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Abstract
Dysregulated interactions between host inflammation and gut microbiota over the 
course of life increase the risk of colorectal cancer (CRC). While environmental 
factors and socio-economic realities of race remain predominant contributors to 
CRC disparities in African-Americans (AAs), this review focuses on the biological 
mediators of CRC disparity, namely the under-appreciated influence of inherited 
ancestral genetic regulation on mucosal innate immunity and its interaction with 
the microbiome. There remains a poor understanding of mechanisms linking 
immune-related genetic polymorphisms and microbiome diversity that could 
influence chronic inflammation and exacerbate CRC disparities in AAs. A better 
understanding of the relationship between host genetics, bacteria, and CRC 
pathogenesis will improve the prediction of cancer risk across race/ethnicity 
groups overall.
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Core Tip: Studies largely examine either variations in microbiome composition or host immunity 
polymorphisms, often using genome-wide association studies comprised of populations mainly of 
European ancestry. There is, thus, a pressing need for studies that include, recruit, and account for more 
widely diverse cohorts. Identification of population-associated polymorphisms driving host/microbiome 
interactions linked to colorectal cancer (CRC) disparity may reveal genes or pathways that could be 
targeted for patient-specific CRC interception strategies.
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INTRODUCTION
Colorectal cancer (CRC) is the second leading cause of death amongst cancer patients, an estimated 
53000 of whom will die in the United States from CRC in 2021[1]. Strikingly, although total CRC 
mortality has decreased over the last two decades, particularly in older individuals (age 64 +), CRC 
incidence has increased in individuals under 50[1]. Recent studies showed early-onset CRC patients 
were more likely to be African-Americans (AAs), who bear the highest CRC incidence rate between 20-
year-old and 44-year-old (7.9/100000) as compared to Caucasian Americans (CAs) (6.7/100000) and 
Asian-Pacific Islanders (6.3/100000)[2]. AAs commonly display more aggressive types of CRC as well, 
and are generally diagnosed at more advanced stages of the disease, exhibiting survival rates 7% below 
those of CAs (58% vs 65% 5-year survival)[3]. Such statistics must be interpreted cautiously, since the 
noted increase of early-onset CRC may result from recently recommended and adopted early 
colonoscopy (40-45 years old) screening campaigns. Nevertheless, there are multiple proposed 
influences on CRC disparities in AAs, including differences in health care and treatment access, 
comorbidities and tumor characteristics[4-8]. Socioeconomic status (SES) also weighs heavily on the late 
diagnoses and prevention campaign efficacy observed in AA populations[2,6,9]. Undoubtedly the 
source of CRC disparity is multifactorial, and a layered perspective is imperative to address the 
alarming rise of early onset CRC, an otherwise preventable disease when detected early.

Herein, we aim to elucidate novel biological factors that may also contribute to the AA disparities in 
CRC mortality. Specifically, in addition to the genetic influence on CRC pathogenesis, an accumulating 
body of evidence connects CRC to dysregulated interactions between mucosal innate immunity and the 
microbiome[10]. Indeed, sustained inflammation promoted by chronic colorectal dysbiosis is an 
established driver of CRC pathogenesis[11]. Related to this notion is a recent gut microbiome profiling 
study that found that, in addition to diminished overall species diversity, pro-inflammatory Fusobac-
terium nucleatum (F. nucleatum) and Enterobacter species were significantly more abundant in AA CRC 
patients as compared to a CA cohort[12]. The presence of F. nucleatum has also been linked to inflam-
mation-associated microsatellite alterations found more prevalently in AA rectal tumors, a finding 
linked to worsened CRC prognosis[13-15]. Furthermore, genetic landscape and microbiome composition 
have been shown to influence the occurrence of proximal colorectal tumors[16], which are more difficult 
to detect and are diagnosed nearly four times more often in AA than in CA CRC patients[17]. Nearly 
80% of sessile serrated polyps are found in the proximal colon, a phenomenon associated with microbial 
biofilms and Fusobacteria, plus the frequency of BRAF mutations, CpG island hypermethylation 
phenotype, and microsatellite instability that increases from the distal to the proximal region[16,18-22]. 
Altogether, there is emerging research on the genetically tuned relationships between mucosal innate 
immunity, the microbiome, and disparate CRC development, but a functional understanding of how 
said relationships impact CRC pathology remains incomplete[23]. Additionally, despite the evidence 
that mucosal innate immunity and the microbiome are intimately connected, this review highlights how 
minority health research currently evaluates their contribution to CRC risk in a largely separate fashion
[24].

Accordingly, we propose an integrated concept whereby a differential mucosal inflammatory 
response to gut microbiota, influenced by host genetic ancestry, represents an underappreciated factor 
affecting population susceptibility to CRC. In support of this concept, a recent study found that the most 
differentially expressed genes (DEGs) between AA and CA CRC tumors were related to the regulation 
of inflammatory immunity[25]. More broadly, transcriptional regulation of inflammation was deter-
mined the most distinguishing DNA variation between African and European genetic ancestries[26]. 
Another study demonstrated that African genetic ancestry and level of African admixture (mixture with 
ancestral African genetic lineage) predicted a stronger inflammatory transcriptional response in 
macrophages infected with bacterial pathogens[27]. From this framework, one could theorize that in a 
CRC setting, the same bacterium or a community of bacteria may induce a differentially deleterious 
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inflammatory response based on a patient’s immune-related genetic background. Positive ancestral 
selection of anti-pathogenic immunity providing survival benefit in endemic areas may, in a modern 
“westernized life style” context, exacerbate localized inflammation in the tumor micro-environment 
and, when compounded by SES and environmental factors, accelerate CRC progression into the more 
aggressive form seen in AA patients, whose self-reported race/ethnicity correlates with an elevated 
African admixture[28,29] (Figure 1).

Given that SES and a variety of environmental factors associated with CRC pathogenesis and 
disparities are commonly discussed elsewhere[2,9], we are limiting the scope of the present review to 
the nascent literature associating CRC first to genetic polymorphisms related to innate immunity, 
second to those related to the microbiome, and finally explore how they may conjointly contribute to 
CRC disparities in the AA population. We also emphasize that, by considering admixture and genetic 
ancestry rather than self-reported race, population-specific risk studies including microbiome genome-
wide association studies (GWAS) can more accurately capture human genetic diversity, thereby 
increasing the likelihood of identifying clinically relevant CRC risk factors associated with African 
ancestry[30-34]. Furthermore, polymorphisms related to innate immunity as well as the microbiome and 
contributing to links between CRC risk and African ancestry may have been left undiscovered by the 
longstanding genetic homogeneity of genomic research cohorts, a problem we discuss in our closing 
remark. Although technically challenging, expanding GWAS to more diverse “multi-ancestry” cohorts 
will reveal novel linkages between the microbiome, inflammation, and CRC risk that can build 
predictive polygenic risk scores adaptable to an equally diverse patient base[35,36]. Crucially, functional 
evaluation of CRC risk variants associated with African ancestry may offer insights into the trend of 
aggressive, earlier onset CRC in AA patients, paving the way towards personalized prevention and 
precision medicine.

MUCOSAL INFLAMMATION, MICROBIOME, AND CRC
To better appreciate how host genetics may impact CRC risk between populations of different ancestral 
origins by modulating innate immunity or the microbiome, we will first highlight how mucosal inflam-
mation and the gut microbiome interact to affect CRC pathogenesis. The human gut contains up to 1013 
bacteria that play critical roles in immune, metabolic, cardiovascular, and neurological development
[37]. The composition and functions of this bacterial community (microbiota) and its associated genome 
(microbiome) are highly dynamic and influenced by both environmental factors and host genetic 
background to maintain immunological and metabolic functionality[38]. Meanwhile, a tightly regulated 
physical separation between the immune system and commensal bacteria is necessary to limit a chronic 
inflammatory response to the microbiota[39,40]. The integrity of the intestinal barrier and its epithelium 
are therefore essential elements of healthy host-microbiota mutualism[40]. To establish a “demilitarized 
zone” and keep microbes at bay, the epithelium uses different mechanisms including tight junctions 
between epithelial cells, protective mucus production, and the expression of a complex arsenal of innate 
receptors that trigger bactericidal mediator secretion[41]. Nevertheless, a permissible level of contact or 
bacterial penetrance is necessary to facilitate metabolic exchanges and immunity maturation for 
homeostatic equilibrium between dense microbial flora and the host[39,40].

In the case of a high-fat diet, the cumulative alteration of bacterial metabolites can disrupt this 
equilibrium, thereby promoting carcinogenic dysbiosis and mucosal inflammation[42]. Diet is, thus, a 
critical environmental factor when connecting inflammation and the microbiome to CRC risk, especially 
when considering CRC disparities in AAs compared to Native Africans[43-45]. However, CRC as 
impacted by the genetic origins of host inflammatory response remains understudied. Inflammatory 
bowel disease (IBD), a model of perturbed micro-immune crosstalk and a known influencing factor of 
CRC etiology, can be a useful departure point for this line of inquiry[46]. In fact, multiple GWAS have 
linked higher risk of IBD, CRC[47-50], and microbiotic dysbiosis to host genetic variations, but 
surprisingly little is known about how CRC disparities may be compounded by the genetic regulation of 
host inflammatory response to gut bacteria[51].

There are, however, documented relationships between the genetic regulation of innate inflammatory 
immunity, the microbiome, and colon carcinogenesis. For example, adenomatous polyposis coli (Apc)
Min/+ mice knockout for toll-like receptor (TLR) 4 or its signaling adaptor partner myeloid differentiation 
primary response 88 demonstrated a decreased number of intestinal polyps[52]. Nucleotide-binding 
oligomerization domain leucine-rich repeat and pyrin domain containing 6 and nucleotide binding 
oligomerization domain containing protein 2 (NOD2) knockout mice were shown to develop colon 
tumors following colitis, and fecal microbiota transplantation from these mice into wild type recipients 
triggered similar tumorigenesis, which interestingly attributed carcinogenic causality to the microbiota
[53,54]. In the case of lipocaline-2 knockout mice, Alistipes spp. commensals thrived and drove proximal 
colon tumorigenesis[55]. The nature of host genetic events can therefore drive different microbiome 
shifts impacting CRC and its anatomical pathogenesis (i.e., distal vs proximal).

If inflammation is a mechanism connecting the microbiome and colorectal carcinogenesis, host 
genetic background, including immune-related single-nucleotide polymorphisms (irSNPs), could differ-
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Figure 1 Immune-related variant may promote survival to pathogens in ancestral African environment but precipitate cancer in 
descendent African-Americans. Pathogens associated with endemic African regions (e.g., malaria) are thought to pressure selection for specific immune-
related genetic variants associated with pathogen resistance and survival of Native Africans (left). In the context of westernized diet and lifestyle, this genetic 
predisposition (represented herein by a single nucleotide variant), when associated with inflammatory regulation and inherited from African ancestors, may lead to 
altered interactions with bacteria or communities of bacteria of the gut microbiome, thereby precipitating the colon adenoma-carcinoma sequence in African-
Americans (right). Higher inflammation associated with lack of exercise, high fat diet, and socio-economic status are thought to be predominant factors driving early 
colorectal cancer onset in African-Americans via their impact on shaping the gut microbiome and its interactions with the host genetic background. SNV: Single 
nucleotide variant. Created with Biorender.com.

entially regulate such associations based on ancestry. In humans, pattern recognition receptor 
polymorphisms are associated with both IBD and CRC risk[48]. GWAS have linked genetic loci to 
increased IBD risk and a variety of risk alleles affect immune response[56], including NOD2 or 
autophagy-related 16 like 1[57,58]. Such polymorphisms have been associated with microbial dysbiosis 
and an excessive inflammatory response[59,60]. Namely, Knights et al[59] found that among 474 
individuals, NOD2 variants were associated with Enterobacteriaceae family enrichment, including 
Escherichia coli, a species notably enriched in IBD individuals. Also, Lavoie et al[60] described an increase 
of interleukin (IL)-17-producing CD4+ T (i.e., Th17) cells in the lamina propria of mice engineered to 
express the polymorphism T300A (rs2241880) in the Atg16 L1 gene. Although Th17-based colitis was 
associated with an increase of Bacteroides ovatus, T300A did not directly induce the increase of Bacteroides 
ovatus but rather induced the increase of IL23p19, an important cytokine for maintaining the Th17 
lineage[61]. Th17 cells and their canonical cytokine IL-17 are critical pro-inflammatory contributors to 
epithelial homeostasis and mucosal immunity by orchestrating anti-bacterial defense and epithelial 
repair and regeneration as well as regulating barrier permeability by controlling the expression of 
occludin proteins[62,63]. When dysregulated in a chronic setting, sustained IL-17 production may 
promote colon tumorigenesis[64,65]. Several studies have now identified IL-23/Th17 pathway-
associated polymorphisms linked to IBD susceptibility and the gut microbiome profile[66-68]. 
Presumably, genetic regulation of Th17-driven inflammation may impact IBD and ensuing CRC risk via 
the extent or nature of colonic dysbiosis. In sum, these GWAS suggest that by influencing the extent or 
nature of colonic dysbiosis, genetic regulation of inflammation represents a risk factors for both IBD and 
CRC. Next, we review how genetic ancestry contributes to this phenomenon, and how it may exacerbate 
CRC disparity in AAs.

GEOGRAPHIC AND POPULATION-RELATED INNATE IMMUNITY DISPARITIES THAT 
MODULATE CRC RISK
The flow of genetic information across time and geography may contribute to current disparities in 
cancer incidence and progression[69]. Cancer is known to result from an accumulation of somatic 
genetic and epigenetic alterations that dysregulate the cell cycle but also depends on genetic 
background and polymorphisms that impact patient risk and predisposition[70,71]. Yet, few GWAS 
have implicated ancestral genetic variants in cancer predisposition amongst self-identified racial/ethnic 
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groups[72,73]. Many such polymorphisms regulate gene expression via epigenetic or post-translational 
modification mechanisms, which affect noncoding sequences like microRNA (miRNA) binding sites[74,
75]. Yet, the biological and clinical significance of most polymorphisms associated with cancer 
disparities remains unknown[72]. Mechanistic associations between chronic inflammation and carcino-
genesis could link ancestral genetic diversity to cancer, whereby immune-related genetic regulatory 
variants have the potential to differentially modulate CRC across populations[27].

In fact, a large fraction of population-associated polymorphisms impact gene expression related to 
inflammation and innate immunity, which, being likely essential for surviving life-threatening 
infections, evolved under stronger selection pressures than other traits[76,77]. For instance, human 
genome diversification via archaic human genome introgression (i.e., admixture with Neanderthal 
genome) is a proposed adaptation of ancestral humans to infectious environments following “out of 
Africa” migration[77,78]. In non-African populations, Neanderthal-introgressed haplotypes 
reintroduced a splice variant (rs10774671) of the 2’-5’-oligoadenylate synthetase (OAS) 1 gene[79]. The 
OAS locus on chromosome 12 encodes three genes, OAS1, OAS2 and OAS3 that play an important role 
in virus defense. The elevated frequency of the Neanderthal-derived allele at the OAS locus was 
proposed to be the result of a positive selection in European and East Asian populations. This allele 
selection has a functional significance since it is associated with the production of a protein variant 
(OAS1 p46) characterized by higher enzymatic activity and improved resistance to West Nile virus and 
hepatitis virus C[80]. Therefore, the allele haplotype may provide a survival advantage to infectious 
agents in the non-African environment and represents an example of variety in baseline inflammation 
levels that may influence susceptibility to diseases like IBD and CRC in patients with insignificant 
African ancestry. Selection of genetic variants providing health and survival benefit in endemic areas 
may represent another means of adaptation and human genome diversification. In a cohort of 158 
healthy individuals (distributed as European, Sub-Saharan African, and East-Asian), Barreiro et al[81] 
found that nucleotide diversity of the TLR family was shown to vary between African populations, 
suggesting pathogen-specific selection pressures. Specifically, the TLR10/TLR1/TLR6 locus showed signs 
of recent positive selection amongst non-African populations. Furthermore, of all SNPs in this region, a 
high frequency TLR1 single nucleotide variant (SNV) (non-synonymous T1805G variant) found in 
Europeans was the most significant population differentiator and was associated with a decrease in 
agonist-mediated nuclear factor-kappa B activation[81]. Although it is unclear if decreased TLR1-
mediated immune response confers a selective advantage, it could potentially modulate otherwise 
harmful inflammatory responses to pathogens[82,83]. This finding suggested that a finely tuned balance 
between optimal defenses to pathogens and excessive inflammation may have been critical for 
evolutionary survival[78].

To investigate how ancestral immunity would impact pathogen response, Nédélec  et al[27] studied 
interactions between macrophages and live bacteria (Listeria and Salmonella). Amongst the macrophages, 
they found that many of the DEGs; (30% of the 11914 genes analyzed) between AAs (n = 77) and CAs (n 
= 91) were involved in the regulation of the innate immunity. These results built off their previous 
findings that 9% of macrophage DEGs varied according to ancestry-associated regulation and that 
increased African ancestry could predict a stronger inflammatory response to infection[27]. Performing 
quantitative trait locus (QTL) analysis, the authors identified SNVs in 14% of DEGs or using alternative 
splicing between CA and AA individual-derived macrophages (either non-infected or infected with 
Listeria or Salmonella). A large fraction of DEGs were associated with expression QTL only in infected 
macrophages. In other words, SNVs in a significant fraction of inflammation-related genes were 
expressed in infected macrophages according to the level of African ancestry. Interestingly, the same 
authors also found that these DEGs included susceptibility genes previously reported by GWAS for 
rheumatoid arthritis, systemic sclerosis, or ulcerative colitis, all related to chronic inflammation and 
conditions with known AA disparity[78]. The interest of such a study, although performed on 
macrophages in vitro, is its illustration of the link between African genetic ancestry and inflammatory 
response to bacteria, one that could accelerate CRC by aggravating interactions between gut microbiota 
and the mucosal immune system. Reinforcing this concept is another GWAS that revealed that some of 
the most differentiating irSNPs between African and European populations were associated with genes 
regulating nuclear factor-kappa B or chemokine gene clusters[78]. Selected genetic variants may offer 
protection against infection in endemic regions for native/rural Africans but favor cancer development 
in descendants bearing the same variants in a western environment, a concept exemplifying the 
crossroad between host genetics and environmental factors that shapes cancer risk (Figure 1).

Regarding the possibility of a role of associations between irSNP and CRC risk into AA disparity, a 
recent study by Sanabria-Salas et al[33] studied links between pro-inflammatory IL1B haplotypes and 
CRC risk in patients from six Colombian cities. The authors associated the IL1B CGTC haplotype with 
CRC risk exclusively in patients from the coastal regions of Colombia who possessed the highest 
proportion of admixed African ancestry[33]. The same group has associated IL1B irSNPs (four SNPs -
3737C/-1464G/-511T/-31C) with African ancestry and elevated cancer risk. The CGTC haplotype was 
most frequently found and highly expressed in AAs, establishing a functional link between IL1B irSNP 
and CRC risk[84]. Further studies, validating the connection between AA CRC patients and IL1B 
polymorphisms, will be required to confirm the IL1B SNP haplotype as a population-associated CRC 
risk marker; these findings nevertheless showcase a prime example of an exploitable connection 
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between ancestry-related inflammation and cancer risk disparity.
Next, a cancer genomic meta-analysis using 48 GWAS within the National Cancer Institute GAME-

ON Network (64591 cancer and 74467 control patients) across five common cancer sites (ovarian, lung, 
breast, colorectal, and prostate) found that genetic variants associated with inflammation and innate 
immune response were relevant to CRC risk, including SH2B adapter protein 3 (SH2B3) (rs3184504, P = 
3.32 × 10-5), a negative regulator of growth factors and cytokine-induced signaling (Table 1). Unfortu-
nately, irSNP associations with race/ethnicity and geographic distributions were not evaluated[85]. In 
contrast, Wang et al[47] demonstrated the merit of accounting for population diversity in their analysis 
of associations between innate immunity pathways and CRC risk. In two large studies (discovery and 
validation cohorts) across five distinct ethnic groups (AA, CA, Japanese-American, Latino, and Native 
Hawaiian), they found that among more than 600 common variants associated with 37 innate immunity-
related genes, a SNV in the second intron of peroxisome proliferator-activated receptor gamma 
(PPARG) (rs9858822) showed a statistically significant association with CRC in the AA population 
(Table 1). This variant, rare in other non-AA populations, was not previously reported. Importantly, a 
frequently reported PPARG variant rs1801282, inconsistently associated with CRC in other studies[86-
88], was not detected in association with CRC in Wang et al[47]’s study that carefully controlled for 
population diversity, supporting the value of multi-ancestry SNP association studies. In another meta-
analysis of 308 SNPs performed by Montazeri et al[89], 14 SNPs showed credible association with CRC 
including rs3802842, whose expression was associated with immune infiltration. Curiously, the PPARG 
rs9858822 polymorphism detected by Wang et al[47] failed as a positive SNP in this meta-analysis, a 
finding that warrants additional verification. However, such discrepancies between the multi-ethnic 
study of Wang et al[47] and European study of Montazeri et al[89] may highlight the issue of the 
underrepresented diversity when seeking genetic cancer risk. Population-associated risk may be missed, 
and alternatively discovered cancer risk may not be relevant for minorities.

Lastly, functional variants in the 3’-untranslated region (UTR) of inflammatory gene miRNA binding 
sites (miRSNPs) have been associated with CRC risk[75]. Four miRSNPs in the mannose binding lectin 2 
(MBL2) gene 3’-UTR have been associated with increased CRC risk in the AA population. MBL2 codes 
for mannose binding lactose protein, a pattern recognition receptor that binds a wide range of pathogen-
expressed sugars, leading to their phagocytosis. Although not assessed in this study, the modulation of 
the interactions between the mucosal inflammation and the microbiome, via MBL2 expression, could be 
a mechanistic link between African ancestry and higher CRC risk[74]. irSNPs associated with CRC risk 
are summarized in Table 1.

Ultimately, linking chronic inflammation risk loci to positive selection via resistance to past infectious 
agents and population displacement should be done with caution, as the merits are still debated[78]. 
Physiological interfacing of the immune system with other biological systems (reproduction and organ 
development) may also explain positive selection in a manner distinct from past pathogen resistance
[78]. Yet, considering the evidence of host innate immunity regulation by population-enriched irSNPS
[27], it is reasonable to speculate that the mucosal inflammation associated with commensalism is differ-
entially tuned according to the level of African ancestry and could therefore influence CRC disparities. 
This view is supported by disparity research in other cancers, such as the finding that IL10 promoter 
SNPs enriched in AAs are also potential risk factors for prostate cancer development and progression
[90]. Interestingly, one such IL10 polymorphism (rs1800871) was associated with Proteobacteria load in 
the gut microbiome (Table 2), but a connection between rs1800871, proteobacteria, and prostate cancer 
remains to be established[90]. In breast cancer, Jenkins et al[91] demonstrated how the ancestral 
selection of immune variants in the African continent can predispose AA women to ancestry-related 
differences in tumor immunogenicity. Specifically, the status of a “Duffy-null” polymorphism-regulated 
atypical chemokine receptor 1 (ACKR1) allele linked West African genetic ancestry to tumor immune 
infiltration. Thus, for breast cancer, duffy antigen receptor for chemokines/ACKR1 polymorphism may 
serve as a biomarker for precision medicine and immunotherapy in patients bearing significant West 
African ancestry[91]. This result highlights the potential that ancestry-associated irSNPS have for cancer 
screening and clinical care when paired with functional analyses and elevating the importance of similar 
studies for CRC.

HOST GENETICS AND MICROBIOME INTERACTIONS’ CONTRIBUTION TO CRC 
DISPARITY
While host genetics may impact mucosal inflammation and CRC risk, other factors, including environ-
mental factors such as diet, lifestyle, and antibiotic exposure, undoubtedly influence CRC susceptibility 
and treatment response by shaping gut microbiome composition[51,92,93]. Notwithstanding such 
findings, we propose that the predominant reliance of the microbiome on environmental cues in healthy 
individuals may conceal host genetic contributions (including genetic ancestry and somatic mutations) 
in disease contexts (e.g., CRC), driving the microbiome response to environmental fluctuations and 
defining, at least in part, differential susceptibility to cancer in AAs[94-96]. The numerous immune-
related genetic variants that delineate chronic disease susceptibility between AAs and CAs (previously 



Ahmad S et al. Microbiome and CRC disparity in AAs

WJG https://www.wjgnet.com 2788 July 7, 2022 Volume 28 Issue 25

Table 1 Immune-related single nucleotide polymorphism associated with colorectal cancer

Ref. Size Analysis Gene SNP Function Ethnicity Comment
COLCA1/21 rs3802842 (11q23.1) Immune infiltration of 

LP
Montazeri et al[89], 2020 6149 CRC 7337 controls Meta-analysis

TGFB1, SMAD7, 
SMAD7

rs1800469, rs12953717, 
rs4464148

TGFB signaling 
inhibitor

Europeans Confirmed by Lu et al[49], 
20191

HLA-C rs3131043 (6p21.33) Adaptive immunity

HLA-DRB1/DQA1 rs9271770 (6q21.33) Adaptive immunity

COLCA1/2 rs3087967 (11q23.1) Immune LP leukocytes

Law et al[50], 2019 34627 CRC 71379 controls Meta-analysis

FUT2 rs12979278 (19q13.33) Gut barrier

Europeans

NOD2 rs2066847 Innate immunity

GATA3 rs10795668 (10p14) T cell transcription 
factor

SMAD7 rs7229639 TGFB signaling 
inhibitor

SMAD7 rs4939827 TGFB signaling 
inhibitor

Lu et al[49], 2019 GWAS

COLCA1/22 rs3802842 (11q23.1) Immune infiltration of 
LP

East Asians Confirmed by Montazeri et 
al[89], 20202

Sanabria-Salas et al[33], 
2017

391 CRC GWAS IL1B CGTC haplotype (2q14) Inflammation Columbian Africans Association with AA 
admixture

Hung et al[85], 2015 15414 CRC 17688 controls GWAS SH2B3 rs3184504 (12q24) Cytokine signaling Europeans Confirmed by Schumacher 
et al[135], 2015

SH2B33 rs3184504 (12q24.12) Cytokine signalingSchumacher et al[135], 
2015

18299 CRC, 19656 controls (Europeans), 2098 
cases, 6172 controls (Asian 1), 2627 cases, 3797 
controls (Asian 2)

Meta-analysis

NOS1 rs73208120 (12q24.22) ROS production

Europeans/Asians Confirmed by Hung et al
[85], 20153

Wang et al[47], 2013 2535 CRC, 3915 controls (discovery), 2153 
CRC, 2630 controls (validation)

GWAS PPARG rs9858822 Monocyte activation Multi-ethnic High frequency in AA

Tsilidis et al[136], 2009 CLUE II cohort, 208 CRC, 381 controls GWAS IL10 rs1800896, rs1800890, 
rs3024496, rs3024498

Increased IL-10 ND

1Confirmed by Lu et al[49].
2Confirmed by Montazeri et al[89].
3Confirmed by Hung et al[85].
AA: African-American; CRC: Colorectal cancer; GWAS: Genome-wide association studies; IL: Interleukin; LP: Lamina propria; ROS: Reactive oxygen species; SNP: Single nucleotide polymorphism; TGF: Transforming growth factor; 
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ND: Not determined; HLA: Human leukocyte antigen; FUT2: Fucosyltransferase 2; NOD2: Nucleotide binding oligomerization domain containing protein 2; GATA3: GATA binding protein 3; SH2B3: SH2B adapter protein 3; NOS1: 
Nitric oxide synthase 1; PPARG: Peroxisome proliferator-activated receptor gamma.

discussed) may then contribute to differential inflammatory responses to the microbiome dysbiosis and 
compound existing CRC disparities (Figure 2).

From this perspective, multiple metagenomic studies of fecal and mucosal samples have already 
found compositional and metabolomic differences between CRC and healthy patient microbiome[97-
100]. Novel meta-analysis approaches combined these metagenome shotgun datasets across hetero-
geneous populations to explore relationships between the microbiome and CRC; associations were 
identified at both bacterial strain and gene levels[101-103]. A common core of 29 bacterial species was 
enriched in CRC cases, and choline metabolism was established as a reproducible biomarker of the 
CRC-associated microbiome[101,102]. While such findings are correlative and do not suggest causative 
links, several smaller studies have highlighted the role of specific bacteria[104-106] and microbial 
dysbiosis in triggering colorectal carcinogenesis in animal models[107]. However, microbiome GWAS 
(mGWAS) have not yet identified consistent associations between such carcinogenic bacteria and CRC 
risk[108]. Unfortunately, because population diversity was systematically underrepresented or not 
annotated in the metagenome datasets, it remains unknown how these results could translate into CRC 
risk factors or diagnostic biomarkers for specific racial/ethnic groups.

Meanwhile, several taxonomic and metagenomic studies have revealed an intriguing diversity in 
microbiome composition across racial/ethnic groups, but mechanistic understandings of associations 
between bacteria or groups of bacteria and race/ethnicity are sparse[34,109-113]. In particular, diversity 
of the microbiome is highly diet-driven. A study by O’Keefe et al[44] showed that a 2-wk food swap 
between AAs (received high fiber, low fat diet) and rural Africans (received low fiber, high fat diet) 
produced dramatic changes in mucosal biomarkers and a metabolome switch, illustrated by an increase 
in saccharolytic fermentation and anti-inflammatory butyrogenesis as well as suppression of secondary 
bile acid synthesis in AAs. In light of these results, it is critical that mGWAS take diet into consideration 
as a confounding factor, as its impact will inevitably interfere with the genetic/epigenetic influence on 
CRC risk[114]. Interestingly though, differences between CAs and AAs with respect to the mean 
alternate Healthy Eating Index (a measure of diet quality[115]) faded when adjusting for SES, implying 
that diet cannot entirely account for CRC disparities[116]. Multiple other factors besides diet are known 
to impact the composition and function of the microbiome, including smoking, alcohol consumption, as 
well as antibiotic exposure or metabolic condition such as diabetes or obesity, which are coincidentally 
also risk factors for CRC[117-119]. While these aspects of the microbiome biology have been extensively 
reviewed[120], we are paying much of our attention herein on the role of the host genetics and the 
ancestral genetic origin on the microbiome diversity and consequently CRC risk between ethnicities.

Interestingly, using the Healthy Life in an Urban Setting cohort and fecal 16S ribosomal RNA gene 
sequencing of over 2000 individuals, Deschasaux et al[110] found that microbiome diversity between 
racial/ethnic groups living in the same city was independent of metabolic health and only partially 
explained by SES, lifestyle, and diet factors. Yet, this finding was not always reproduced in other studies
[45,111,121]. Overall, however, there is sufficient evidence to justify additional efforts to clarify if host 
genetics and population origins are taking part in shaping the microbiome[51,94]. The role of host 
genetic background has been suggested by mGWAS, which showed that SNPs such as rs4988235, 
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Table 2 Interactions of host genetics (metabolic and immune-related single nucleotide polymorphism) with gut bacteria

Ref. Size Analysis Gene SNP Function Bacteria Ethnicity Comment

Knights et al[59], 2014 474 IBD 16S RNA NOD2 rs5743293, rs104895431, rs104895467, 
rs2068844, rs2068845, rs5743277, 
rs5743293

Innate immunity Enterobacteriaceae Europeans IBD

LCT rs2304371, rs3754689 MetabolismBlekhman et al[122], 
2015

93 (HMP) Metagenomic

GNA12 rs1182182 IBD

Bifidobacterium, SMB53 (
Clostridiaceae)

Multi-ethnic NS

Goodrich et al[123], 
2016

1126 Fecal 16S rRNA CD36 rs1360741 Immune-related Blautia Europeans United Kingdom 
twins

Li et al[137], 2016 10523 IBD, 5726 
IBD

Mucosal 16S rRNA SLC39A8 rs13107325 Immune-related Composition ND IBD

C11orf30-LRRC32 rs2155219 IBD Coprococcus comes/Proteobacteria

CCL2 rs3091315, rs3091316 Immune-related Methonobacteria

DAP2 rs267939 Innate immunity Bifidobacterium

IL23R rs12141575 Immune-related Enterobacteriaceae/E. coli

IL10 rs18008711 Immune-related Proteobacteria/Sutterella

MUC22 rs3873352 Barrier defense

rs12669082 Innate immunity Enterobacteriaceae/E.coli

rs41524946 Innate immunity Enteroba cteriaceae/E. coli

rs55689059 Innate immunity Enterobacteriaceae/E. coli

NOD1

rs55841603 Innate immunity Enterobacteriaceae/E. coli

NOD2 rs8056611, rs2357792, Innate immunity Enterobacteriaceae/E. coli

Bonder et al[68], 2016 1514 Metagenomic

CD209 rs1010046 Innate immunity Bacteroidetes

AA1 PCa risk

FUT2 rs602662 Barrier defense Bacteroides OTU97_27Rühlemann et al[138], 
2021

8956 16S rRNA/GWAS

BLVRA rs623108 Innate immunity Barnesiella spp. OTU99_55

Europeans

1Studies include an analysis according to the population origins.
AA: African-American; GWAS: Genome-wide association studies; HMP: Human Microbiome Project; IBD: Inflammatory bowel disease; SNP: Single nucleotide polymorphism; ND: Not determined; NS: Not significant; PCa: Prostate 
cancer; rRNA: Ribosomal RNA; E. coli: Escherichia coli; FUT2: Fucosyltransferase 2; NOD2: Nucleotide binding oligomerization domain containing protein 2; LCT: Lactase; GNA12: Guanine nucleotide-binding protein alpha-12; CCL2: C-
C motif chemokine ligand 2; IL: Interleukin; MUC22: Mucin 22; BLVRA: Biliverdin reductase.
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Figure 2 Interactions between host genetics and microbiome delineate colorectal cancer risk factors. Immune-related risk factors of colorectal 
cancer (CRC) may combine host genetics [including immune-related single-nucleotide polymorphisms (irSNPs)] and microbiome cues. The genetic regulation (irSNP) 
of bacteria (Taxa) recognition by the mucosal immunity may mediate the heterogeneity of CRC risk factors between populations which vary by the representation of 
irSNPs. A: Absence of irSNPs and pathogenic bacteria (no irSNPs/no Taxa) maintain healthy mucosal inflammation and gut barrier; B: Absence of irSNPs with 
enrichment of pathogenic bacteria (no irSNPs/Taxa) may lead to chronic inflammation that slowly promotes polyp formation; C: Presence of irSNP in absence of 
pathogenic bacteria may also lead to chronic inflammation that slowly promotes polyp formation; D: Combination of irSNP and pathogenic bacteria (dysbiosis) may 
trigger a smoldering chronic inflammatory response precipitating early progression of the adenoma-carcinoma sequence. Genome-wide association studies (GWAS) 
(irSNP as CRC risk) and microbiome GWAS (mGWAS) (bacteria as CRC risk) are poised to miss the association of the irSNP with CRC because of the necessity of a 
combined occurrence of irSNP and specific bacteria enrichment in the microbiota to increase the CRC risk. However, if the irSNP is linked to the genetic ancestry, 
population-specific microbiome GWAS will likely detect the association of irSNP and the bacteria as a CRC risk in the population carrying this genetic ancestry. CRC: 
Colorectal cancer; irSNPs: Immune-related single-nucleotide polymorphisms; GWAS: Genome-wide association studies; mGWAS: Microbiome genome-wide 
association studies.

associated with lactase persistence gene, contributed to microbiome composition[45,68,122,123]. A study 
performed with 416 twin pairs in the United Kingdom identified 26 “heritable” taxa, also suggesting 
that specific host genetic variants may participate in microbiome composition (Table 2)[124]. Notably, 
host genetic variants associated with microbiome composition were found to be enriched in immunity-
related pathways[122]. Studies showing associations between metabolic and immune-related 
polymorphisms and microbiome composition are summarized in Table 2.

Finally, associations between the microbiome and somatic mutations in CRC have been described by 
Burns et al[95], who suggested that genetic determinants of the host and colon tumor mutations alter 
microbiome structure. The CRC mutanome could therefore help predict the composition and function of 
CRC-associated microbiomes and the clinical outcome or the response to therapies. To this end, of 
intrigue is the recent description by Ashktorab et al[125] and Brim et al[126] of genetic variation in tumor 
suppressor genes (APC), DNA mismatch repair genes, and other driver mutations (KRAS and PIK3C) in 
AAs with CRC, some of which were novel and not previously described in other populations. Loss of 
function mutations in APC were correlated with changes in 25 different microbial taxa, including an 
abundance of Finegolia or Christensenellaceae. Mutations in the zinc finger protein 717-coding gene were 
associated with an abundance of Akkermansia and Verrucomicrobiaceae, both colitis-associated species. 
Additionally, the same authors have isolated a novel Streptococcus spp. VT_162 from colon adenoma and 
CRC lesions in AAs[126]. Fecal Streptococcus spp. VT_162 was also confirmed in an advanced adenoma 
and CRC Chinese/Hong-Kong cohort[126]. An assessment of this bacterium’s relative prevalence in 
CAs compared to AAs will be necessary. Whether CA genetic background is more restrictive, while AA 
genetic background is more permissive to this species is not yet established. It may be postulated that, 
as seen in IBD patients, host genetic background drives the nature of the microbiome and alters the CRC 
risk posed by procarcinogenic “driver” bacteria[48,51].

Although there is a lack of direct causative links between such bacteria and colon carcinogenesis or 
growth promotion, this evidence at least signals that CRC disparities in AAs may be related to differ-
ential host inflammatory responses to similar bacterial communities (inflammation-driven disparities) 
and/or the contribution of ancestry-related factors in shaping microbiome diversity (bacteria-driven 
disparities). The molecular pathological epidemiology (MPE) that aims at uncovering an interactive 
relationship between environmental features and disease subtypes to understand disease incidence and 
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Figure 3 Population-specific colorectal cancer microbiome genome-wide association studies to understand colorectal cancer disparities. 
Systemic underrepresentation of minorities in microbiome genome-wide association studies (mGWAS) may compromise the identification of microbiome-associated 
colorectal cancer (CRC) risks in African-Americans (AAs). Left: Associations between AA-enriched immune-related single-nucleotide polymorphisms (irSNPs) (pop-
irSNPs) and gut bacteria (Taxa) may remain undetected in the global population if pop-irSNP and Taxa have too low frequency in the AA population and AAs are 
underrepresented. Right: If pop-irSNP and pathogenic bacteria are CRC risk factors in AA, they will be enriched in AA CRC patients compared to the general AA 
population (left), and mGWAS will detect the association between pop-irSNP and Taxa in AA CRC cohort. These features justify population-specific CRC mGWAS to 
detect additional CRC risk resulting from the interaction between ancestral irSNP and bacteria in minorities. CRC: Colorectal cancer; irSNPs: Immune-related single-
nucleotide polymorphisms; mGWAS: Microbiome genome-wide association studies; AA: African-American; CA: Caucasian-American.

mortality will provide etiologic and pathogenic insights in CRC disparities[127,128]. However, 
discoveries made in healthy donors often remain inconsistent from one study to another, perhaps due to 
multiple confounding environmental factors between heterogeneous cohorts[45,129]. More likely 
culprits for the inconsistency seen in GWAS that seek to identify the impact of host genetics on 
microbiome diversity are the homogeneity in sampled cohorts and differences in experimental 
approaches including stool vs mucosa sampling, sequencing approaches, and annotations. Future 
GWAS must address such issues in order to identify associations between genetic background and the 
microbiome that can reliably be applied to the question of disparities.

CONCLUSION
CRC disparity is far from an exclusively biological phenomenon but rather involves a complex interplay 
of SES, environmental and genetic components that collectively impact CRC risk and prognostics. 
Although there is a growing understanding of this complexity, studies examining the influence on CRC 
pathogenesis from ancestry-specific interactions between host genetics and the commensal microbiome 
are lacking. Such work is nevertheless urgently needed to appropriately mitigate CRC on a population 
basis and especially to help address alarming new trends, such as early-onset CRC amongst AAs. To 
facilitate this line of investigation, we reviewed irSNPs identified in CRC mGWAS and proposed that 
some of such variants (and others yet to be discovered) may alter microbiome composition and/or 
differential inflammatory responses to bacteria, thereby impacting CRC risk in a manner associated with 
genetic ancestry. However, testing the functional significance of such variants will require systematic 
studies that can incorporate the microbiome, mucosal immunity, and host genetics. A recent invest-
igation by DeStefano Shields et al[130], although not related to cancer disparity, offers a potential experi-
mental blueprint. Researchers introduced the BRAFV600E mutation to a MinApcΔ716/+ murine model of distal 
colon polyposis, then colonized BRAF mutant and MinApcΔ716/+ mice with Enterotoxigenic Bacteroides 
fragilis. Distal colon tumorigenesis was observed in MinApcΔ716/+ mice following colonization, whereas 
BRAFV600E MinApcΔ716/+ mice developed proximal colon tumors associated with immune signature and 
microbiome alterations plus sensitivity to anti-programmed death ligand 1[130]. These results suggested 
that host gene/bacteria interactions may drive CRC risk and pathogenesis, and demonstrate how such 
interactions can be disentangled mechanistically using experimental models with clinical implications. 
In the nascent field of precision medicine and multidisciplinary big data integration, the rapidly 
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evolving MPE represents a successful model of integration of pathology, genomics, microbiome, 
immunology, epidemiology, and social science[127,128]. MPE will considerably improve precision 
medicine and prevention allowing, among other things, identifying SNPs that may impact microbiome 
and inflammation and serve as predictive markers. Genetic ancestry, however, remains to be integrated 
to this model to precisely address CRC disparities at the molecular level. Elucidating the mechanisms by 
which ancestry-associated variants impact CRC pathogenesis will be much more challenging, but 
models such as the one described by Lavoie et al[60], who used mice engineered to express the 
polymorphism T300A (rs2241880) in the Atg16 L1 gene known to increase IBD risk in humans, represent 
a promising approach to identifying mechanisms that can lead to personalized interventions applicable 
to minorities.

Yet, without addressing biases in genomics science, the ability of GWAS to detect variants of 
significance for AAs (or other minorities in general) will remain stunted[131]. To date, cancer GWAS 
have examined cohorts predominantly composed of Caucasian individuals, an homogeneity that limits 
the appreciation of how genetic ancestry impacts cancer risk[101,102]. Critically, the lack of diverse 
representation in sampling cohorts results in the increased likelihood that, even if identified, cancer-
associated variants may be of limited clinical significance for non-Caucasian populations. While 
commenting on this issue, Davis[131] recently argued that the current state of genomic medicine is 
inadequately equipped to confront current oncological trends of disparate incidence and mortality in 
inclusive fashion and advocated for a persistent push towards the prioritization of patient diversity. 
Such an agenda is not only more harmonious with the principles of ethical human subjects research but 
is also scientifically meritable, as studies that account for diversity have already revealed novel genomic 
data that may improve our understanding of cancer etiology[132]. Therefore, for powered GWAS to 
detect and discern associations between population-enriched irSNPs, the microbiome, and CRC, proper 
accounting of population diversity and sufficient cohort size (estimated at > 4000 individuals)[45], or 
even population-specific CRC studies will be essential (illustrated in Figure 3). Encouragingly, recent 
methodological frameworks for multi-ancestry cohort GWAS have already yielded ancestry-related 
cancer variant risk factors[133,134]. Moreover, the recent initiative of the National Cancer Institute: 
Genetic Association and Mechanism in Oncology (GAME-ON; https://epi.grants.cancer.gov), which 
regrouped genomic data from more than 33 GWAS across five different cancers (CRC, lung, breast, 
ovary, and oral), is an example of the benefit of data sharing that will help identifying through meta-
analysis data cancer risk loci in understudied populations, especially since 40% of the samples are from 
African, Asian, and Hispanic backgrounds. However, our integrated concept for CRC genomic research 
proposes that to represent accurately and capture the contribution of irSNP/microbiome interactions to 
CRC disparities, such diversified host genomic data must be paired with microbiome data.

In sum, population-related irSNP that regulate mucosal inflammation may modify the microbiota 
and its interaction with colon epithelium. Alternatively, a population-related SNP not involved in 
immune regulation may also alter the microbiome and trigger procarcinogenic chronic inflammation. 
Finally, a combination of two SNPs impacting inflammation and the microbiome with minor effects on 
CRC pathogenesis may trigger a strong procarcinogenic bacteria/inflammation interaction when 
combined in an at-risk population (Figure 2). By hunting for and characterizing such genetic factors 
using the emerging genetic admixture and ancestry paradigms, we believe scientists and clinicians will 
have a precision tool that enables a clearer understanding of the association between CRC with AA 
populations and the increasing trend of early onset CRC, ultimately to better mitigate CRC outcome 
disparities.
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