitatively explored such
temporal flexibility in seizure pathways in human patients.
Nonetheless, within-patient seizures with consistent firing
patterns, but small changes in duration, have been ob-
served,”” suggesting that elasticity in the same seizure path-
way may also occur in humans. This mechanism could
potentially lead to variable durations among seizures with
the same pathway.

The relationship between seizure pathways and dura-
tions has been difficult to investigate due to the lack of
an objective measure for comparing seizure pathways.
We addressed this need by proposing an approach for
quantitatively comparing within-patient seizure pathways,
which we used to investigate variability in seizure function-
al network evolutions.* In the present study, we used the
same approach to explore whether variability in seizure
pathways is linked to variability in seizure durations. We
hypothesized that certain generalizable mechanisms
strengthen or weaken the association between seizure path-
ways and duration, creating varying levels of association
within each patient. Our quantitative comparison of seiz-
ure pathways allowed us to recognize similar pathways
even if they progressed at different rates. Thus, we could
determine whether two seizures shared the same pathway,
even if their durations differed. We also extended our ana-
lysis to include long-term recordings from NeuroVista pa-
tients?® and dogs,>”?" allowing us to analyze the
relationship between pathways and durations in subjects
with a higher number of recorded seizures that occurred
over longer timescales.

Methods

This work analyzed seizures from the following three co-

horts of subjects:

1. Epilepsy monitoring unit (EMU) patients: 31 patients
with refractory focal epilepsy whose continuous iEEG
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recordings were acquired during presurgical evaluation
at the Mayo Clinic (MC) (12 patients), the Hospital of
the University of Pennsylvania (HUP) (1 patient), or the
University College London Hospital (UCLH) (18 pa-
tients). MC and HUP patient data are available on the
IEEG Portal, www.iceg.org,*"*? and all IEEG Portal pa-
tients gave consent for their anonymized iEEG to be avail-
able through this database. The iEEG recordings of the
UCLH patients were anonymized, exported, and ana-
lyzed under the approval of the Newcastle University
Ethics Committee (reference number 6887/2018). The
same EMU cohort and seizure data were used in our pre-
vious analysis of seizure variability.* Additional informa-
tion about each patient and the analyzed seizures is
shown in Supplementary Table 1.

2. NeuroVista patients: Seizures from 10 NeuroVista pa-
tients were included to analyze seizure variability over
longer timescales in patients with focal epilepsy. The
NeuroVista seizure iEEG data,” which includes 12 pa-
tients, were used for this analysis. Patients of
NeuroVista 2 and NeuroVista 4 were removed from
our analysis due to low numbers of analyzable seizures.
The patients and collection of their chronic iEEG data
are described in detail in Cook et al.>® Briefly, all patients
had refractory focal epilepsy and experienced 2-12 sei-
zures per month. For the NeuroVista seizure prediction
study, each patient was implanted with 16 surface iEEG
electrodes over the brain quadrant thought to contain
the epileptogenic zone. Additional patient details are pro-
vided in Supplementary Table 2.

3. Dogs: To explore seizure variability over longer time-
scales and in non-human subjects, iEEG was also ana-
lyzed from three dogs with focal-onset seizures due to
naturally occurring canine epilepsy. The dogs underwent
prolonged recordings to test a novel implantable electro-
graphic recording device?”*° (recording data available on
the IEEG Portal, www.ieeg.org®'*?). Metadata for the
dogs are provided in Supplementary Table 3.

For all cohorts, seizures were required to have clear elec-
trographic correlates and durations of at least 10 s. We ex-
cluded seizures with noisy or large missing segments.
Subclinical seizures were included in the analysis. For
NeuroVista patients, seizures with clinical manifestations
and corresponding iEEG changes (referred to as “Type 1 sei-
zures in the previous literature®’) and seizures with iEEG
changes comparable to Type 1 seizures, but without con-
firmed clinical manifestations (previously referred to as
‘Type 2’ seizures) were included in the analysis.

For EMU patients, seizure onsets and terminations were
marked by the corresponding clinical teams. For
NeuroVista patients, seizure onsets and terminations were
marked by clinical staff, with seizure detection and classifica-
tion aided by using patient diaries, audio recordings, and a
seizure detection algorithm.® For dogs, seizure onsets were
marked by expert readers and an algorithm was used to de-
tect seizure termination (see Supplementary Text 3).


http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac173#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac173#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac173#supplementary-data
http://www.ieeg.org
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac173#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac173#supplementary-data
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For each subject, if different seizures were recorded at mul-
tiple sampling frequencies, all of the recordings were first
downsampled to the lowest sampling frequency. Noisy chan-
nels were removed based on visual inspection and short miss-
ing segments (<0.05 s, with the exception of one 0.514 s
segment in patient ‘Study 020’) were linearly interpolated.
All channels were re-referenced to a common average refer-
ence. Each channel’s time series was then bandpass filtered
from 1 to 150 Hz (fourth-order, zero-phase Butterworth fil-
ter) and notch filtered (fourth-order, 2 Hz width, zero-phase
Butterworth filter) at 60 and 120 Hz (IEEG Portal patients
and dogs) or 50, 100, and 150 Hz (UCLH patients).

NeuroVista seizure data were previously notch filtered at
50 Hz during the iEEG acquisition and bandpass filtered
(second-order, zero-phase Butterworth filter from 1 to
180 Hz) by Karoly et al.” We then removed any electrodes
with noisy or intermittent signal from the seizure analysis
and re-referenced all iIEEG to a common average reference.

The NeuroVista data contain time periods of signal drop-
outs when the iEEG signal was not recorded. We detected
and removed periods of signal dropout by using line length
to identify iIEEG segments with no signal (i.e. a flat time series
with no voltage changes). We defined the line length L of a
time series as

1 I
L= ﬁ; lxit1 — x;

where x; is the ith time point in a time series with T time
points.

For each seizure, time-varying line length was computed
for each iEEG channel in sliding windows (1/10 s window,
1/20 s overlap). If a time window had at least 8 out of 16
channels with line length <0.5, that time window along
with the preceding and following time windows were consid-
ered missing data. The next section describes how this miss-
ing data were handled when computing seizure time-varying
functional connectivity.

The time-varying functional connectivity, defined as coher-
ence in six frequency bands (delta 1-4 Hz, theta 4-8 Hz, al-
pha 8-13 Hz, beta 13-30 Hz, gamma 30-80 Hz, high
gamma 80-150 Hz), was computed for each seizure using
a 10 s sliding window with a 9 s overlap between consecutive
windows, as in previous work.* Coherence in each frequency
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band was computed using band-averaged coherence, defined
as

o :
=R pun]
Z?:ﬂ Pi(f) Z,szf, Pj(f)

i

where f; and f, are the lower and upper bounds of the fre-
quency band, P; ;(f) is the cross-spectrum density of channels
iandj, and P;,(f) and P; (f) are the autospectrum densities
of channels i and j, respectively. For each 10 s window, auto-
spectra and cross-spectra were calculated using Welch’s
method (2 s sliding window with 1 s overlap). As noted pre-
viously, many seizures in NeuroVista patients contained
missing data due to signal dropouts. We tolerated some miss-
ing data in this cohort by allowing functional connectivity in
each 10 s window to be estimated using a subset of the 2 s
Welch subwindows. Specifically, for each functional con-
nectivity time window, we only treated the 10 s functional
connectivity time window as missing data if >5 of the 2 s sub-
windows contained missing data. Any NeuroVista seizures
with missing functional connectivity time windows were ex-
cluded from the remainder of the analysis.

Each resulting coherence matrix was re-expressed in vec-
tor form by re-arranging the upper-triangular, off-diagonal
elements into a vector of length (n* —n)/2, where 7 is the
number of iEEG channels, and the vector was normalized
to have an L1 norm of 1. Each seizure time window was
therefore represented by a total of 6 x (7> —#n)/2 features
that captured the pairwise channel interactions in the six dif-
ferent frequency bands. In a seizure with 7 time windows,
the seizure’s time-varying functional connectivity was de-
scribed by a multivariate time series with 6 x (n> — n)/2 fea-
tures and 1 time points.

To reduce noise in the connectivity matrices, patterns of
recurring functional connectivity were extracted in each sub-
ject using stability non-negative matrix factorization
(NMF)*** using the same pipeline as in our previous
work.* The NMF decomposition was used to reconstruct a
low-rank approximation of the seizure functional connectiv-
ity time series that was used for all downstream analysis. The
time-varying functional connectivity of each seizure was also
referred to as ‘seizure network evolutions’ and ‘seizure path-
ways’ throughout the text.

To visualize changes in seizure networks within and between
seizures, each subject’s seizure time-varying functional con-
nectivity (‘seizure pathway’) was projected into two-
dimensional space using Sammon mapping, a variation of
multidimensional scaling.** The mapping approximated
the L1 distances between the functional connectivity pat-
terns of each pair of seizure time windows such that seizure
time windows with more similar functional connectivity
were placed closer together in the projection.
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We used the approach of Schroeder et al.* to compare pairs
of seizure pathways, which were described by the seizure
time-varying functional connectivity, within each subject.
Briefly, for each pair of seizures, we used dynamic time warp-
ing (DTW)*® (MATLAB function dtw) to align similar time
points in their functional connectivity time series and minim-
ize the overall L1 distance between the pair of time series.
The seizure pair’s ‘pathway dissimilarity’ (previously called
‘seizure dissimilarity’ in Schroeder et al.*) was then defined
as the average L1 distance between their warped time series.
Repeating this process for each pair of a subject’s s seizures
yielded the subject’s pathway dissimilarity matrix, a symmet-
ric sXs matrix containing all of the pairwise pathway
dissimilarities.

As we used information of all frequency bands in compar-
ing pathways, in Supplementary Text 9, we also show the in-
fluence of individual frequency bands.

To compare seizure durations, we computed a pairwise
‘duration difference’ measure for each pair of a subject’s
seizures. First, as in previous work,® we transformed
each subject’s seizure durations by computing their nat-
ural logarithm, which made each subject’s distribution
of seizure durations closer to a normal distribution. We
then defined the duration difference between a pair of sei-
zures as the absolute difference between their transformed
durations,

|In(l;) — In(l;)]

where [; and [; are the durations, in seconds, of seizures i
and j, respectively. Due to the properties of logarithms,
this measure is equal to

\In(l;/1)|

and therefore depends on the ratio between the durations
of seizures i and j. As such, duration differences capture
the proportional differences between seizure durations.
For example, the duration difference between a 20 s seiz-
ure and a 40 s seizure will be the same as the duration
difference between a 60 s seizure and a 120 s seizure be-
cause in both cases, the longer seizure is twice the dur-
ation of the shorter seizure. Likewise, a certain absolute
change in duration, such as 10 s, results in a larger dur-
ation difference when the original seizure is shorter. As
for the pathway dissimilarity measure, duration differ-
ences were computed for each pair of a subject’s s sei-
zures to create the subject’s symmetric sxs duration
difference matrix.
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To compare pathway dissimilarities and duration differ-
ences, we used the same approach as Schroeder et al.* for
comparing dissimilarity matrices. For each subject, we com-
puted Spearman’s correlation between the upper triangular
elements of their pathway dissimilarity and duration differ-
ence matrices. We then used the Mantel test®” (10 000 per-
mutations, one-sided test) to determine the probability of
obtaining a correlation greater than or equal to the observed
correlation by chance.

We found seizure pairs where one seizure is a truncated ver-
sion of the other both in terms of pathway and duration. To
find such ‘truncation pairs’, for each subject we first sepa-
rated seizures into groups of very similar pathways and
found one representative seizure to reduce the later computa-
tional cost. This grouping was achieved by performing hier-
archical clustering (unweighted pair group method with
arithmetic mean [UPGMAY]) and cutting the dendrogram at
pathway dissimilarity 1. In each group, we then found the
centroid seizure, defined as the seizure with the lowest
mean pathway dissimilarity to all other seizures in the group,
as a representative pathway.

For each pair of a subject’s seizure groups, we first deter-
mined if all seizures in one group, labelled Group A,
(i) had shorter duration and (ii) had smaller pathways in
functional network space than all seizures of the other group,
Group B. To define pathway size for each seizure for criteria
(i), we computed the maximum cityblock distance between
the functional networks of all pairs of time windows of a sei-
zure’s pathway. If the seizure only had one time window, the
maximum distance was zero. If these criteria were met, we
then determined whether (iii) pathways in Group A (i.e.
the shorter and smaller seizures) were a truncated version
of pathways in Group B. For this criteria, we determined if
Group A’s representative pathway (‘Pathway A’) had low
pathway dissimilarity to the beginning of Group B’s repre-
sentative pathway (‘Pathway B’). We computed this ‘partial
pathway’ dissimilarity between Pathway A and the first m
time windows of Pathway B, scanning m from 1 to the num-
ber of time windows in Pathway B. If there existed an m for
which the partial pathway dissimilarity was <1, these sei-
zures were considered a truncation pair, with Pathway A a
truncated version of Pathway B. Since these pathways were
highly representative of their entire groups, all of seizures
in Group A were therefore truncated versions of all seizures
in Group B in terms of both their pathways and duration.
Note that our implementation of partial matching of path-
ways is one of many possible versions. Future work may
wish to investigate other variations (see e.g. Tormene
et al.>®).

After repeating this process for all pairs of seizure groups,
a subject’s proportion of truncation pairs was defined as the


http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac173#supplementary-data
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proportion of their seizure pairs that were related via a
truncation.

To determine the prevalence of elasticity and semblance, we
first set thresholds for defining whether a seizure pair had
similar pathways (pathway dissimilarity <1) and similar
durations (duration difference <0.2). The pathway threshold
was chosen because seizures with pathway dissimilarities be-
low the threshold tend to have visually similar pathways and
electrographic patterns. The duration difference threshold
allows a e”*=1.22 fold increase in duration relative to the
shorter seizure before the durations are considered different.
These thresholds were set so that the overall proportion,
across all subjects, of seizure pairs with similar pathways
was comparable to the proportion of seizure pairs with simi-
lar durations (32.6% and 34.7%, respectively). Seizure pairs
with similar pathways (pathway dissimilarity <1) and differ-
ent durations (duration difference >0.2) were then defined as
examples of elasticity. Seizure pairs with different pathways
(pathway dissimilarity >1) and similar durations (duration
difference <0.2) were considered examples of semblance.
Note that our criteria set here compared entire seizure path-
ways, and not partial best matches in seizure pathways.
Thus, to identify elastic pathways, we required the entire
pathways of the two seizures to be similar.

In each subject, we determined the number of duration popu-
lations by clustering seizure durations (after the natural loga-
rithm transformation) using k-means, with the number of
clusters k scanned from 1 to the subject’s number of seizures,
up to a maximum of 10 clusters. The gap statistic®’
(MATLAB evalclusters, search method firstMaxSE, with
1000 reference distributions) was used to select the optimal
number of clusters, with k=1 indicating an absence of mul-
tiple duration populations and k > 2 revealing multiple dur-
ation populations.

In subjects with multiple duration populations, we add-
itionally clustered seizure pathways into an equivalent num-
ber of groups to compare seizure clusters based on duration
with clusters based on pathways. In each subject, seizure
pathways were clustered by applying UPGMA hierarchical
clustering to the pathway dissimilarity matrix, and the re-
sulting dendrogram was then cut to produce the same num-
ber of discrete pathway clusters as duration populations. The
Rand index and adjusted Rand index (ARI) were then com-
puted to compare the duration population and pathway clus-
ters partitions. To determine the P-values of these measures,
the cluster membership for one partition was permuted 10
000 times and the measures were recomputed for each per-
muted partition to create null distributions.
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We report P -values for reference throughout the paper. We
applied the Benjamini—-Hochberg false discovery rate false
discovery rate (FDR) correction,* with a =0.05, to the set
of P-values from all statistical tests in this work and corre-
sponding supplementary material. Uncorrected P-values
are reported in the text, with supplementary results showing
statistical significance determined after FDR correction.

All analyses were performed using custom code and built-in
functions in MATLAB 2018b. NMF was performed using
the Nonnegative Matrix Factorization Algorithms Toolbox
(https:/github.com/kimjingu/nonnegfac-matlab/).*"**  The
seizure iIEEG data of the IEEG Portal EMU patients and
dogs are available at www.ieeg.org.>"*> The NeuroVista
seizure iEEG data used in this study are available from
www.epilepsyecosystem.org. The processed data (NMF W
and H matrices) and seizure durations of all subjects, along
with analysis code, are available on Zenodo (DOI 10.
5281/zenodo.5503590).

Results

We analyzed a total of 3224 seizures, recorded using iEEG

(Fig. 1A), from

e EMU patients: 31 patients (15 females) with focal epilepsy
who underwent presurgical monitoring in EMUs (average
16.5 seizures/patient).

¢ Neurovista patients: 10 patients (four females) with focal
epilepsy who underwent chronic recordings as part of the
NeuroVista seizure prediction study”® (average 252.6 sei-
zures/patient).

¢ Dogs: Three dogs with naturally occurring canine epilepsy
and focal-onset seizures””*? (average 62.3 seizures/subject).

Figure 1B shows the iEEG recordings of four seizures from
an example subject, EMU UCLH 04.

We described the dynamics of each seizure using two

features:

1. The seizure’s functional network evolution, which can be
considered a pathway through the space of possible func-
tional network interactions (Fig. 1C).

2. The time it takes the seizure to follow its pathway; i.e. the
seizure’s duration (Fig. 1D).

For clarity, we will only use the terms short/long to de-
scribe seizure temporal duration and smallllarge to describe
relative amounts of spatial distances followed by seizure


http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac173#supplementary-data
https://github.com/kimjingu/nonnegfac-matlab/
http://www.ieeg.org
http://www.epilepsyecosystem.org
10.5281/zenodo.5503590
10.5281/zenodo.5503590
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Figure | Quantitatively comparing seizure pathways and durations within individual subjects. (A) Schematic of the electrode
implantation for iEEG recording of an example subject, EMU UCLH 04. A =anterior of brain, P = posterior of brain. (B) Intracranial EEG of four of
EMU UCLH 04’s seizures. The recordings from a representative subset of electrodes are shown. Seizure numbers refer to their chronological
order. (C) Multidimensional scaling embeddings of the corresponding pathways of the example seizures. Each point corresponds to the functional
network configuration of a seizure time window, and time windows with more similar network configurations are located closer together in the
embedding. Colored points correspond to time windows that occurred during the example seizure, with the first time window marked with a
black diamond and successive time window connected with the colored line to form the seizure pathway. Time windows that occurred during
other seizures are shown in grey for reference. (D) The durations of each of the example seizures, shown on a natural logarithm scale. Seizure
dynamics were characterized by seizure pathways (C) and seizure durations (D). (E) Pairwise pathway dissimilarities and (F) duration differences
of the example seizures. Both matrices are symmetric.

pathways through the functional network space. This func- We described seizure pathways through network space by
tional network space does not directly correspond to ana- computing the time-varying (sliding window) coherence be-
tomical distances in the brain, but rather reflects the tween pairs of iEEG channels across six frequency bands:

similarity of brain activity patterns. delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta
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(13-30 Hz), gamma (30-80 Hz), and high gamma (80-150 Hz).*
To quantify similarities and differences in seizure pathways,
we used DTW? to compute pairwise dissimilarities between
seizures, resulting in a symmetric ‘seizure dissimilarity’ ma-
trix for each subject” (Fig. 1E). In our case, DTW minimized
the overall distance between a pair of seizure pathways by
selectively stretching parts of each pathway such that similar
network configurations were temporally aligned. Therefore,
DTW allowed us to recognize similar seizure pathways even
if the seizures had different durations. We defined the ‘path-
way dissimilarity’ between a pair of seizures as the average
distance between their functional connectivity time series
after DTW. Additionally, to visualize seizure pathways
through network space, we used multidimensional scaling
to project each subject’s seizure network evolutions into a
two-dimensional space (Fig. 1C, also see the ‘Methods’ sec-
tion). Each point in the projection corresponds to a network
configuration that occurred during the seizure, and time
points with more similar network configurations tend to be
placed closer together.

To compare variability in seizure pathways to variability
in seizure durations, we quantified the pairwise differences
in each subject’s seizure durations. As in previous work,’
we first computed the natural logarithm of each seizure dur-
ation (Fig. 1D). We then computed the pairwise absolute dif-
ferences between the transformed seizure durations,
resulting in a symmetric ‘duration difference’ matrix for
each subject (Fig. 1F). Due to the properties of logarithms,
our measure captures relative changes in duration
(‘Comparing seizure durations using duration differences’
in the ‘Methods’ section). We also observed a wide range
of seizure durations in most subjects, and demonstrate add-
itional reasons to use log distances (Supplementary Text 2).

Thus, each subject’s spatiotemporal seizure variability
was described by two matrices: a pathway dissimilarity ma-
trix (Fig. 1E), containing pairwise comparisons of seizure
pathways through network space, and a duration difference
matrix (Fig. 1F), composed of pairwise differences of seizure
durations. In our subsequent analyses, we used these two
measures to explore the relationship between seizure path-
ways and seizure durations in each subject. As such, our ana-
lysis focused on differences in seizure pathways and
durations between pairs of seizures, rather than the pathway
and duration features themselves. This seizure pair approach
had two main advantages. First, unlike seizure duration,
seizure pathways do not map onto a single feature that
changes from seizure to seizure.* However, our pairwise
measures allowed us to ask questions such as, ‘Does a pair
of seizures have similar pathways if and only if they have
similar durations?’ Second, comparing these features at the
seizure pair level was a more appropriate analysis for fea-
tures that vary on a spectrum. In many subjects, seizures can-
not be clearly grouped based on their pathways® or
durations®” because these features vary continuously, pro-
ducing a spectrum of seizure dynamics. Thus, our pairwise
approach allowed us to precisely compare seizure pathways
and durations in all subjects.
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We first compared each subject’s pathway dissimilarity ma-
trix to their duration difference matrix. Figure 2 shows the
matrices of three example subjects, one from each cohort.
Visually and quantitatively comparing the matrices within
each subject revealed that their concordance varied across
subjects. NeuroVista 11’s pathway dissimilarity (Fig. 2A)
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Figure 2 Comparison of pathway dissimilarities and
duration differences. (A-l) Comparison of pathway
dissimilarities and duration differences in three example subjects:
NeuroVista || (351 seizures), EMU UCLH 17 (14 seizures), and
Dog 3 (43 seizures). (A, D and G) Pathway dissimilarity matrices of
the example subjects. Each matrix quantifies the pairwise
dissimilarities of the subject’s seizure pathways. (B, E and H)
Duration difference matrices in the same subjects. Each matrix
quantifies the pairwise differences in the subject’s seizure durations
on a natural logarithm scale. (C, F and I) Scatter plots and
Spearman’s correlations of each subject’s pathway dissimilarities
versus duration differences. Each point corresponds to a seizure
pair. (J) Dot plot of the Spearman’s correlations between pathway
dissimilarities and duration differences of all subjects. Each marker
corresponds to a subject, with the color and shape indicating the
subject’s cohort.
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and duration difference (Fig. 2B) matrices had very similar
structures, indicating that seizures with similar (dissimilar)
pathways also had similar (different) durations. The
Spearman’s correlation between these two matrices was, as
expected, very high (Fig. 2C, p =0.80). On the contrary,
Dog 3’s matrices (Fig. 2G, Hand I, p =—0.02) had different
structures, suggesting little or no relationship between path-
way dissimilarity and duration differences. EMU UCLH 17’s
matrices (Fig. 2D, Eand F, p =0.36) were between these two
extremes: while there were some similarities across the two
matrices, each matrix also had distinct patterns. These exam-
ples demonstrate that the relationship between seizure path-
ways and seizure durations differed across subjects.

In most subjects, pathway dissimilarities and duration dif-
ferences were weakly to moderately correlated (Fig. 2], me-
dian correlation: 0.322, first quartile: 0.191, third quartile:
0.537). Supplementary Text 4 provides additional informa-
tion on the statistical significance of these associations for
reference. Supplementary Text 5 shows that the association
strength is also not determined by the range in either feature,
indicating that the level of variability in pathways or dur-
ation did not influence their relationship. The weak to mod-
erate correlations revealed that changes in seizure durations
were not fully explained by changes in seizure pathways and
vice versa. Therefore, seizure pathways and durations con-
tained complementary information about the dynamics of
a given seizure.

We next examined how pairwise relationships between sei-

zures could strengthen or weaken the association between

seizure pathways and seizure duration within each subject.

A pair of seizures could fall into one of four possible

categories:

1. The seizure pair had similar pathways and similar
durations.

2. The seizure pair had different pathways and different
durations.

3. The seizure pair had similar pathways, but different
durations.

4. The seizure pair had different pathways, but similar
durations.

We initially evaluated cases in which the seizure pair’s
pathway and duration agreement was concordant (i.e. both
features similar or both features different, Cases 1 and 2).
Figure 3 shows example pairs of seizures that had similar
pathways and similar durations (Case 1, Fig. 3A, D and G)
or different pathways and different durations (Case 2,
Fig. 3B, E and H). In the latter case, pathways could either
partially overlap in network space (Fig. 3B) or occupy dis-
tinct regions (Fig. 3E and H). Therefore, these disparate
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pathways could either share network features or have com-
pletely unrelated evolutions.

Figure 3C, F and I visualizes how these pairs of seizures
impact the relationship between pathway and duration vari-
ability in each of the example subjects. When pathways and
durations were similar, the seizure pair had a low pathway
dissimilarity and a low duration difference (purple points).
In contrast, pairs of seizures with different pathways and
durations had high pathway dissimilarities and high dur-
ation differences (dark grey points). The combination of
such seizure pairs within the same subject contributed to
the positive correlations between pathway dissimilarities
and duration differences.

Coinciding changes in both seizure pathways and seizure
durations also strengthened this relationship. A special case
is given by a seizure pair, where one seizure is a truncated
version of the other seizure in both pathway and duration.
We termed such seizure pairs ‘truncation pairs.” Figure 4A
shows an example truncation pair in Neurovista 3, and
Fig. 4B demonstrates that this seizure pair contributed to
a positive correlation between pathway dissimilarities and
duration differences. Indeed, all truncation pairs had this
effect (Fig. 4B, purple markers) and contributed to a high
Spearman’s correlation (p =0.66) in this subject. Finally,
we assessed if truncation pairs contributed to a stronger
relationship between pathways and duration across all
subjects. Figure 4C supports this hypothesis and demon-
strates that in general, subjects with a larger proportion
of truncation pairs had a higher correlation between
pathway dissimilarities and duration differences. In other
words, pathway and duration variability were related
when changes in pathways produced concordant changes
in durations and vice versa, and pathway and duration
truncation is one mechanism that produces such concord-
ant changes.

We next examined how pairs of seizures could weaken the
relationship between seizure pathways and durations. First,
a pair of seizures could share similar pathways for the entir-
ety of the seizure, but have different durations (Case 3).
Figure SA-F provides three examples of this scenario.
Although the seizures in each pair followed similar routes
through network space, they took different amounts of
time to do so, revealing ‘elasticity’ in time for each example
seizure pathway.”® Interestingly, the pathways were not uni-
formly elastic; instead, there appeared to be pathway-specific
locations where a pathway dwelled for different amounts of
time. For example, in NeuroVista 6, Seizure 5 spent relative-
ly more time in the middle and end of the pathway (Fig. 5A).
Due to their shared pathways and different durations, such
pairs weakened the relationship between pathways and
durations (Fig. 5B, D and F blue points). These results
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Figure 3 Example seizure pairs that strengthen the relationship between seizure pathways and seizure durations. (A, D and G)
Example pairs of seizures with similar pathways and similar durations. Left: the seizures’ pathways (light teal and dark teal), embedded in network
space as in Fig. | C. The time points in the subjects other seizure pathways are shown for reference (light grey points). Right: The iEEG traces and
durations of each pair of seizures, with 10 s of preictal and postictal data also shown. Red vertical lines mark seizure onset and termination. For
EMU 1002 P006 DOI, a representative subset of channels is shown. (B, E and H) For the same subjects as in A, D, and G, example pairs of
seizures with different pathways and different durations. Visualization formats are the same as in A, D, and G. For A, B, D, E, G, and H, the time
and voltage scales of the iEEG traces are consistent for each subject, but not across subjects. (C, F and I) Scatter plots of pathway dissimilarities
versus duration differences of the three example subjects, with the example seizure pairs highlighted with large purple points (similar pathways,
similar durations) and large dark grey points (different pathways, different durations).
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Figure 5 Example seizure pairs that weaken the relationship between seizure pathways and seizure durations. (A-F) Examples
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revealed that a seizure’s duration is not rigidly constrained
by its pathway.

The final scenario was that two seizures had different
pathways, but the same duration (Case 4). Figure 5G-L illus-
trates this case, which we termed ‘semblance’ to highlight
that two seizures can have the same duration despite differ-
ent pathways. Thus, the duration of a seizure does not neces-
sarily provide information about a seizure’s pathway. The
pairs of seizures in our examples all had low duration differ-
ences and high pathway dissimilarities (Fig. SH, J and L),
again weakening the relationship between pathway and dur-
ation variability in each of these subjects.

To determine the prevalence of elasticity and semblance,
we set thresholds for whether two seizures had similar path-
ways and/or similar durations (see the ‘Methods’ section).
Almost all subjects displayed elasticity (30/31 EMU, 10/10
NeuroVista, and 3/3 dogs) and semblance (27/31 EMU,
10/10 NeuroVista, and 3/3 dogs) (Supplementary Text 6).
Therefore, these mechanisms for independent variability in
pathways and durations were widespread in our cohorts.

In the previous sections, we analyzed the relationship be-
tween seizure pathways and seizure durations in all subjects,
regardless of the nature of their seizure dynamics. It is pos-
sible that pathways and durations are more closely related
in subjects whose seizures can be grouped into distinct dur-
ation populations of short and long seizures. In particular,
previous studies have hypothesized that duration popula-
tions correspond to different seizure pathways.®’

As in previous work,®” we clustered seizure durations in
each subject and found those subjects with multiple groups,
or populations, of seizures based on their seizure durations.
While most subjects did not have multiple duration popula-
tions, a total of eight subjects (5/31 EMU patients, 3/10
Neurovista patients, and 0/3 dogs) had two duration popu-
lations. Figure 6A-F explores the relationship between
these duration populations and the corresponding seizure
pathways in two example subjects, NeuroVista 3 and
NeuroVista 8. In NeuroVista 3, pairs of seizures tended
to have similar pathways if and only if they belonged to
the same duration population (i.e. if they were both short
or both long) (Fig. 6B and C). Although there was still
some pathway variability within each duration population,
especially among the long seizures, overall the different
duration populations corresponded to different seizure
pathways. In contrast, in NeuroVista 8, pairs of seizures
with different durations often had more similar pathways
than pairs of seizures with similar durations (Fig. 6E).
Seizures with similar durations could occupy different parts
of network space, while seizures with different durations
(e.g. short seizure 407 and long seizure 56) could partially
overlap in network space (Fig. 6F). As a result, seizure
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duration populations did not distinguish different seizure
pathways in NeuroVista 8.

To quantify the agreement between seizure pathways and
durations populations, we also clustered seizures into two
groups based on seizure dissimilarities. We compared these
pathway group assignments to duration populations using
the ARI (Fig. 6G). An ARI of one indicated perfect agreement
between the two partitions, while an ARI close to zero corre-
sponded to only chance levels of agreement. NeuroVista 3
was one of three subjects with an ARI of one, indicating
that short and long seizures perfectly corresponded to the
division of seizure pathways. Meanwhile, NeuroVista 8’s
ARI was only 0.14; in this subject and two others, short
and long seizures were not proxies for different seizure path-
ways. The remaining two subjects had intermediate levels of
agreement between pathway groups and duration popula-
tions. Supplementary Text 7 contains additional clustering
analyses. These results revealed a complex, subject-specific
relationship between seizure durations and pathways in sub-
jects with multiple duration populations. In some subjects,
duration populations indeed corresponded to different seiz-
ure pathways, although there was additional pathway vari-
ability within each duration population. In others, duration
populations were not associated with different groups of seiz-
ure pathways.

Finally, we investigated whether seizure pathway variability,
seizure duration variability, or their relationship was asso-
ciated with clinical variables, such as disease duration or
lobe of epilepsy, in Supplementary Text 8. We could confirm
some previously reported relationships with seizure dur-
ation, but found no other strong relationships. Specifically,
the subject-specific relationship between seizure pathways
and durations was not explained by our clinical variables.

Discussion

We quantitatively compared two seizure features: their dur-
ation and their pathway. We found that these features often
varied independently within individual subjects: seizures
with the same pathway could have different durations, and
seizures with the same duration could have different path-
ways. The level of association between pathways and dura-
tions was subject-specific, and we identified multiple
mechanisms such as truncating pathways and temporal elas-
ticity that could strengthen or weaken this relationship.
Additionally, we found that distinct populations of short
and long seizures did not necessarily correspond to different
groups of seizure pathways. Thus, seizure pathways and
durations carry complementary information about seizures,
and these features can perhaps be modulated independently
within a given subject. Additionally, the highly subject-
specific relationship between seizure pathways and durations
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seizure pathway clusters in all subjects with duration populations.

highlights the need for statistical and dynamical models that
can be tailored to individual data.

The fact that an individual seizure pathway does not have
a rigidly predetermined duration indicates that a seizure’s
evolution itself does not fully dictate its rate of progression.
Thus, a seizure is not a pre-programmed sequence of patho-
logical electrographic patterns with set timings. Rather, both
the seizure’s pattern of activity and the timings of those dif-
ferent patterns can change from one seizure to the next.
These observations imply that there are factors that modu-
late the timings within seizure pathways. Our work indicates
that these modulators can impact seizure pathways inde-
pendently of the seizure duration, suggesting that there are
multiple biological mechanisms that influence seizure fea-
tures. Identifying these mechanisms could offer therapeutic
targets for controlling seizures.

Based on our observation of temporally elastic seizure
pathways, one potential therapeutic approach would be to
reduce the duration of a given seizure pathway. To achieve
this goal, further work is needed to determine the biological
mechanisms that produce changes in seizure duration among
seizures with similar pathways. Consistent with our observa-
tions, Wenzel et al.*® previously observed seizures with simi-
lar propagation patterns, but different durations, in a rodent
model. They described this feature as ‘elasticity’ of seizure

propagation. To our knowledge, seizure elasticity has not
been previously quantitatively described in humans, al-
though seizures with consistent neuronal spiking patterns,
but different durations, have been observed.?” Our work re-
veals that temporal elasticity is also a common feature of hu-
man seizures. Interestingly, it appears that elasticity does not
necessarily affect the entire seizure pathway; instead, a seiz-
ure could selectively dwell in certain parts of a given path-
way. Further research is needed to understand what parts
of seizure pathways are most prone to variable rates of pro-
gression as well as the underlying molecular mechanisms,
such as local?® or feedforward*® inhibition, that determine
these temporal features. Uncovering these mechanisms could
provide possible clinical strategies for controlling seizure
progression and duration, thus reducing seizure severity.
We also identified a mechanism that can shorten both seiz-
ure pathways and durations, which we termed ‘truncating’ a
seizure pathway. Thus, it is likely that some seizure modula-
tors affect both seizure pathways and durations, whether by
truncations or other mechanisms. Using the same chronic pa-
tient recordings as our work, Karoly et al.’s” earlier model-
ling study also found evidence that shorter seizures may be
created by early terminations along a given seizure pathway.
Specifically, they observed that variability in a patient’s seiz-
ure duration was associated with seizure terminations, but



14 | BRAIN COMMUNICATIONS 2022: Page 14 of 16

not onsets.” While this work used a different computational
approach to characterize seizure pathways, these results sug-
gest that seizures with different durations can share the same
initial evolution. Additionally, microelectrode recordings
have revealed that some patients have shorter seizures that
terminate earlier along the patient’s characteristic seizure
evolution, again revealing that shorter seizures can arise by
truncating seizure pathways.** Biological triggers of this
truncation mechanism could potentially be used as a clinical
approach to induce early termination of seizure pathways
and thereby reduce seizure duration and severity.

Our cohort included subjects with a spectrum of seizure
durations as well as subjects with distinct populations of short
and long seizures. Past studies uncovered the presence of such
duration populations in the NeuroVista cohort that was ana-
lyzed in this study.®” Interestingly, we observed that popula-
tions of short and long seizures only corresponded to
different groups of seizure pathways in some subjects, such
as NeuroVista 3. These subjects likely underlie previous evi-
dence for a link between duration populations and different
seizure pathways.” Mechanisms such as truncating pathways
could potentially create such duration populations.”
However, in other subjects, such as NeuroVista 8, we found
that a seizure’s duration population was not closely linked to
its pathway; indeed, short and long seizures could have more
similar pathways to each other than to seizures with similar
durations. It is possible that distinct duration populations arise
via different mechanisms in such cases. Further research is
needed to determine whether the relationship between seizure
pathways and duration populations impacts seizure forecast-
ing® and seizure duration predictions® in these patients.

Clinical factors such as seizure localization are known to im-
pact seizure durations across patients.'”*® However, the fac-
tors that modulate seizure durations within the same patient
are unknown. We previously hypothesized that preictal vari-
ability in brain dynamics* or continuous fluctuations in interic-
tal brain dynamics®” could produce changes in seizure
pathways. Likewise, fluctuations in interictal markers*® such
as levels of cortical excitability and inhibition,**=*! interictal
spike rate,’>> or functional networks®* could potentially af-
fect seizure duration. Additional factors such as sleep state®
and temporal seizure clusters'” are known to impact seizure
duration, but it is unclear whether these duration changes oc-
cur as a byproduct of coinciding changes in seizure pathways.
Indeed, in a rodent model, seizure durations, severity, and
spread all change over the course of a seizure cluster,’® suggest-
ing that some mechanisms influence both seizure pathways and
durations. Disentangling the factors that shape seizure path-
ways and durations will require accounting for variability in
one feature when analyzing the other aspect of seizure dynam-
ics. Indeed, our additional analysis of the NeuroVista patients
suggests that some underlying factors solely shape seizure path-
ways, while others determine the dwell time in specific parts of
the pathway.’” Additionally, this separate analysis suggests
that these seizure features change over circadian and multidien
timescales, potentially due to modulatory factors with the same
temporal fluctuations.**-*®
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One promising avenue to understanding seizure pathways
and their durations is developing computational models that
capture not only specific stages of a seizure, but also neural dy-
namics throughout the seizure’s evolution. Many studies have
focused on computationally analyzing®**?* or model-
ling>'3°%* variability in seizure onset and termination dynam-
ics. For example, Jirsa et al.'® characterized seizures by the types
of dynamic transitions that occurred at seizure start and end.
Using this approach, Saggio et al.” classified seizures into ‘dyna-
motypes’ and uncovered within-patient variability in these
classes. While their classification characterizes seizure onset
and termination, Saggio et al.® also developed a model that ex-
plains relationships between dynamotypes as well as more com-
plex seizure dynamics such as status epilepticus. Such models
can therefore also capture the seizure’s full evolution, or dynam-
ical pathway.”'? Thus, computational models of seizure evolu-
tions could be extended to explore the dynamical mechanisms
underlying other types of seizure variability beyond seizure
transitions, such as the variability in seizure pathways, dwell
sites, and overall duration that we observed in this work.

Our study was limited to human patients with
drug-resistant focal epilepsies and dogs with focal-onset sei-
zures, and it is unclear whether similar relationships between
seizure pathways and durations exist in other types of epilep-
sies. Our concordant findings in dogs indicate that our re-
sults generalize beyond human patients. It is also likely
that we did not observe all types and combinations of path-
way and duration variability in our subjects, especially in
EMU patients with shorter recordings.®> Another limitation
of our study is that seizure duration depends on clinically or
algorithmically marked seizure onsets and terminations.
Clinical markings can be subjective and vary from marker
to marker, especially in some seizures with more ambiguous
onsets.'**® However, marking errors were likely small and
non-systematic relative to the length of most seizures.

We have shown that seizure pathways and durations can
vary independently within the same patient, increasing the
possible combinations of seizure dynamics that can occur
in a given patient. As such, both pathway and duration infor-
mation is needed to fully characterize a seizure. Determining
the mechanisms by which each feature independently varies
and co-varies could lead to strategies for reducing seizure
duration and severity in therapeutic interventions.
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