TABLE 2. Cross-validation results for COVID-19 classification using the cough and breathing sound analysis of our telehealth-IoT deep learning model.
| Cough sound | Breathing sound | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Dataset | F1-score | Accuracy | F1-score | Accuracy | |||||
| Average | Standard deviation | Average | Standard deviation | Average | Standard deviation | Average | Standard deviation | ||
| Collected data only | 0.6549 | 0.0820 | 0.6297 | 0.0170 | 0.7273 | 0.0700 | 0.7045 | 0.0500 | |
| With data augmentation | Aug = 50 | 0.6968 | 0.0361 | 0.6667 | 0.0166 | 0.7646 | 0.0491 | 0.7333 | 0.0522 |
| Aug = 100 | 0.7099 | 0.0417 | 0.6875 | 0.0140 | 0.7904 | 0.0452 | 0.7703 | 0.0517 | |
| Aug = 150 | 0.7522 | 0.0368 | 0.7324 | 0.0289 | 0.8015 | 0.0293 | 0.7770 | 0.0283 | |
| Aug = 180 | 0.7777 | 0.0186 | 0.7375 | 0.0198 | 0.8120 | 0.0426 | 0.7988 | 0.0281 | |
| Aug = 200 | 0.7866 | 0.0317 | 0.7595 | 0.0246 | 0.8192 | 0.0217 | 0.8071 | 0.0237 | |
| Aug = 300 | 0.8244 | 0.0360 | 0.8010 | 0.0387 | 0.8417 | 0.0323 | 0.8260 | 0.0291 | |
| Aug = 1000 | 0.9172 | 0.0048 | 0.9098 | 0.0065 | 0.9172 | 0.0208 | 0.9098 | 0.0224 | |