Table 4.
Comparison of the performance of machine learning models for detecting the accuracy of health-related tweets.
| Model and class | Precision | Recall | F1 score | Macroaverage | Model accuracy | ||||||
| AraBERTv2a-base | |||||||||||
|
|
Inaccurate | 0.804 | 0.7627 | 0.7826 | 0.8279 | 0.8397 | |||||
|
|
Accurate | 0.86 | 0.8866 | 0.8731 | 0.8279 | 0.8397 | |||||
| AraBERTv2-large | |||||||||||
|
|
Inaccurate | 0.8276 | 0.8136b | 0.8205b | 0.8564b | 0.8654b | |||||
|
|
Accurate | 0.8878 | 0.8969 | 0.8923 | 0.8564b | 0.8654b | |||||
| AraBERTv0.2c-base | |||||||||||
|
|
Inaccurate | 0.8519 | 0.7797 | 0.8142 | 0.8543b | 0.8654b | |||||
|
|
Accurate | 0.8725 | 0.9175 | 0.8945 | 0.8543b | 0.8654b | |||||
| AraBERTv0.2-large | |||||||||||
|
|
Inaccurate | 0.8448 | 0.8305d | 0.8376d | 0.8701d | 0.8782d | |||||
|
|
Accurate | 0.898d | 0.9072 | 0.9025d | 0.8701d | 0.8782d | |||||
| MARBERT | |||||||||||
|
|
Inaccurate | 0.7759 | 0.7627 | 0.7692 | 0.8154 | 0.8269 | |||||
|
|
Accurate | 0.8571 | 0.866 | 0.8615 | 0.8154 | 0.8269 | |||||
| ARBERT | |||||||||||
|
|
Inaccurate | 0.7903 | 0.8305d | 0.8099 | 0.8447 | 0.8526 | |||||
|
|
Accurate | 0.8936 | 0.866 | 0.8796 | 0.8447 | 0.8526 | |||||
| QARiB | |||||||||||
|
|
Inaccurate | 0.7797 | 0.7797 | 0.7797 | 0.8228 | 0.8333 | |||||
|
|
Accurate | 0.866 | 0.866 | 0.866 | 0.8228 | 0.8333 | |||||
| ArabicBERTe-large | |||||||||||
|
|
Inaccurate | 0.8654 | 0.7627 | 0.8108 | 0.8532 | 0.8654b | |||||
|
|
Accurate | 0.8654 | 0.9278b | 0.8955b | 0.8532 | 0.8654b | |||||
| ArabicBERT-base | |||||||||||
|
|
Inaccurate | 0.8913d | 0.6949 | 0.781 | 0.83492 | 0.8525 | |||||
|
|
Accurate | 0.8364 | 0.9485d | 0.8889 | 0.83492 | 0.8525 | |||||
| BLSTMf Mazajak CBOWg | |||||||||||
|
|
Inaccurate | 0.7719 | 0.7458 | 0.7586 | 0.8079 | 0.8205 | |||||
|
|
Accurate | 0.8485 | 0.866 | 0.8571 | 0.8079 | 0.8205 | |||||
| BLSTM Mazajak Skip-Gram | |||||||||||
|
|
Inaccurate | 0.8542 | 0.6949 | 0.7664 | 0.8222 | 0.8397 | |||||
|
|
Accurate | 0.8333 | 0.9278b | 0.8780 | 0.8222 | 0.8397 | |||||
| BLSTM ArWordVec Skip-Gram | |||||||||||
|
|
Inaccurate | 0.8261 | 0.6441 | 0.7238 | 0.7919 | 0.8141 | |||||
|
|
Accurate | 0.8091 | 0.9175 | 0.8148 | 0.7919 | 0.8141 | |||||
| BLSTM ArWordVec CBOW | |||||||||||
|
|
Inaccurate | 0.7925 | 0.7119 | 0.75 | 0.805 | 0.8205 | |||||
|
|
Accurate | 0.835 | 0.8866 | 0.86 | 0.805 | 0.8205 | |||||
| BLSTM AraVec CBOW | |||||||||||
|
|
Inaccurate | 0.6865 | 0.7797 | 0.7302 | 0.7737 | 0.7821 | |||||
|
|
Accurate | 0.8571 | 0.866 | 0.8172 | 0.7737 | 0.7821 | |||||
| BLSTM AraVec Skip-Gram | |||||||||||
|
|
Inaccurate | 0.7313 | 0.8305d | 0.7777 | 0.8136 | 0.8205 | |||||
|
|
Accurate | 0.8144 | 0.8144 | 0.8494 | 0.8136 | 0.8205 | |||||
| BLSTM fastText | |||||||||||
|
|
Inaccurate | 0.8158 | 0.5254 | 0.6392 | 0.7382 | 0.7756 | |||||
|
|
Accurate | 0.7627 | 0.9278b | 0.8372 | 0.7382 | 0.7756 | |||||
aAraBERTv2: Transformer-based Model for Arabic Language Understanding version 2.
bRepresents the second-best value.
cAraBERTv0.2: Transformer-based Model for Arabic Language Understanding version 0.2.
dIndicates the best value.
eBERT: bidirectional encoder representations from transformers.
fBLSTM: bidirectional long short-term memory.
gCBOW: Continuous Bag of Words.